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Abstract. This paper is devoted to study the existence of anti-periodic solutions for implicit nonlinear differential equations

associated to a time-dependent pseudomonotone (or quasimonotone) operator in the sense of Brézis. The method adopted in

this paper is new and differs from the most used technics in literature, it is based on recent results on the theory of equilibrium

problems. By this approach, we provide some new results which improve and unify most of the recent results obtained in this

direction.
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1. INTRODUCTION

We consider in a real Hilbert space V the following anti-periodic problem of implicit nonlinear differ-

ential equations {
d
dt (Bx(t))+A (t)x(t) = f (t), a.e. t ∈ (0,T ),

Bx(0) =−Bx(T ),
(1.1)

where B is a linear bounded, symmetric and positive operator from V to V ∗ (the topological dual of V ),

A (t) : V →V ∗ is a nonlinear time-dependent operator, and f : [0,T ]→V ∗ is a functional.

Anti-periodic solutions arise naturally in the mathematical modeling of a variety of physical processes,

see [5, 8, 19]. When B is the identity operator, the study of anti-periodic solutions for nonlinear evolution

equations was initiated by Okochi [22, 23] in Hilbert spaces.

Many problems for nonlinear evolution equations related to problem (1.1) have been treated by us-

ing the theory of monotone operators (see [2]). Usually these equations are governed by the sum of a

discontinuous monotone operator and a Nemytskij operator satisfying suitable smoothness and growth
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conditions. In contrast, the problem we study here is governed by a time-dependent pseudomonotone (or

quasimonotone) operator in the sense of Brézis.

Recently, Liu and Liu [20], considered problem (1.1) when operator A is not time dependent, more

precisely they considered the problem with A = A+G where A is a monotone operator and G is an

operator which is both continuous and weak continuous. The method adopted in [20] is essentially based

on a result related to pseudomonotone perturbations of maximal monotone operators, and it consists

to use the maximal monotone property of the derivative operator with anti-periodic conditions and a

convergent approximation procedure.

In this paper, we study problem (1.1) by a new approach based recent results on the theory of equi-

librium problems, see the survey paper by Bigi-Castellani-Pappalardo-Passacantando [14] on this theory

and the references therein. This new approach provides some new results which improve and unify most

of the recent results obtained in this direction.

The paper is organized as the following. In the second section we give basic concepts related to

operator theory and to equilibrium problems. We give also some preliminary results that will be used

in the study of problem (1.1). In Section 3, we introduce an auxiliary problem and we prove a Hirano’s

Lemma for bifunctions. We give also several existence results for the auxiliary problem. In Section 4,

we give the main results on the existence of solutions for problem (1.1). A conclusion and comparison

with recent results is given at the end of the paper.

2. PRELIMINARIES

Let V , H be real Hilbert spaces. V ∗ stands for the dual space of V and we suppose that the embeddings

V ⊂H ∼=H∗⊂V ∗ are dense and continuous, in this case we call (V,H,V ∗) an evolution triple, also known

as ”Gelfand-Triple”, see [26, Chapter 13]. The inner product in H is denoted by (·, ·)H . The norm of any

Banach space U is denoted by ‖ ·‖U . The duality pairing between U and U∗ is denoted by 〈·, ·〉. For each

finite subset N of U , we denote by co(N) the convex hull of N. The closure of a subset M of U will be

denoted by cl(M). For a multi-valued mapping A : U → 2U∗ , we denote by D(A) := {u ∈U : A(u) 6= /0}
the domain of A and by G(A) := {(u,u∗) : u ∈ D(T ) and u∗ ∈ A(u)} the graph of A. We denote by J

the duality mapping from U into U∗, i.e., for each u ∈U , J (u) = {v ∈U∗ : 〈v,u〉= ‖u‖2
U = ‖v‖2

U∗}. By

using the Asplund’s renorming theorem (see [3, Theorem 1.105]), we may assume that J is a single-

valued monotone and demicontinuous mapping, see [4, Theorem 1.2]. Let p, p′ and T be constants such

that T > 0, p≥ 2 and 1
p +

1
p′ = 1. Let X = Lp(0,T ;V ), X∗ = Lp′(0,T ;V ∗) and W 1,p([0,T ];V,H) := {u ∈

X : u′ ∈ X∗} be the Bochner-Sobolev space, where u′ is the generalized derivative of u. The embedding

W 1,p([0,T ];V,H)⊂C([0,T ];H) is continuous, see [26, Proposition 23.23]. We use the standard notation

”→” to denote the strong convergence of a sequence, and ”⇀” to denote the weak convergence.

Now we formulate the assumptions needed in our study.

Assumptions: Let B ∈ L(V,V ∗), where L(V,V ∗) denotes the space of all bounded linear operators from

V to V ∗, and {A (t) : t ∈ [0,T ]} be a family of operators from V to V ∗ with the following properties:

[H1] 〈Bu,u〉 ≥ 0 for all u ∈V and B is symmetric;
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[H2] For t ∈ [0,T ] and w ∈ V , the mapping u ∈ V 7→ 〈A (t)u,w− u〉 is upper semicontinuous on

co(N) for each finite subset N of V ;

[H3] The function t 7→ 〈A (t)u,w〉V is measurable on [0,T] for all u,w ∈V ;

[H4] There exists a constant k0 > 0, as well a function k1 ∈ Lp′(]0,T [) such that

‖A (t)u‖V ∗ ≤ k0‖u‖p−1
V + k1(t) for all u ∈V and almost every t ∈ [0,T ];

[H5] There exists a positive constant α0 and a function α1 ∈ L1(]0,T [) such that

〈A (t)u,u〉V ≥ α0‖u‖p
V −α1(t) for all u ∈V and almost every t ∈ [0,T ].

We recall the following concepts of mappings of monotone type which are presented here in the

general setting of a Banach space U .

Definition 2.1. Let A : D(A)⊂U →U∗ be an operator with domain D(A). Then, A is said to be

(1) monotone if 〈A(u)−A(v),u− v〉 ≥ 0 for all u,v ∈D(A);

(2) maximal monotone if A is monotone and 〈v∗−A(u),v−u〉 ≥ 0 for all u ∈D(A) implies

A(v) = v∗, i.e. A has no proper monotone extension;

(3) pseudomonotone in the sense of Brézis (in short B-PMO) if for any sequence

{un}n∈N ⊂D(A) with un ⇀ u in U and limsupn→∞〈A(un),un−u〉 ≤ 0, we have

liminf
n→∞

〈A(un),un− v〉 ≥ 〈A(u),u− v〉, ∀v ∈U ;

(4) quasimonotone in topological sense (in short T-QMO) if for any sequence {un}n∈N ⊂D(A) with

un ⇀ u in U , we have limsupn→∞〈A(un),un−u〉 ≥ 0;

(5) demicontinuous if un→ u in U implies A(un)⇀ A(u) in U∗;

(6) hemicontinuous (respectively, upper hemicontinuous) if for all u,v,w ∈U , the functional

t ∈ [0,1] 7→ 〈T (u+ tv),w〉 is continuous (respectively, upper semicontinuous).

We recall in the following definition the well-known concept of generalized pseudomonotone maps

with respect to the domain of a linear maximal monotone operator (see [24, 10, 11]).

Definition 2.2. Let L : D(L) ⊂ U → U∗ be a linear maximal monotone operator and D(L) densely

embedded into U . A operator A :U→U∗ is said to be L-generalized pseudomonotone (in short L-GPMO)

if for any sequence {un}n∈N ⊂D(L) with un ⇀ u and Lun ⇀ Lu and limsupn→∞〈A(un),un−u〉 ≤ 0, we

have

liminf
n→∞

〈A(un),un− v〉 ≥ 〈A(u),u− v〉, ∀v ∈U.

The definition of L-quasimonotone mapping (in short L-QMO) with respect to D(L) is given accordingly.

Since the approach developed in this paper is based on recent results obtained for some Ky Fan type

minimax inequalities, or what is actually known in literature as ”Equilibrium Problems” (see [7]), we

recall for bifunctions the concepts introduced in Definition 2.1.

Definition 2.3. Let K be a nonempty closed convex subset of U . A real-valued bifunction F : K×K→R
is said to be

(i) monotone if F(u,v)+F(v,u)≤ 0, ∀u,v ∈ K;
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(ii) pseudomonotone in the sense of Brézis (in short, B-PMB) if for any sequence {un}n∈N ⊂ K such

that un ⇀ u in K, we have liminfn→∞ F(un,u)≥ 0 implies limsupn→∞ F(un,v)≤ F(u,v), ∀v∈K;

(iii) quasimonotone in topological sense (in short, T-QMB) if for any sequence {un}n∈N ⊂ K such

that un ⇀ u in K, we have liminfn→∞ F(un,u)≤ 0;

(iv) hemicontinuous (respectively, upper hemicontinuous) if for all u,v∈K, the functional t ∈ [0,1] 7→
F(tu+(1− t)v,u) is continuous (respectively, upper semicontinuous).

Remark 2.1. The pseudomonotonicity notion for bifunctions in the sense of Brézis has been considered

first by Gwinner [15, 16], it is motivated by the concept of pseudomonotonicity in the sense of Brézis

for operators (see [9]). The quasimonotonocity concept of bifunctions is considered here in a topological

sense and represent an extension to bifunctions of the corresponding concept for nonlinear operators, see

[6, 18, 25] where the definition for quasimonotone operators in topological sense is considered for some

special subclasses. Some properties needed in the sequel and that can be obtained easily are listed below.

(a) If A : U →U∗ is B-PMO, then the bifunction F : U×U → R defined by F(u,v) = 〈Au,v−u〉 is

B-PMB.

(b) If the bifunction F : U×U→R is upper semicontinuous in the first argument with respect to the

weak topology σ(U,U∗), then it is B-PMB.

(c) If F1,F2 : K×K→ R are B-PMB such that F1(u,u)≤ 0 and F2(u,u)≤ 0 for all u ∈ K, where K

is a closed convex subset of U , then F1 +F2 is also B-PMB (see [12]).

Definition 2.4. Let L : D(L) ⊂ U → U∗ be a linear maximal monotone operator and D(L) densely

embedded into U and K be a closed convex subset of U . A bifunction F : K×K → R is said to be

L-generalized pseudomonotone (in short L-GPMB) if for any sequence {un}n∈N ⊂ D(L) with un ⇀ u

and Lun ⇀ Lu and liminfn→∞ F(un,u)≥ 0, we have limsupn→∞ F(un,v)≤ F(u,v), ∀v ∈ K.

The definition of L-quasimonotone bifunction (in short L-QMB) with respect to D(L) is given similarly.

In the following definition we introduce the concept of maximal monotonicity for bifunctions. This

notion has been initiated by Blum-Oettli [7] in the aim to extend to bifunctions the notion of maximal

monotonicity of operators.

Definition 2.5. [7] Let K be a nonempty closed convex subset of U and Φ : K×K→R be a real-valued

bifunction such that Φ(u,u) = 0 for all u ∈ K. The bifunction Φ is said to be maximal monotone in

the sense of Blum-Oettli (in short, BO-maximal monotone) if and only if for every u ∈ K and for every

convex function ϕ : K→ R with ϕ(u) = 0, we have

Φ(v,u)≤ ϕ(v), ∀v ∈ K ⇒ 0≤Φ(u,v)+ϕ(v), ∀v ∈ K.

Remark 2.2. For the properties of BO-maximal monotone bifunctions and their connection with maxi-

mal monotone operators, we refer to [13].

Next we will state some recent results concerning Ky Fan type minimax inequalities, which will be

used in the following.



ANTI-PERIODIC SOLUTIONS 75

Lemma 2.1. [13] Let U be a reflexive Banach space, K a nonempty closed convex subset of U and

Φ,Ψ : K×K → R two real-valued bifunctions such that Φ(u,u) = Ψ(u,u) = 0 for all u ∈ K. Assume

that

(i) Φ is monotone and BO-maximal monotone;

(ii) Φ is weakly lower semicontinuous with respect to the second argument;

(iii) Φ and Ψ are convex with respect to the second argument;

(iv) Ψ is B-PMB;

(v) For each finite subset N of K and each v in K fixed, the function u ∈ K 7→ Ψ(u,v) is upper

semicontinuous on co(N);

(vi) (Coercivity) There exists a weakly compact subset D, such that for each λ > 0 (small enough)

there exists a weakly compact convex subset Bλ of K satisfying

∀u ∈ K \D, ∃v ∈ Bλ such that Ψ(u,v)+λ 〈J u,v−u〉< Φ(v,u).

Then, there exists u ∈ K∩D such that Φ(u,v)+Ψ(u,v)≥ 0 for all v ∈ K.

Lemma 2.2. [13] Let K be a nonempty, closed and convex subset of a reflexive Banach space U. Let

Φ,Ψ : K×K −→ R be two real-valued bifunctions such that Φ(u,u) = Ψ(u,u) = 0 for all u ∈ K. Let

λ > 0 and suppose that

(i) Φ is monotone and BO-maximal monotone;

(ii) Φ is weakly lower semicontinuous with respect to the second argument;

(iii) Φ and Ψ are convex with respect to the second argument;

(iv) Ψ is T-QMB;

(v) Ψ is upper semicontinuous with respect to the first argument;

(vi) (Coercivity) There exists a weakly compact subset Wλ and a weakly compact convex subset Bλ

of K satisfying

∀u ∈ K \Wλ , ∃v ∈ Bλ such that Ψ(u,v)+λ 〈J u,v−u〉< Φ(v,u).

Then, there exists uλ ∈ K∩Wλ such that Φ(uλ ,v)+Ψ(uλ ,v)+λ 〈J uλ ,v−uλ 〉 ≥ 0 for all v ∈ K.

Lemma 2.3. [13] Let K be a nonempty, closed and convex subset of a reflexive Banach space U. Let

Φ,Ψ,Ξ : K×K −→ R be real-valued bifunctions with Φ(u,u) = Ψ(u,u) = Ξ(u,u) = 0 for all u ∈ K.

Assume that

(i) Φ is monotone and BO-maximal monotone;

(ii) Ψ is B-PMB;

(iii) Ξ is T-QMB;

(iv) Φ, Ψ and Ξ are convex with respect to the second argument;

(v) Φ is weakly lower semicontinuous with respect to the second argument;

(vi) Ξ is upper semicontinuous with respect to the first argument;

(vii) For each finite subset N of K and each fixed v ∈ K, the function u ∈ K 7−→ Ψ(u,v) is upper

semicontinuous on co(N);
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(viii) (Coercivity) There exists a weakly compact subset D, such that for each λ > 0 (small enough)

there exists a weakly compact convex subset Bλ of K satisfying

∀u ∈ K \D, ∃v ∈ Bλ such that Ψ(u,v)+Ξ(u,v)+λ 〈J u,v−u〉< Φ(v,u).

Then, there exists u ∈ K∩D such that Φ(u,v)+Ψ(u,v)+Ξ(u,v)≥ 0 for all v ∈ K.

Remark 2.3. (i) If K is compact, the coercivity condition in the previous theorems can be dropped.

(ii) If U is a reflexive Banach space endowed with the weak topology σ(U,U∗), then the coercivity

condition (vi) in Lemma 2.1 and Lemma 2.2 is satisfied if the following condition holds

(vi)’

 there exists v0 ∈ K such that
Ψ(u,v0)+λ 〈J u,v0−u〉

‖u− v0‖U
→−∞ when ‖u‖U →+∞ uniformly in λ .

Furthermore, the family of solutions {uλ}λ>0 generated by Lemma 2.2 is contained in a compact

set D independent from λ > 0, see [13].

3. AN AUXILIARY PROBLEM

3.1. Formulation of the auxiliary problem. Let ε > 0 be given and Γ : V → V ∗ be the canonical

isomorphism. Under the assumptions on B, we see that (εΓ+B) is an isomorphism from V to V ∗. Since

B is symmetric, we can consider on V ∗ the inner product defined by 〈u,v〉 := 〈u,(εΓ+B)−1v〉V for all

u,v ∈ V ∗. We denote V ∗ endowed with this inner product by W := (V ∗,〈·, ·〉W ) where 〈u,v〉W := 〈u,v〉.
We can easily see that W is a Hilbert space where the norm is denoted by ‖ · ‖W . Furthermore, the two

norms on V ∗ are equivalent since

‖(εΓ+B)−1‖−1/2‖v‖W ≤ ‖v‖V ∗ ≤ ‖(εΓ+B)‖1/2‖v‖W , for all v ∈V ∗.

Let Z = Lp(0,T ;W ). Since W is a Hilbert space, we can identify W with its dual. So, we may write

Z∗ = Lp′(0,T ;W ). We denote the pairing between Z = Lp(0,T ;W ) and Z∗ = Lp′(0,T ;W ) by 〈〈·, ·〉〉. Let

W = {v ∈ Z : v′ ∈ Z∗}. Here v′ stands for the generalized derivative of v, i.e.∫ T

0
v′(t)φ(t) dt =−

∫ T

0
v(t)φ ′(t) dt, for all φ ∈C∞

0 ([0,T ]).

The generalized derivative Lv = v′ restricted to the subset D(L) = {v ∈ W : v(0) = −v(T )} defines

a linear operator L : D(L) ⊂ Z → Z∗ given for v,z ∈ Z by 〈〈Lv,z〉〉 =
∫ T

0 〈v′(t),z(t)〉W dt. Note that

the space W is a real, separable and reflexive Banach space with the norm ‖v‖W = ‖v‖Z + ‖v′‖Z∗ , the

embedding W ⊂C([0,T ];W ) is continuous and D(L) is a linear closed subspace of W . D(L) equipped

with the graph norm ‖v‖L = ‖v‖Z +‖v′‖Z∗ is a reflexive Banach space. The operator L : D(L)⊂ Z→ Z∗

is densely defined, closed and maximal monotone, see [21, Proposition 1]. We denote by J the duality

mapping from Z∗ into Z, i.e., for each v ∈ Z∗,

J (v) = {z ∈ Z : 〈〈z,v〉〉= ‖z‖2
Z = ‖v‖2

Z∗}.

By using the Asplund’s renorming theorem (see [3, Theorem 1.105]), we may assume that J is a single-

valued monotone and demicontinuous mapping, see [4, Theorem 1.2].
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For ε > 0, consider the following auxiliary equation:{
((εΓ+B)x(t))′+A (t)x(t) = f (t), a.e. t ∈ (0,T ),

(εΓ+B)x(0) =−(εΓ+B)x(T ).
(3.1)

Define Aε(t) : W →W ∗ as

Aε(t)u = A (t)((εΓ+B)−1u), for all u ∈W.

By considering u(t) = (εΓ+B)x(t), i.e. u(0) =−u(T ), we can write (3.1) as{
u(t)′+Aε(t)u(t) = f (t), a.e. t ∈ (0,T ),

u(0) =−u(T ).
(3.2)

Define an operator Âε related to Aε by

Âε(u)(t) = Aε(t)u(t), t ∈ [0,T ],

which may be considered as the associated Nemytskij operator generated by the operator-valued function

t 7→Aε(t). By means of the operator L, we can write (3.2) as the following

(AuxP) Find u ∈D(L) such that Lu+ Âεu = f . (3.3)

Before studying the existence of solutions for the auxiliary problem, we need to show some fundamental

results which are presented in the following.

3.2. Hirano’s Lemma. In this section, we prove a generalized version of Hirano’s Lemma [17]. A first

version of this lemma was obtained with the assumption that V is compactly embedded in H, see [17,

Proposition 2].

For ε > 0, consider the bifunction Θε : D(L)×D(L)→ R defined by Θε(u,v) = 〈〈Âεu,v− u〉〉 for

u,v∈D(L). Here D(L) is a reflexive Banach space equipped with the graph norm ‖v‖L = ‖v‖Z +‖v′‖Z∗ .

The bifunction Θε can be written as the following: Θε(u,v) =
∫ T

0 φt,ε(u(t),v(t))dt where φt,ε is the real-

valued bifunction defined on W ×W by φt,ε(x,y) = 〈Aε(t)x,y− x〉W . Note that, from assumption [H3],

the function t ∈ [0,T ] 7→ φt,ε(x,y) is measurable.

We need the following preliminary result.

Lemma 3.1. Suppose that {A (t) : t ∈ [0,T ]} satisfy assumptions [H4] and [H5]. Then for each x,y∈W,

there exists a function τ ∈ L1([0,T ]) independent from x such that φt,ε(x,y) ≤ τ(t) for almost every

t ∈ [0,T ].

Proof. Let x,y ∈W and t ∈ [0,T ]. Then

φt,ε(x,y) = 〈Aε(t)x,y− x〉W = 〈A (t)((εΓ+B)−1x),(εΓ+B)−1(y− x)〉V

= 〈A (t)((εΓ+B)−1x),(εΓ+B)−1y〉V −〈A (t)((εΓ+B)−1x),(εΓ+B)−1x〉V .

Taking account of assumptions [H4] and [H5], we deduce that for almost every t ∈ [0,T ]

φt,ε(x,y)≤‖(εΓ+B)−1x‖p−1
V

[
k0‖(εΓ+B)−1y‖V −α0‖(εΓ+B)−1x‖V

]
+k2(t)‖(εΓ+B)−1y‖V +α1(t).
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• If k0‖(εΓ+B)−1y‖V −α0‖(εΓ+B)−1x‖V ≤ 0, it follows

φt(x,y)≤ α1(t)+ k2(t)‖(εΓ+B)−1y‖V .

• If k0‖(εΓ+B)−1y‖V −α0‖(εΓ+B)−1x‖V > 0, it follows

‖(εΓ+B)−1y‖V‖(εΓ+B)−1x‖p−1
V < (k0/α0)

p−1‖(εΓ+B)−1y‖p
V .

Hence,

φt,ε(x,y)≤ k0(k0/α0)
p−1‖(εΓ+B)−1y‖p

V + k2(t)‖(εΓ+B)−1y‖V +α1(t).

�

Now, we show the following generalized version of Hirano’s Lemma.

Lemma 3.2. Suppose that the assumptions [H3], [H4] and [H5] are satisfied. If A (t) : V → V ∗ is

B-PMO for all t ∈ [0,T ], then the bifunction Θε : D(L)×D(L)→ R is L-GPMB.

Proof. Let {un}n∈N ⊂D(L) such that un ⇀ u in Z, Lun ⇀ Lu in Z∗ and liminfΘε(un,u)≥ 0, let us verify

that limsupΘε(un,v)≤Θε(u,v) for all v∈D(L). Let us set zn =(εΓ+B)−1un and z=(εΓ+B)−1u. Note

that (εΓ+B)−1 is weakly continuous since it is bounded. Therefore, from un ⇀ u in Z and Lun ⇀ Lu

in Z∗ it follows that zn ⇀ z in X and z′n ⇀ z′ in X∗. From the evolution triple (see [26, Chapter 23]),

we can write for any n ∈ N, zn(t) = zn(0)+
∫ t

0 z′n(s)ds, where zn : [0,T ]→ V ∗ is absolutely continuous

and zn ∈C([0,T ];H). Furthermore, since the embedding W 1,p([0,T ];V,H)⊂C([0,T ];H) is continuous,

we deduce that {zn} is bounded in C([0,T];H), and hence we may assume zn(0)⇀ z(0) in H. For each

w ∈V ⊂ H we have

〈zn(t),w〉V = (zn(t),w)H =

(
zn(0)+

∫ t

0
z′n(s)ds,w

)
H
= (zn(0),w)H +

∫ t

0

〈
z′n(s),w

〉
V ds.

Since z′n ⇀ z′ in X∗, we obtain

lim〈zn(t),w〉V = lim(zn(0),w)H + lim
∫ t

0〈z′n(s),w〉V ds = (z(0),w)H +
∫ t

0〈z′(s),w〉V ds

=
(
z(0)+

∫ t
0 z′(s)ds,w

)
H

= 〈z(t),w〉V .
(3.4)

Hence, zn(t)⇀ z(t) in V ∗ and therefore un(t)⇀ u(t) in W , for all t ∈ [0,T ].

Now, consider ρn(t) = φt,ε(un(t),u(t)) for t ∈ [0,T ]. First we prove that

limsup
∫ T

0
ρn(t)dt ≤ 0. (3.5)

Indeed, from Lemma 3.1, there exists a non negative function τ ∈ L1([0,T ]) such that

ρn(t)≤ τ(t), for almost every t ∈ [0,T ]. (3.6)

By using Fatou’s lemma, we deduce that

limsup
∫ T

0
ρn(t)dt ≤

∫ T

0
limsupρn(t)dt. (3.7)
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Now suppose by contradiction that limsupρn(t0) > 0 for some t0 ∈ [0,T ]. Let {ρnk(t0)}k∈N be a sub-

sequence of {ρn(t0)}n∈N such that limρnk(t0) > 0. It follows, by using assumptions [H4] and [H5], that

{unk(t0)}k∈N is bounded in W . Hence, for a subsequence of {unk(t0)}k∈N also denoted {unk(t0)}k∈N, we

have unk(t0) ⇀ u∗ in W , u∗ ∈W . We can verify, by using the same approach as in relation (3.4), that

u∗ = u(t0). On the other hand, we have that the operator Aε(t0) : W →W ∗ is B-PMO since A (t0) is

B-PMO. Therefore

limsupφt0,ε(unk(t0),v)≤ φt0,ε(u(t0),v), for all v ∈W. (3.8)

By considering v = u(t0) in relation (3.8), we obtain limsupρnk(t0) ≤ 0, which leads to a contradiction.

Hence,

limsupρn(t)≤ 0, for all t ∈ [0,T ]. (3.9)

Consequently, relation (3.5) follows from (3.7) and (3.9). Thus, relation (3.5) and the assumption that

liminfΘε(un,u)≥ 0, lead us to obtain

limΘε(un,u) = lim
∫ T

0
φt,ε(un(t),u(t))dt = lim

∫ T

0
ρn(t)dt = 0.

Consider ρ+
n (t) = max{ρn(t),0} and ρ−n (t) = ρ+

n (t)− ρn(t). From relation (3.6), we have that 0 ≤
ρ+

n (t) ≤ τ(t) for all t ∈ [0,T ]. On the other hand, relation (3.9) permit us to have limρ+
n (t) = 0 for all

t ∈ [0,T ]. Hence, by the Lebesgue’s dominated convergence theorem we get lim
∫ T

0 ρ+
n (t)dt = 0. Since

limsup
∫ T

0
|ρn(t)|dt = limsup

∫ T

0
ρ
+
n (t)+ρ

−
n (t)dt = limsup

∫ T

0
2ρ

+
n (t)−ρn(t)dt = 2limsup

∫ T

0
ρ
+
n (t)dt,

it follows that limsup
∫ T

0 |ρn(t)|dt = 0, i.e. ρn→ 0 in L1([0,T ]). Thus, there exists a measurable subset

N of [0,T ] with meas(N) = 0, and a subsequence {ρnk}k∈N of {ρn}n∈N such that ρnk(t)→ 0 for all

t ∈ [0,T ]\N. Let s ∈ [0,T ]\N, then from ρnk(s) = φs,ε(unk(s),u(s))→ 0 and from assumptions [H4] and

[H5], we deduce that {unk(s)}k∈N is bounded in W . Hence for a subsequence also denoted {unk(s)}k∈N,

we have unk(s)⇀ u(s). Since Aε(s) is B-PMO, we conclude that

limsupφs,ε(unk(s),v)≤ φs,ε(u(s),v), for all v ∈W.

Therefore, for any w ∈D(L), we have

Θε(u,w) =
∫ T

0
φt,ε(u(t),w(t))dt ≥

∫ T

0
limsupφt,ε(unk(t),w(t))dt.

From Lemma 3.1 and Fatou’s lemma, we obtain

Θε(u,w)≥ limsup
∫ T

0
φt,ε(unk(t),w(t))dt.

Thus, Θε(u,w)≥ limsupΘε(un,w) for any w ∈D(L), which completes the proof. �

We end this section by the following Hirano’s type Lemma considered for an operator quasimonotone

in the topological sense.

Lemma 3.3. Suppose that the assumptions [H3], [H4] and [H5] are satisfied. If A (t) : V → V ∗ is

T-QMO for all t ∈ [0,T ], then the bifunction Θε : D(L)×D(L)→ R is L-QMB.
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Proof. Let {un}n∈N ⊂ D(L) satisfying un ⇀ u in Z and Lun ⇀ Lu in Z∗. Let us set zn = (εΓ+B)−1un

and z = (εΓ+B)−1u. We have that zn(t) ⇀ z(t) in V for all t ∈ [0,T ], and hence un(t) ⇀ u(t) in W .

Furthermore, for every t ∈ [0,T ] the bifunction φt,ε : W ×W → R is T-QMB since A (t) : V → V ∗ is

T-QMO. On the other hand, by Lemma 3.1, there exists a non negative function τ ∈ L1([0,T ]) such that

φt,ε(un(t),u(t))≤ τ(t), for all t ∈ [0,T ].

From Fatou’s lemma, we derive that

limsup
∫ T

0
φt,ε(un(t),u(t))dt ≤

∫ T

0
limsupφt,ε(un(t),u(t))dt. (3.10)

In order to conclude, we verify that limsupφt,ε(un(t),u(t))≤ 0 for all t ∈ [0,T ]. To this aim, suppose by

contradiction that there exists t0 ∈ [0,T ] such that limsupφt0,ε(un(t0),u(t0)) > 0. Hence, there exists a

subsequence {unk(t0)}k∈N of {un(t0)}n∈N such that

limφt0,ε(unk(t0),u(t0))> 0. (3.11)

It follows, by using assumptions [H4] and [H5], that {znk(t0)}k∈N is bounded in V , and hence {unk(t0)}k∈N

is bounded in W . Therefore, for a subsequence of {unk(t0)}k∈N also denoted {unk(t0)}k∈N, we have

unk(t0)⇀ u(t0) ∈W . Since the bifunction φt0,ε is T-QMB, we derive that liminfφt0,ε(unk(t0),u(t0))≤ 0,

which contradicts relation (3.11). Therefore, limsupφt,ε(un(t),u(t))≤ 0 for all t ∈ [0,T ]. Consequently,

relation (3.10) permits us to obtain

liminfΘε(un,u) = liminf
∫ T

0
φt,ε(un(t),u(t))dt ≤ limsup

∫ T

0
φt,ε(un(t),u(t))dt ≤ 0.

This completes the proof. �

3.3. Existence of solutions for the auxiliary problem. Now, we shall study the existence of solutions

for the auxiliary problem (3.3) where the operator A (t) : V → V ∗ is B-PMO (respectively T-QMO) for

any t ∈ [0,T ]. To this aim, we consider the following mixed equilibrium problem (or Ky Fan minimax

type inequality problem) defined on D(L):

Find u ∈D(L) such that Φ(u,v)+Ψε(u,v)≥ 0, for all v ∈D(L), (3.12)

where D(L) is considered here as a reflexive Banach space equipped with the graph norm ‖v‖L = ‖v‖Z +

‖v′‖Z∗ , and the bifunctions Φ and Ψ are defined for u,v ∈D(L) by

Φ(u,v) = 〈〈Lu,v−u〉〉 and Ψε(u,v) = Θε(u,v)+Ψ(u,v),

with Ψ(u,v) = 〈〈 f ,u− v〉〉 and Θε(u,v) = 〈〈Âεu,v− u〉〉 =
∫ T

0 φt,ε(u(t),v(t))dt, here φt,ε is the real-

valued bifunction defined on W ×W by φt,ε(x,y) = 〈Aε(t)x,y− x〉W .

We shall study the problem (3.12) in D(L) considered here as a reflexive Banach space equipped

with the graph norm ‖v‖L = ‖v‖Z + ‖v′‖Z∗ . Hence, on D(L) equipped with the graph norm ‖v‖L =

‖v‖Z + ‖v′‖Z∗ , the concept of pseudomonotone bifunctions in the sense of Brézis introduced in Defi-

nition 2.3 is traduced for an arbitrary bifunction F : D(L)×D(L)→ R by the following: If for any

sequence {un}n∈N ⊂D(L) satisfying un ⇀ u in Z, Lun ⇀ Lu in Z∗ and liminfF(un,u)≥ 0, we have that

limsupF(un,v)≤Ψ(u,v) for all v ∈D(L). This leads to the concept of L-generalized pseudomonotone
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bifunction introduced in Definition 2.4. In an obvious similar way, we obtain the L-quasimonotonicity

concept for a bifunction with respect to D(L).

We need to show the following preliminary results.

Lemma 3.4. Let the assumption [H2] be satisfied. Then, for each finite subset N of D(L) the bifunction

Θε is upper semicontinuous with respect to the first argument on co(N).

Proof. Let {un}n∈N ⊂ co(N) such that un ⇀ u in Z. Since on co(N) the weak and strong convergence

coincide, it follows that un→ u ∈ co(N), i.e. lim
∫ T

0 ‖un(t)− u(t)‖p
W dt = 0. Consequently, there exists

a subsequence {unk}k∈N of {un}n∈N such that unk(t)→ u(t) for a.e. t ∈ [0,T ]. Hence, by assumption

[H2], we have for all z ∈ Z and a.e. t ∈ [0,T ], limsupφt,ε(unk(t),z(t)) ≤ φt,ε(u(t),z(t)). Taking account

of Lemma 3.1, we obtain by Fatou’s lemma

limsup
∫ T

0
φt,ε(unk(t),z(t))dt ≤

∫ T

0
limsupφt,ε(unk(t),z(t))dt ≤

∫ T

0
φt,ε(u(t),z(t))dt.

By using a contradiction argument, we obtain that the inequality follows for the whole sequence. �

Remark 3.1. The result of Lemma 3.4 is obtained in the particular case when the operator A (t) : V →V ∗

is monotone, hemicontinuous and satisfies assumption [H4]. Indeed, it is well known that an operator

which is monotone and hemicontinuous is B-PMO. Therefore, if it is locally bounded then it is demicon-

tinous and hence the assumption [H2] is verified.

Lemma 3.5. Let the assumptions [H1], [H4] and [H5] be satisfied. Further assume that for all t ∈ [0,T ]
the operator A (t) : V → V ∗ is demicontinuous. Then, the bifunction Θε is upper semicontinuous with

respect to the first argument.

Proof. Let {un}n∈N be a sequence in Z such that un→ u. Hence, there exists a subsequence {unk}k∈N of

{un}n∈N such that unk(t)→ u(t) for almost all t ∈ [0,T ]. By assumption [H1] and the demicontinuity of

the operator A (t), we deduce that Aε(t)(unk(t))⇀ Aε(t)(u(t)) a.e. t ∈ [0,T ]. It follows, for any w ∈ Z

and almost every t ∈ [0,T ], that

φt,ε(unk(t),w(t))→ φt,ε(u(t),w(t)).

By Lemma 3.1 and the Lebesgue’s dominated convergence theorem, we deduce that Θε(unk ,w) →
Θε(u,w) for any w ∈ Z. By a contradiction argument, we can verify the convergence for the all se-

quence. Therefore, for any fixed w ∈ Z, the function u ∈ Z 7→ Θε(u,w) is continuous and therefore it is

upper semicontinuous. �

Now, we are in position to give an existence result for the auxiliary problem (3.3) when the operator

A (t) : V →V ∗ is B-PMO for t ∈ [0,T ].

Theorem 3.1. Let the assumptions [H1]-[H5] be satisfied and A (t) : V →V ∗ is B-PMO for all t ∈ [0,T ].
Then, for each ε > 0, there exists uε ∈C([0,T ];W )∩Z such that u′ε ∈ Z∗ and{

u′ε(t)+Aε(t)(uε(t)) = f (t), a.e. t ∈ (0,T ),

uε(0) =−uε(T ).
(3.13)
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Proof. First, we show that problem (3.12) has at least one solution. To this aim, we shall apply Lemma

2.1. Since the operator L is maximal monotone, it follows, by Lemma 2.3 in [13] and Proposition

3.8 in [1], that the bifunction Φ is monotone and BO-maximal monotone, and hence condition (i) of

Lemma 2.1 is satisfied. Conditions (ii) and (iii) of Lemma 2.1 are easy to obtain and condition (v) is

a direct consequence of Lemma 3.4. For condition (iv) of Lemma 2.1, we have, by Lemma 3.2, that

the bifunction Θε is B-PMB with respect to D(L); and since the bifunction Ψ is continuous in the first

argument, it follows, by taking account of Remark 2.1 (b)-(c), that the bifunction Ψε =Θε +Ψ is B-PMB

with respect to D(L). For the proof of condition (vi) of Lemma 2.1, we shall use Remark 2.3 (ii). To

this end, consider v0 = 0 ∈D(L). From assumptions [H4] and [H5], and since the two norms ‖ · ‖V ∗ and

‖ · ‖W are equivalent in V ∗, there exists constants γ1 > 0, γ2 > 0 such that

Ψε(u,v0)+λ 〈J u,v0−u〉 ≤ −γ1‖u‖p
Z + γ2‖u‖p−1

Z +‖ f‖Z∗‖u‖Z−λ‖u‖2
Z

≤−γ1‖u‖p
Z + γ2‖u‖p−1

Z +‖ f‖Z∗‖u‖Z.

It follows
Ψε(u,v0)+λ 〈J u,v0−u〉

‖u− v0‖Z
→−∞ when ‖u‖Z →+∞ uniformly in λ .

Hence problem (3.12) has a solution. Since D(L) is dense in Z and W is continuously embedded in

C([0,T ];W ), we obtain the desired result. �

When for t ∈ [0,T ], the operator A (t) : V → V ∗ is T-QMO, we obtain the following results on the

existence of solutions for the auxiliary problem (3.3).

Theorem 3.2. Let the assumptions [H1], [H3], [H4] and [H5] be satisfied. Suppose that A (t) : V →V ∗

is T-QMO and demicontinuous for all t ∈ [0,T ]. Then for f ∈ X∗, ε > 0 and λ > 0, there exists uε ∈
C([0,T ];W )∩Z such that u′ε ∈ Z∗ and{

u′ε(t)+Aε(t)(uε(t))+λJ (uε(t)) = f (t), a.e. t ∈ (0,T ),

uε(0) =−uε(T ).

Proof. By following the same approach used in the proof of the previous theorem, we shall show that

the problem (3.12) has at least one solution under the considered assumptions. This will be treated by

using Lemma 2.2. To this aim, we need to verify that all the assumptions of Lemma 2.2 are satisfied.

Conditions (i), (ii) and (iii) of Lemma 2.2 are obtained similarly as in the proof of the previous theorem.

By Lemma 3.3, we have that the bifunction Θε is L-QMB, hence it is T-QMB with respect to D(L).

Since Ψ is linear and continuous with respect to the second argument, it follows that the bifunction

Ψε = Θε +Ψ is T-QMB with respect to D(L), and hence condition (iv) of Lemma 2.2 is satisfied. On

the other hand, since the operator A (t) : V → V ∗ is demicontinuous, it follows by Lemma 3.5 that

the bifunction Θε is upper semicontinuous with respect to the first argument in D(L). Therefore, the

bifunction Ψε is upper semicontinuous with respect to the first argument in D(L), and hence condition

(v) of Lemma 3.5 is satisfied. The coercivity assumption (vi) of Lemma 3.5 is obtained similarly as in

the proof of the previous theorem. Therefore, for ε > 0 and λ > 0 there exists uε ∈D(L) such that

Φ(uε ,v)+Ψε(uε ,v)+λ 〈〈J uε ,v−uε〉〉 ≥ 0 for all v ∈D(L). (3.14)
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Consequently, from the density of D(L) in Z and since W is continuously embedded in C([0,T ];W ), we

obtain the conclusion of the theorem. �

Remark 3.2. The previous theorem gives in fact an approximated solution for the auxiliary problem

associated to a time-dependent operator which is T-QMO. In the next theorem, we examine a situation

in which it is possible to obtain exact solutions instead of approximated ones for the auxiliary problem

associated to a T-QMO time-dependent operator.

Theorem 3.3. Let the assumptions [H1], [H3], [H4] and [H5] be satisfied. Suppose that A (t) : V →
V ∗ is T-QMO and weakly continuous for all t ∈ [0,T ]. Then for f ∈ X∗ and ε > 0, there exists uε ∈
C([0,T ];W )∩Z such that u′ε ∈ Z∗ and{

u′ε(t)+Aε(t)(uε(t)) = f (t), a.e. t ∈ (0,T ),

uε(0) =−uε(T ).

Proof. Let {λn}n∈N be a sequence of real positive numbers such that λn→ 0. Note that A (t) is demicon-

tinuous for all t ∈ [0,T ] since it is weakly continuous, it follows from the previous theorem, that for each

λn > 0, there exists uε,n ∈D(L) satisfying relation (3.14). From assumptions [H4] and [H5], we deduce,

by taking account of Remark 2.3 (ii), that the sequence {uε,n}n∈N is bounded. Hence, for a subsequence

of {uε,n}n∈N also denoted {uε,n}n∈N, we have uε,n ⇀ uε ∈ D(L). On the other hand, since uε,n satisfies

relation (3.14), it follows by the monotonicity of Φ that for each v ∈D(L)

Θε(uε,n,uε)+Ψ(uε,n,v)+ 〈〈Âεuε,n,v−uε〉〉+λn〈〈J uε,n,v−uε,n〉〉 ≥Φ(v,uε,n). (3.15)

On the other hand, by assumption [H4] and since A (t) is weakly continuous for all t ∈ [0,T ], we deduce

by using the Lebesgue’s dominated convergence theorem, that Âε : Z→ Z∗ is weakly continuous. Hence,

by considering the upper limit in the inequality (3.15) and taking account of the fact that the bifunction

Θε is T-QMB, it follows

Θε(uε ,v)+Ψ(uε ,v)≥Φ(v,uε), for all v ∈D(L).

Since Φ is BO-maximal monotone, we deduce that

Φ(uε ,v)+Θε(uε ,v)+Ψ(uε ,v)≥ 0, for all v ∈D(L).

Therefore, from the density of D(L) in Z and since W is continuously embedded in C([0,T ];W ), we

obtain the conclusion of the theorem. �

Now, we consider the case where the auxiliary problem is associated to the operator A (t) defined as

the following

A (t) = B(t)+C (t)

with B(t) : V →V ∗ is B-PMO and C (t) : V →V ∗ is T-QMO. The operators Bε(t),Cε(t) : W →W ∗ are

defined in the same way as the operator Aε(t), the same applies to operators B̂ε , Ĉε : Z→ Z∗.
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Theorem 3.4. Suppose that for all t ∈ [0,T ], the operator B(t) : V → V ∗ is B-PMO and satisfies con-

ditions [H2]-[H5]. Suppose that C (t) : V → V ∗ is T-QMO and weakly continuous for all t ∈ [0,T ].

Furthermore, suppose that C (t) : V →V ∗ satisfies conditions [H3], [H4] and the following condition

[C] 〈 C (t)u,u〉 ≥ −δ1‖u‖p
V −δ2(t), for all u ∈V, t ∈ [0,T ]

with some δ1 > 0 and δ2 ∈ L1(0,T ). Then for f ∈ X∗ and ε > 0, there exists uε ∈C([0,T ];W )∩Z such

that u′ε ∈ Z∗ and {
u′ε(t)+Bε(t)(uε(t))+Cε(t)(uε(t)) = f (t), a.e. t ∈ (0,T ),

uε(0) =−uε(T ).

Proof. We shall apply Lemma 2.3 on D(L) with the bifunctions Φ,Ψε ,Ξε : D(L)×D(L) → R are

defined for u,v ∈D(L) by

Φ(u,v) = 〈〈Lu,v−u〉〉, Ψε(u,v) = 〈〈B̂εu,v−u〉〉 and Ξε(u,v) = Fε(u,v)+G(u,v),

where Fε(u,v) = 〈〈Ĉεu,v−u〉〉 and G(u,v) = 〈〈 f ,u−v〉〉. We can write the bifunctions Ψε and Fε as the

following:

Ψε(u,v) =
∫ T

0
gt,ε(u(t),v(t))dt,

where gt,ε is the bifunction defined for x,y ∈W by

gt,ε(x,y) = 〈Bε(t)x,y− x〉W ,

and

Fε(u,v) =
∫ T

0
ht,ε(v(t),z(t))dt,

where ht,ε is the bifunction defined for x,y ∈W by ht,ε(x,y) = 〈Cε(t)x,y− x〉W . Since for any t ∈ [0,T ]

the operator C (t) : V → V ∗ is weakly continuous, it follows from assumption [H4] and the Lebesgue’s

dominated convergence theorem that Ĉε : Z → Z∗ is weakly continuous. Hence, the bifunction Ξε is

upper semicontinuous with respect to the first argument. By a similar procedure as in the previous

theorems, we obtain that Φ is BO-maximal monotone, Ψε is B-PMB and Ξε is T-QMB. Condition (viii)

of Lemma 2.3 is obtained from the assumptions [H4], [H5] and [C] by following the same development

used in the proof of the previous theorems. The other assumptions (v), (vi) and (vii) of Lemma 2.3 are

obtained easily. Therefore, there exists uε ∈D(L) such that

Φ(uε ,v)+Ψε(uε ,v)+Ξε(uε ,v)≥ 0, for all v ∈D(L).

We conclude by using the density of D(L) in Z. �

4. MAIN RESULTS

By using the results obtained for the auxiliary problem introduced and studied in the previous section,

we derive the existence of anti-periodic solutions for implicit differential equations associated to time-

dependent pseudomonotone (or topological quasimonotone) operator in the sense of Brézis.



ANTI-PERIODIC SOLUTIONS 85

Theorem 4.1. Let the assumptions [H1]-[H5] be satisfied and A (t) : V →V ∗ is B-PMO for all t ∈ [0,T ].
Then, there exists x ∈ X such that Bx ∈ Lp([0,T ];V ∗), (Bx)′ ∈ Lp′([0,T ];V ∗) and{

d
dt (Bx(t))+A (t)x(t) = f (t), a.e. t ∈ (0,T ),

Bx(0) =−Bx(T ).

Proof. From Theorem 3.1, we have that for each ε > 0 there exists uε ∈ D(L) solution of the auxiliary

problem (3.13). Hence, there exists xε ∈ X such that x′ε ∈ X∗ and{
((εΓ+B)xε(t))′+A (t)xε(t) = f (t), a.e. t ∈ (0,T ),

xε(0) =−xε(T ).
(4.1)

Therefore, we have, for a.e. t ∈ [0,T ]

ε

2
d
dt
〈Γxε(t),xε(t)〉V +

1
2

d
dt
〈Bxε(t),xε(t)〉V + 〈A (t)xε(t),xε(t)〉V = 〈 f (t),xε(t)〉V . (4.2)

From assumption [H5] and Hölder’s inequality, we obtain by integrating the inequality (4.2) on [0,T ]

α0

∫ T

0
‖xε(t)‖p

V dt ≤
(∫ T

0
‖ f (t)‖p′

V ∗dt
)1/p′(∫ T

0
‖xε(t)‖p

V dt
)1/p

+‖α1‖L1(0,T ).

It follows, by Youngs inequality, there exists a constant C > 0 depending on ‖ f‖X∗ and T such that

‖xε‖p
X ≤C. (4.3)

Now, let us consider the operator Â : X → X∗ defined by Â (u)(t) = A (t)u(t) for all t ∈ [0,T ]. From

relation (4.3) and the assumption [H4], we derive that {Â xε}ε>0 is bounded in X∗. Hence, we obtain

xε ⇀ x in X ,

Â xε ⇀ η in X∗,

Bxε ⇀ Bx in X∗,

((εΓ+B)xε)
′ ⇀ (Bx)′ in X∗.

(4.4)

In order to conclude, we need to verify that η = Â x. To this aim, after multiplying relation (4.1) by

x(t)− xε(t) and integrating on [0,T ], we obtain

〈〈Â xε ,x− xε〉〉X = 〈〈 f ,x− xε〉〉X + 〈〈[(εΓ+B)(xε − x)]′,xε − x〉〉X + 〈〈[(εΓ+B)x]′,xε − x〉〉X . (4.5)

Consider the bifunction Θ : X ×X → R defined by Θ(x,y) = 〈〈Â x,y− x〉〉X . From relation (4.5), we

deduce that

liminfΘ(xε ,x)≥ 0. (4.6)

On the other hand, since the operator A (t) : V → V ∗ is B-PMO, it follows from Lemma 3.2 that the

bifunction Θ is B-PMB. Hence,

limsupΘ(xε ,y)≤Θ(x,y), for all y ∈ X . (4.7)

Therefore, by taking account of (4.4), that 〈〈Â x,y− x〉〉X ≥ 〈〈η ,y− x〉〉X for all v ∈ X . Thus, we obtain

that η = Â x. �
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Theorem 4.2. Let the assumptions [H1], [H3], [H4] and [H5] be satisfied. Suppose that A (t) : V →V ∗

is T-QMO and weakly continuous for all t ∈ [0,T ]. Then, there exists x ∈ X such that Bx ∈ Lp([0,T ];V ∗),

(Bx)′ ∈ Lp′([0,T ];V ∗) and{
d
dt (Bx(t))+A (t)x(t) = f (t), a.e. t ∈ (0,T ),

Bx(0) =−Bx(T ).

Proof. We use Theorem 3.3 on the existence of solutions for the auxiliary problem and we conclude by

using a similar approach to the one developed in the proof of the previous theorem. �

We end this section by the following theorem which proof can be obtained by using Theorem 4.3 and

a similar procedure to what precede.

Theorem 4.3. Suppose that for all t ∈ [0,T ], A (t) : V → V ∗ is B-PMO and satisfies conditions [H2]-

[H5]. Suppose that B(t) : V → V ∗ is T-QMO and weakly continuous for all t ∈ [0,T ]. Furthermore,

suppose that B(t) : V →V ∗ satisfies conditions [H3], [H4] and the following condition

[C] 〈B(t)x,x〉 ≥ −δ1‖x‖p
V −δ2(t), for all x ∈V, t ∈ [0,T ]

with some δ1 > 0 and δ2 ∈ L1(0,T ).

Then, there exists x ∈ X such that Bx ∈ Lp([0,T ];V ∗), (Bx)′ ∈ Lp′([0,T ];V ∗) and{
d
dt (Bx(t))+A (t)x(t)+B(t)x(t) = f (t), a.e. t ∈ (0,T ),

Bx(0) =−Bx(T ).

5. CONCLUSION

In this section, we give a comparison with recent results obtained in literature which are related to

the problem studied in this paper, we give also a concrete example where the approach developed in this

paper can be applied.

Liu and Liu in [20] studied the following problem{
d
dt (Bx(t))+Ax(t)+Gx(t) = f (t), a.e. t ∈ (0,T ),

Bx(0) =−Bx(0),

where A : V → V ∗ is monotone, bounded and demicontinuous; and the operator G : V → V ∗ is T-QMO

and both continuous and weakly continuous. Furthermore, it supposed that the operators A and G satisfy

the assumptions [H4] and [H5]. The results obtained by our approach improve and generalize the results

obtained in [20].

We end this section by an example illustrating the problem studied in this paper and which can be

solved by the approach developed.

Example 5.1. Let Ω be a bounded domain in Rn (n ≥ 1) with smooth boundary. Let V = H1
0 (Ω),

V ∗ = H−1(Ω) and Q = Ω× [0,T ]. We consider for t ∈ [0,T ] , A(t) : V →V ∗ a nonlinear elliptic operator

on Ω satisfying assumptions [H4] and [H5]; and B : V → V ∗ be the multiplication operator Bu = β (x)u
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for u ∈ V , where β (·) is a nonnegative function on Ω satisfying some appropriate conditions leading to

B ∈ L(V,V ∗). For instance those conditions could be as the following
β ∈ L1(Ω) if n = 1,

β ∈ Ls(Ω) if n = 2, with s > 1

β ∈ Ln/2(Ω) if n > 2,

and by using the Sobolev embedding theorem we can verify that in this case B ∈ L(V,V ∗). We consider

the following implicit nonlinear differential equation:{
d
dt (β (x)u(t))+A(t)u(t) = f (t), a.e. (x, t) ∈Ω× (0,T ),

u(0) =−u(T ).

For instance, we take A(t)u(x, t) =−
n

∑
i=1

∂

∂xi
ai(x, t,u(x, t),∇u(x, t)) such that the coefficients

ai : Q×R×Rn→ R, for i ∈ {1, · · · ,n}, satisfy the following conditions:

[A] Carathéodory and growth conditions: Each ai(x, t,s,ξ ) satisfies Carathéodory conditions, i.e., is

measurable in (x, t) ∈ Q for all (s,ξ ) ∈ R×Rn and continuous in (s,ξ ) for a.e. (x, t) ∈ Q. A

constant c0 > 0 and a function τ0 ∈ Lp′(Q) exists so that

|ai(x, t,s,ξ )| ≤ τ0(x, t)+ c0

(
|s|p−1 +‖ξ‖p−1

Rn

)
for a.e. (x, t) ∈ Q and for all (s,ξ ) ∈ R×Rn;

[B] Coercivity type condition:
n

∑
i=1

ai(x, t,s,ξ )≥ µ‖ξ‖p
Rn−α(x, t)

for a.e. (x, t) ∈ Q, for all s ∈ R, and for all ξ ∈ Rn with some constant µ > 0 and some function

α ∈ L1(Q).
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