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Abstract. In this paper, we propose an incremental gradient projection algorithm for solving a minimization problem over the

intersection of a finite family of closed convex subsets of a Hilbert space where the objective function is the sum of component

functions. This algorithm is parameterized by a single nonnegative constant µ . If µ = 0, then the proposed algorithm reduces

to the classical incremental gradient method. The weak convergence of the sequence generated by the proposed algorithm

is studied if the step size is chosen appropriately. Furthermore, in the special case of constrained least squares problem, the

sequence generated by the proposed algorithm is proved to be convergent strongly to a solution of the constrained least squares

problem under less requirements for the step size.
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1. INTRODUCTION

Let M and N be any integers. Let {Ci}N
i=1 be a family of nonempty closed convex subsets of a Hilbert

space H, and for each j = 1,2, . . . ,M, f j : H→R be a convex Fréchet differentiable function. We consid-

er the following composite minimization problem where the objective function is the sum of component

functions f j, j = 1,2, , . . . ,M:

min f (x) subject to x ∈C :=
N⋂

i=1

Ci, (1.1)

where f (x) := ∑
M
j=1 f j(x). It is considered and studied by Bertsekas [5] and Xu and Yang [21]; See also

references therein. This problem arises in many applied areas, and it is of central importance in machine

learning and statistics, see, for example, [5, 11, 19, 21] and the references therein.
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For each j = 1,2, . . . ,M, if f j(x) = ‖A jx− b j‖2, A j is a bounded linear operator on H, and b j is a

vector in H, then the problem (1.1) reduces to the following constrained least squares problem:

min
1
2

M

∑
j=1
‖A jx−b j‖2 subject to x ∈C :=

N⋂
i=1

Ci. (1.2)

When N = 1, problem (1.1) becomes the following minimization problem:

min
x∈C

f (x) := min
x∈C

M

∑
j=1

f j(x). (1.3)

It is considered and studied in [5, 6, 15], and arises in reconstructing three-dimensional medical images

from positron emission tomography (PET) [3] and machine learning and statistics [12]. Nedic et al.

[15, 16] proposed a subgradient-like incremental method for problem (1.3).

For the unconstrained composite minimization problem (i.e. C = H), gradient-like incremental meth-

ods are also frequently used when the number of the component functions is large. The incremental gra-

dient algorithm (IGA) [5] is similar to the classical gradient algorithm: if xn is constructed, let ψ0,n = xn,

ψ j,n = ψ j−1,n−αn∇ f j(ψ j−1,n), j = 1,2, . . . ,M,

xn+1 = ψM,n (1.4)

where αn is a positive step size. It is easy to check that the IGA has the form

xn+1 = xn−αn

M

∑
j=1

∇ f j(ψ j−1,n). (1.5)

When the component functions f j and their gradients are evaluated at the same vector xn, then the above

algorithm reduces to the following classical steepest descent algorithm (SDA) [5]:

xn+1 = xn−αn

M

∑
j=1

∇ f j(xn). (1.6)

In particular, if M = N = 1, the constrained optimization problem (1.1) becomes constrained convex

minimization problem:

min
x∈C

f (x). (1.7)

A basic approach to solve (1.7) is the following classical gradient projection algorithm (GPA):

xn+1 = PC (xn−λn∇ f (xn)) , n≥ 0. (1.8)

It is well known that if the sequence λn is chosen appropriately, then the sequence defined by (1.8)

converges in norm to the unique minimizer of (1.7). For further details, we refer [13, 17, 20] and the

references therein.

Let us recall the convex feasibility problem (CFP) [1, 2, 8]:

Find x ∈C :=
N⋂

i=1

Ci. (1.9)

The constrained optimization problem (1.1) can be rephrased as to find a solution to CFP (1.9) which

also minimizes the composite function ∑
M
j=1 f j(x).



ALGORITHM FOR CONSTRAINED COMPOSITE MINIMIZATION PROBLEMS 255

The purpose of this paper is to propose an incremental gradient projection algorithm (see Algorithm

3.1) for the constrained optimization problem (1.1) and the constrained least squares problem (1.2).

This algorithm is parameterized by a single nonnegative constant µ . For the unconstrained composite

minimization problem (i.e. Ci = H, i = 1,2, . . . ,N), and if we take µ = 0, the algorithm reduces to the

algorithm IGA (1.5) (see Remak 3.1). For N = M = 1, the algorithm becomes GPA algorithm (1.8). We

prove that the sequence generated by the proposed algorithm converges weakly to an optimal solution

of the constrained composite minimization (1.1) if the step size is chosen appropriately. Furthermore,

in the special case of constrained least squares problem (1.2), we prove that the sequence generated by

the proposed algorithm converges strongly to a solution of constrained least squares problem (1.2) under

less requirements for the step size.

2. PRELIMINARIES

Let K be a nonempty closed convex subset of a Hilbert space H and PK denote the projection from H

onto K, that is,

PK(x) = argmin
y∈K
‖x− y‖.

It is well known that PK is nonexpansive and is characterized by the inequality

〈x−PK(x),y−PK(x)〉 ≤ 0, ∀y ∈ K.

Moreover,

‖PK(x)− y‖2 ≤ ‖x− y‖2−‖PK(x)− x‖2, ∀x ∈ H, y ∈ K.

A bounded linear operator T : H→ H is positive [9, Chaper 4] if

〈T x,x〉 ≥ 0, ∀x ∈ H.

Let T ∗ denote the adjoint of T . Then for each bounded linear operator T , T ∗T is positive. The operator

T : H→ H is called a positive definite if there exists a constant λ > 0 such that

〈T x,x〉 ≥ λ‖x‖2, ∀x ∈ H.

For further details, we refer [9].

We now present some results which will be used in the proof of the main results of this paper.

Lemma 2.1. [10] Let K be a nonempty closed convex subset of a Banach space X and T : K→ K be a

nonexpansive mapping with Fix(T ) 6= /0, where Fix(T ) denotes the set of fixed points of T . If {xn} is a

sequence in K converges weakly to x and {(I−T )xn} converges strongly to y, then (I−T )x = y.

Lemma 2.2. [18] Let K be a nonempty subset of a Hilbert space H, and {xn} be a sequence in H such

that the following conditions hold.

(i) For every x ∈ K, limn→∞ ‖xn− x‖ exists;

(ii) Any weak-cluster point of the sequence {xn} belongs to K.

Then there exists x̃ ∈ K such that {xn} converges weakly to x̃.
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Lemma 2.3. [17] Let {sn} and {bn} be sequences of nonnegative real numbers such that

sn+1 ≤ sn +bn, ∀n≥ 0, bn ≥ 0 and
∞

∑
n=1

bn < ∞.

Then limn→∞ sn exists.

Lemma 2.4. [4, 7, 14] Let {sn} and {bn} be sequences of nonnegative real numbers and c be a positive

constant such that

sn+1 ≤ (1−bn)sn + cb2
n, ∀n≥ 0, bn→ 0 and

∞

∑
n=1

bn = ∞.

Then limn→∞ sn = 0.

3. ALGORITHM AND CONVERGENCE ANALYSIS

We propose the following incremental gradient projection algorithm for solving constrained optimiza-

tion problem (1.1).

Algorithm 3.1. Let µ ≥ 0 is a fixed scalar. Choose an arbitrary initial value x0 ∈ H, then calculate
xn,0 = xn,

xn, j = xn−αnhn, j, j = 1,2, . . . ,M

hn, j = ∑
j
k=1 ωk, j(µ)∇ fk(xn,k−1), j = 1,2, . . . ,M,

xn+1 = ∑
N
i=1 βiPCi(xn,M),

(3.1)

where

ωk, j(µ) =
1+µ + · · ·+µ j−k

1+µ + · · ·+µM−k , j = 1,2, . . . ,M, 1≤ k ≤ j,

step size αn > 0, PCi is the projection from H onto Ci for each 1 ≤ i ≤ N, and βi > 0 is such that

∑
N
i=1 βi = 1.

When N = 1, we have the following algorithm for solving problem (1.3)

Algorithm 3.2. Let µ ≥ 0 be a fixed number. Choose an arbitrarily initial value x0 ∈ H, then calculate
xn,0 = xn,

xn, j = xn−αnhn, j, j = 1,2, . . . ,M

hn, j = ∑
j
k=1 ωk, j(µ)∇ fk(xn,k−1), j = 1,2, . . . ,M,

xn+1 = PC(xn,M),

(3.2)

Remark 3.1. Since ωk,M(µ) = 1, k = 1,2, . . .M, it follows that

xn,M = xn−αnhn,M = xn−αn

M

∑
j=1

∇ f j(xn, j−1). (3.3)

If µ = 0 and Ci = H for all 1 ≤ i ≤ N, then ωk, j(µ) = 1 for all k and j. Hence, from Algorithm 3.1,

we get

hn, j =
j

∑
k=1

∇ fk(xn,k−1),
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and

xn, j = xn−αnhn, j = xn, j−1−αn∇ f j(xn, j−1), for j = 1,2, . . . ,M.

Using (3.3), it is easy to check that Algorithm 3.1 coincides with IGA algorithm (1.5).

Let S =
{

x∗ ∈C :=
⋂N

i=1Ci : f (x∗) = infx∈C f (x)
}

be the set of optimal solutions of problem (1.1) and

f ∗ = infx∈C f (x) be the optimal value. From now onward, we always assume the consistency of problem

(1.1), that is to say S 6= /0. We now present a convergence result for the sequence generated by Algorithm

3.1 under the boundedness assumption of the gradient ∇ f j(xn, j).

Proposition 3.1. Let {xn} be a sequence generated by Algorithm 3.1. Assume there exists a positive

constant L > 0 such that

‖∇ f j(xn, j−1)‖ ≤ L, ∀ j = 1,2, . . . ,M, n≥ 1. (3.4)

Then

‖xn+1− x‖2 ≤ ‖xn− x‖2−2αn[ f (xn)− f (x)]+5α
2
n M2L2, ∀x ∈C :=

N⋂
i=1

Ci. (3.5)

Moreover, if the step size αn satisfies the following conditions

αn→ 0, ∑
n≥1

αn = ∞, ∑
n≥1

α
2
n < ∞, (3.6)

then liminfn→∞ f (xn)≤ f ∗ and limn→∞ ‖xn− x∗‖ exists for x∗ ∈ S.

Proof. By Algorithm 3.1, for 1≤ j ≤M, we have

‖xn, j− xn‖= αn‖hn, j‖= αn

∥∥∥∥∥ j

∑
k=1

ωk, j(µ)∇ fk(xn,k−1)

∥∥∥∥∥≤ αn M L.

Since PCi is nonexpansive and the norm is convex, we have, for all x ∈C,

‖xn+1− x‖2 ≤
N

∑
i=1

βi ‖PCixn,M−PCix‖
2

≤ ‖xn,M− x‖2

=

∥∥∥∥∥xn− x−αn

M

∑
j=1

∇ f j(xn, j−1)

∥∥∥∥∥
2

≤ ‖xn− x‖2−2αn

〈
M

∑
j=1

∇ f j(xn, j−1),xn− x

〉
+α

2
n M2L2

= ‖xn− x‖2−2αn

〈
M

∑
j=1

∇ f j(xn, j−1),xn, j−1− x

〉
+α

2
n M2L2

+2αn

〈
M

∑
j=1

∇ f j(xn, j−1),xn, j−1− xn

〉

≤ ‖xn− x‖2−2αn

〈
M

∑
j=1

∇ f j(xn, j−1),xn, j−1− x

〉
+3α

2
n M2L2.
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Since each f j is convex, we have

f j(x)≥ f j(xn, j−1)+ 〈∇ f j(xn, j−1),x− xn, j−1〉,

and therefore,

‖xn+1− x‖2 ≤ ‖xn− x‖2−2αn

M

∑
j=1

( f j(xn, j−1)− f j(x))+3α
2
n M2L2

= ‖xn− x‖2−2αn

M

∑
j=1

( f j(xn)− f j(x))+3α
2
n M2L2−2αn

(
M

∑
j=1

f j(xn, j)− f j(xn)

)
.

By convexity of f j and (3.4), we have

f j(xn, j)− f j(xn)≥ 〈∇ f j(xn),xn, j− xn〉 ≥ −L‖xn, j− xn‖.

Therefore,

‖xn+1− x‖2 ≤ ‖xn− x‖2−2αn

M

∑
j=1

( f j(xn)− f j(x))+3α
2
n M2L2 +2αnL

(
M

∑
j=1
‖xn, j− xn‖

)

≤ ‖xn− x‖2−2αn

M

∑
j=1

( f j(xn)− f j(x))+5α
2
n M2L2

= ‖xn− x‖2−2αn( f (xn)− f (x))+5α
2
n M2L2,

that is,

‖xn+1− x‖2 ≤ ‖xn− x‖2−2αn( f (xn)− f (x))+5α
2
n M2L2. (3.7)

Furthermore, assume that the step size {αn} satisfies (3.6). Then for x∗ ∈ S, applying (3.7), we get

‖xn+1− x∗‖2 ≤ ‖xn− x∗‖2 +5α
2
n M2L2.

By Lemma 2.3, it follows that limn→∞ ‖xn− x∗‖ exists.

Finally we prove that liminfn→∞ f (xn)≤ f ∗.

In fact, since limn→∞ ‖xn− x∗‖ exists, {xn} is bounded. If liminfn→∞ f (xn) > f ∗, then there exist

ε0 > 0 and n0 such that f (xn)> f ∗+ ε0 for all n > n0. Since αn→ 0, without loss of generality, we may

assume that 5αnM2L2 < ε0 for all n > n0. By using (3.7), we get

ε0αn ≤ ‖xn− x∗‖2−‖xn+1− x∗‖2.

This implies that ∑n≥1 αn < ∞, which is a contradiction. Hence liminfn→∞ f (xn)≤ f ∗. �

Now we give the convergence analysis for Algorithm 3.1.

Theorem 3.1. Let {xn} be generated by Algorithm 3.1 and assume that (3.4) and (3.6) hold.

(a) If H is a finite dimensional Hilbert space, then {xn} converges to an optimal solution x∗ of

problem (1.1).
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(b) If H is an infinite dimensional Hilbert space, then there exists a subsequence {xnk} of {xn} such

that {xnk} converges weakly to an optimal solution x∗ of problem (1.1). Furthermore, if the limit

of the sequence { f (xn)} exists, then {xn} converges weakly to an optimal solution x∗ of problem

(1.1).

Proof. We first prove that

lim
n→∞
‖PCixn− xn‖= 0, i = 1,2, . . . ,N.

By convexity of norm and properties of PCi , for all x̃ ∈ S, we have

‖xn+1− x̃‖2 =

∥∥∥∥∥ N

∑
i=1

βiPCi(xn,M)− x̃

∥∥∥∥∥
2

≤
N

∑
i=1

βi ‖PCi(xn,M)− x̃‖2

≤
N

∑
i=1

βi
(
‖xn,M− x̃‖2−‖PCi(xn,M)− xn,M‖2)

= ‖xn,M− x̃‖2−
N

∑
i=1

βi ‖PCi(xn,M)− xn,M‖2 .

which implies that
N

∑
i=1

βi ‖PCi(xn,M)− xn,M‖2 ≤ ‖xn,M− x̃‖2−‖xn+1− x̃‖2. (3.8)

Observe that, for 1≤ j ≤M,

‖xn, j− xn‖ = αn‖hn, j‖

= αn

∥∥∥∥∥ j

∑
k=1

ωk, j(µ)∇ fk(xn, j−1)

∥∥∥∥∥
≤ αnML→ 0, n→ ∞.

Moreover, by Proposition 3.1, limn→∞ ‖xn− x̃‖ exists for x̃ ∈ S. Therefore, according to (3.8), we have

lim
n→∞

N

∑
i=1

βi ‖PCi(xn,M)− xn,M‖2 = 0.

Since limn→∞ ‖xn, j− xn‖= 0, we get

lim
n→∞
‖PCixn− xn‖= 0, i = 1,2, . . . ,N. (3.9)

(a): Choose a subsequence {xnk} of {xn} such that

lim
k→∞

f (xnk) = liminf
n→∞

f (xn)≤ f ∗.

Since H is a finite dimensional space, without loss of generality, we may assume that xnk → x̂. Then

x̂ ∈ S, by (3.9) and Lemma 2.1.

Apply Proposition 3.1 with x replaced by x̂, we have

lim
n→∞
‖xn− x̂‖= lim

k→∞

‖xnk − x̂‖= 0.
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This proves (a) with x∗ = x̂.

(b): Choosing a subsequence {xnk} of {xn} such that

lim
k→∞

f (xnk) = liminf
n→∞

f (xn)≤ f ∗.

Since {xn} is bounded, without loss of generality, we can assume that {xnk} converges weakly to x̃. By

(3.9) and Lemma 2.1, we have that x̃ ∈ S. That is to say {xnk} converges weakly to an optimal solution x̃

of problem (1.1).

Moreover, if the limit of the sequence { f (xn)} exists, by Proposition 3.1, liminfn→∞ f (xn) ≤ f ∗,

hence limn→∞{ f (xn)} ≤ f ∗. Assume that x is a weak cluster of the subsequence {xn}. Then by us-

ing limn→∞ ‖PCixn− xn‖= 0, i = 1,2, . . . ,N, it follows that x ∈ S, by Lemma 2.1. Applying Lemma 2.2,

we conclude that {xn} converges weakly to an optimal solution x∗ of problem (1.1). �

By taking N = 1 in Theorem 3.1, we obtain the following convergence result for Algorithm 3.2.

Corollary 3.1. Let {xn} be generated by Algorithm 3.2 and assume that (3.4) and (3.6) hold.

(a) If H is a finite dimensional Hilbert space, then {xn} converges to an optimal solution x∗ of

problem (1.3).

(b) If H is an infinite dimensional Hilbert space, there exists a subsequence {xnk} of {xn} such that

{xnk} converges weakly to an optimal solution x∗ of problem (1.3). Furthermore, if the limit of

the sequence { f (xn)} exists, then {xn} converges weakly to an optimal solution x∗ of problem

(1.3).

In problem (1.2), for 1≤ j ≤M, we have considered

f j(x) =
1
2
‖A jx−b j‖2 =

1
2
〈A∗jA jx,x〉−〈A∗jb j,x〉+

1
2
‖b j‖2, (3.10)

and each A∗jA j is positive operator on H. Therefore, without loss of generality, we may assume that

f j(x) =
1
2
〈Q jx,x〉−〈c j,x〉, (3.11)

where c j,Q j are vectors and positive operators on H, respectively.

We propose the following algorithm for solving problem (1.1) with f j is defined by (3.11). In partic-

ular, the following algorithm solves problem (1.2).

Algorithm 3.3. 
xn,0 = xn,

xn, j = xn−αnhn, j, j = 1,2, . . . ,M

hn, j = ∑
j
k=1 ωk, j(µ)(Qk(xn,k−1)− ck), j = 1,2, . . . ,M,

xn+1 = ∑
N
i=1 βiPCi(xn,M),

and

xn,M = xn−αnhn,M = xn−αn

M

∑
j=1

(Q j(xn, j−1)− c j). (3.12)

Now we study the convergence analysis of Algorithm 3.3.



ALGORITHM FOR CONSTRAINED COMPOSITE MINIMIZATION PROBLEMS 261

Theorem 3.2. Let {xn} be generated by Algorithm 3.3. Assume that ∑
M
j=1 Q j is a positive definite oper-

ator and x∗ is the optimal solution of (1.2), and the step size αn satisfies

αn→ 0 and ∑
n≥1

αn = ∞,

then xn converges strongly to x∗.

Proof. Since x∗ is the optimal solution of (1.2), x∗ ∈C j for each j. By nonexpansiveness of PC j , we get

‖xn+1− x∗‖=

∥∥∥∥∥ N

∑
i=1

βi (PCi(xn,M)−PCi(x
∗))

∥∥∥∥∥≤ ‖xn,M− x∗‖.

By the definition of hn, j, xn, j = xn−αnhn, j and let hn,0 = 0, we have

hn, j =
j

∑
k=1

ωk, j(µ)(Qk(xn,k−1)− ck)

=
j

∑
k=1

ωk, j(µ)(Qk(xn)− ck)−αn

j

∑
k=1

ωk, j(µ)Qk(hn, j−1)

By using the finite induction for j, hn, j can be written as

hn, j =
j

∑
k=1

ωk, j(µ)(Qk(xn)− ck)+αnTj(αn,µ)xn +αnt j(αn,µ), j = 1,2, . . . ,M, (3.13)

where Tj(αn,µ) and t j(αn,µ) are bounded linear operators and vectors, respectively, depending on the

parameters αn and µ . Since 0 < ωk, j(µ)≤ 1 and αn→ 0, there exist constants T, t > 0 such that

‖Tj(αn,µ)‖ ≤ T, ‖t j(αn,µ)‖ ≤ t, ∀ j, µ ≥ 0, n≥ 1.

Observe that

xn,M = xn−αn

M

∑
j=1

(Q j(xn, j−1)− c j)

= xn−αn

M

∑
j=1

(Q j(xn)− c j)+α
2
n

M

∑
j=1

Q j(hn, j−1)

¿From (3.13), we obtain

xn,M = xn−αn

M

∑
j=1

(Q j(xn)− c j)+α
2
n L(αn,µ)xn +α

2
n l(αn,µ), (3.14)

where L(αn,µ) is a bounded linear operator and l(αn,µ) is a vector, depending on parameters αn,µ .

There also exist L̃ and l̃ such that

‖L(αn,µ)‖ ≤ L̃, ‖l(αn,µ)‖ ≤ l̃, ∀µ ≥ 0,n≥ 1.

Since x∗ is the optimal solution of (1.2), we have ∑
M
j=1(Q jx∗− c j) = 0. From (3.14), we obtain

xn,M− x∗ =

(
I−αn

M

∑
j=1

Q j +α
2
n L(αn,µ)

)
(xn− x∗)+α

2
n en, (3.15)



262 L.Y. SHI, Q.H. ANSARI, C.F. WEN, J.-C. YAO

where en = L(αn,µ)(x∗) + l(αn,µ). Since αn → 0 and ∑
M
j=1 Q j is a positive definite operator, I −

αn ∑
M
j=1 Q j is a positive definite operator when n is large enough. Assume that d > 0 is the lowest

point of spectrum σ
(
∑

M
j=1 Q j

)
, then it is easy to check that∥∥∥∥∥

(
I−αn

M

∑
j=1

Q j

)
(xn− x∗)

∥∥∥∥∥≤ (1−αnd)‖xn− x∗‖. (3.16)

Combining (3.15) and (3.16), we obtain

‖xn,M− x∗‖ ≤

∥∥∥∥∥
(

I−αn

M

∑
j=1

Q j

)
(xn− x∗)

∥∥∥∥∥+α
2
n‖L(αn,µ))(xn− x∗)‖+α

2
n‖en‖

≤ (1−αnd +α
2
n L̃)‖(xn− x∗)‖+α

2
n c,

where c = L̃‖x∗‖+ l. Since αn→ 0, there exists n0 such that αnL̃≤ d
2 when n > n0. Therefore,

‖xn,M− x∗‖ ≤ (1−αnd/2)‖(xn− x∗)‖+α
2
n c, ∀n > n0.

Since ‖xn+1− x∗‖ ≤ ‖xn,M− x∗‖, we have

‖xn+1− x∗‖ ≤ (1−αnd/2)‖(xn− x∗)‖+α
2
n c, ∀n > n0.

Since αn→ 0 and ∑n≥1 αn = ∞, we obtain limn→∞ ‖xn− x∗‖= 0, by Lemma 2.4. �

4. NUMERICAL RESULTS

We illustrate Algorithm 3.3 by the following example.

Let H = R3 and N = 3. We consider the following problem:

min
x∈C:=

⋂N
i=1 Ci

1
2

M

∑
j=1
‖A jx−b j‖2,

where

A j =

[
j j+1 j−1

j−1 j+1 j+2

]
, b j =

[
3 j

3 j+2

]
, j = 1,2, . . . ,M,

C1 = {y ∈ H : ‖y− y1‖ ≤ 2}, C2 = {y ∈ H : ‖y− y2‖ ≤ 2}, C3 = {y ∈ H : ‖y− y3‖ ≤ 2},

where y1 = {0,1,1}, y2 = {1,1,0}, y3 = {1,0,1}, and choose M = 20,30,50, respectively. It is easy to

see that the solution of this problem is x = {1,1,1}.
In Algorithm 3.3, we take ε = 10−5, αn =

1
n , β1 = β2 = 0.3, β3 = 0.4, µ = 0,1,10,100, x1 = {0,0,0}

and ‖xn− x‖ ≤ ε as the termination condition.

Then we have the following numerical results. The whole program was written in Wolfram Mathe-

matica (version 9.0). All the numerical results were carried out on a personal Lenovo Thinkpad computer

with Intel(R)Core(TM) i5-4200M CPU 2.50GHz and RAM 4.00 GB. In the tables below, n and t are the

iterative steps and CPU time, respectively.

Table 1 shows the results of applying the the incremental gradient (i.e, µ = 0) and the new class of

incremental gradient methods (i.e µ = 1,10,100) to problem (1.2) with M = 30. We can see that the the

iterative steps of incremental gradient methods is much less than the steepest descent method.
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TABLE 1. M = 30

n t

µ = 0 3029 30.265625

µ = 1 3018 58.671875

µ = 10 3020 72.312500

µ = 100 3036 89.203125

TABLE 2. µ = 0

n t

M = 20 2014 9.203125

M = 30 3029 30.265625

M = 50 5728 165.437500

TABLE 3. µ = 1

n t

M = 20 2039 17.062500

M = 30 3018 58.671875

M = 50 5731 389.109375

Tables 2, 3 show the results of applying the the incremental gradient (i.e, µ = 0) and the new class of

incremental gradient methods (i.e µ = 1) to problem (1.2) with M = 20,30,50 respectively. We can see

that the the iterative steps of the steepest descent method have significant growth, when the number of

the component functions is large. Hence, incremental method is the optimal choice when and the number

of the component functions is large.
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