HADAMARD WELL-POSEDNESS FOR VECTOR PARAMETRIC EQUILIBRIUM PROBLEMS

MARZIE DARABI^{1,*}, JAFAR ZAFARANI²

¹Department of Basic Science, Golpayegan University of Tecnology, Isfahan, Iran

²Sheikhbahaee University and University of Isfahan, Iran

Abstract. We consider some extensions of the Hadamard well-posedness notion for vector parametric equilibrium problems. We obtain some necessary and sufficient conditions for Hadamard well-posedness of these problems and also obtain the equivalence between their Hadamard well-posedness and their scalarizations.

Keywords. Extended Hadamard well-posedness; Generalized Hadamard well-posedness; Topological vector space; Vector equilibrium problem.

2010 Mathematics Subject Classification. 26B25, 49J52, 90C30, 49J40.

1. Introduction

Well-posedness has played a crucial role in optimization theory. This fact has motivated many authors to study the well-posedness of optimization problems. The first concept of well-posedness is due to Tykhonov [26] for unconstrained optimization problems. Tykhonov well-posedness [26], requires the existence and uniqueness of the solution and convergence of each minimizing sequence to the solution. Another fundamental generalization of Tykhonov well-posedness for an optimization problem (in the scalar case) is the well-posedness by perturbations due to Dontchev and Zolezzi [7] and Zolezzi [28, 29]. Levitin and Polyak [15] extended the notion to the constrained case. Levitin-Polyak well-posedness requires the existence of the solution and convergence of each Levitin-Polyak minimizing sequence to the solution, where (x_n) is Levitin-Polyak minimizing sequence iff, for all n, x_n to be outside of the feasible set and g is continuous map and g is a closed set and distance between $g(x_n)$ and g tends to zero. There are various notions and generalizations of the concepts of well-posedness, see [4, 6, 12, 13, 14, 27].

The concept of Hadamard well-posedness is due to Hadamard [10]. Another fundamental generalization of Hadamard well-posed was given in [18, 21, 24]. Motivated and inspired by the above works, in this paper, we are investigated some new versions of Hadamard well-posedness for vector parametric

E-mail addresses: marzi.darabi@yahoo.com (M. Darabi), jzaf@zafarani.ir (J. Zafarani).

Received June 9, 2017; Accepted July 22, 2017.

^{*}Corresponding author.

equilibrium problems. The outline of the paper is as follows: In the first Section, we introduce a generalized parametric vector equilibrium problem and some preliminary results which are used in the sequel. Section 2 deals with notions of Hadamard well-posedness under perturbations for vector equilibrium problem and obtain a sufficient condition from Hadamard well-posedness. In Section 3, by introducing a gap function of our problem, we deduce the equivalent between its Hadamard well-posedness of our problem with the Hadamard well-posedness of its gap function.

Let X be a metric topological vector space, Y be a Hausdorff topological vector space, W and Z be topological vector spaces and P be a metric space. We denote the family of neighborhood of $x \in X$ by $\mathfrak{U}(x)$. Let A, B and D be nonempty sets of X, W and Z, respectively and $C: X \times P \longrightarrow 2^Y$ be a set-valued mapping such that for any $x \in X$ and for any $p \in P$, C(x,p) is a closed, convex and pointed cone in Y such that $intC(x,p) \neq \emptyset$. Assume that $e: X \times P \longrightarrow Y$ is a continuous vector valued mapping satisfying $e(x,p) \in intC(x,p)$. Suppose that $K_1: A \times P \longrightarrow 2^A$, $K_2: A \times P \longrightarrow 2^B$ and $K_3: A \times P \longrightarrow 2^D$ are defined. Let the machinery of the problems be expressed by $F: A \times B \times D \times P \longrightarrow 2^Y$.

For any subsets A and B, we adopt the following notations

$$(u, v)$$
 $r_1 A \times B$ means $\forall u \in A, \ \forall v \in B,$
 (u, v) $r_2 A \times B$ means $\forall u \in A, \ \exists v \in B,$
 (u, v) $r_3 A \times B$ means $\exists u \in A, \ \forall v \in B.$

For $r \in \{r_1, r_2, r_3\}$, we consider the following vector parametric quasi-equilibrium problem, for given $\varepsilon \in \mathbb{R}^+$ and $p \in P$:

$$(P_r(F, p, \varepsilon)) \qquad \exists \bar{x} \in clK_1(\bar{x}, p) : (y, z) \ r \ K_2(\bar{x}, p) \times K_3(\bar{x}, p), \quad F(\bar{x}, y, z, p) + \varepsilon e(\bar{x}, p) \subseteq C(\bar{x}, p).$$

We denote the solution set of the above problem by $S_r(F, p, \varepsilon)$.

Remark 1.1. (a) In fact, we deduce those problems that were considered in [3, 24].

- (b) If $\varepsilon = 0$, then the solution set of Problem $(P_r(F, p, \varepsilon))$, is the efficient solution of equilibrium problem for set-valued map F, that we denote its efficient solution set with $S_r(F, p)$.
- (c) If $D: X \times P \longrightarrow 2^Y$ is a set-valued mapping such that for any $x \in X$ and for any $p \in P$, D(x,p) is a closed, convex and pointed cone in Y such that $intD(x,p) \neq \emptyset$, then solutions of Problem $(P_r(F,p,\varepsilon))$, with assumption $C(x,p) = Y \setminus intD(x,p)$ is weakly ε -efficient solutions of F that were considered in works [8, 18]. Furthermore, if $\varepsilon = 0$, then weakly ε -efficient solutions are weakly efficient solutions, see [1, 11, 17, 19] and references therein.

Definition 1.1. Let $T: X \longrightarrow 2^Y$ be a set-valued map. Then,

(a) T is said to be upper semi continuous (u.s.c.), iff for each closed set $B \subset Y$,

$$T^-(B) := \{x \in X : T(x) \cap B \neq \emptyset\}$$
 is closed in X .

(b) T is said to be lower semi continuous (l.s.c.), iff for each open set $B \subset Y$,

$$T^-(B) := \{x \in X : T(x) \cap B \neq \emptyset\}$$
 is open in X.

(c) T is said to be closed iff $Gr(T) = \{(x,y) \in X \times Y : y \in T(x), x \in X\}$ is closed in $X \times Y$.

It is often convenient to characterize the upper and lower semicontinuity in terms of nets, as in the following lemma (see, for example, [[2], Theorems 17.16 and 17.19]).

Lemma 1.1. [2] Let X and Y be topological spaces and $T: X \longrightarrow 2^Y$ be a set-valued map.

- (i) If T has compact values, then T is u.s.c. iff for every net x_{α} in X converging to $x \in X$ and for any net y_{α} with $y_{\alpha} \in T(x_{\alpha})$, there exist $y \in T(x)$ and a subnet y_{α} of y_{α} converging to y.
- (ii) T is l.s.c. iff for any net x_{α} in X converging to $x \in X$ and each $y \in T(x)$, there exists a net y_{α} converging to y, with $y_{\alpha} \in T(x_{\alpha})$, for all α . \square

Motivated by Definition 4.1 in [22], here we define outer converge continuously, inner converge continuously and converge continuously for a sequence of set-valued mas.

Definition 1.2. Let X be a metric topological vector space, Y be a Hausdorff topological vector space, $G_n: X \longrightarrow 2^Y$ be a sequence of set-valued maps and $G: X \longrightarrow 2^Y$ be a set-valued map. The sequence G_n is said to be outer converge continuously (resp. inner converge continuously) to G at x_0 if

$$\limsup_{n} G_{n}(x_{n}) \subseteq G(x_{0}), (\text{resp. } G(x_{0}) \subseteq \liminf_{n} G_{n}(x_{n})) \text{ for all } x_{n} \longrightarrow x_{0},$$

where

$$\liminf_n G_n(x_n) := \{ y \in Y : y = \lim_n y_n, y_n \in G_n(x_n) \text{ for sufficiently large } n \},$$

$$\limsup_{n} G_n(x_n) := \{ y \in Y : y = \lim_{k} y_{n_k}, y_{n_k} \in G_{n_k}(x_{n_k}), \{n_k\} \text{ is a subsequence of } \{n\} \}.$$

The sequence G_n is said to be converge continuously to G at x_0 if $\limsup_n G_n(x_n) \subseteq G(x_0) \subseteq \liminf_n G_n(x_n)$, for all $x_n \longrightarrow x_0$. If G_n converges continuously to G at every point $x \in X$, then it is said that G_n converges continuously to G on X.

2. HADAMARD WELL-POSEDNESS

Here we define the notion of Γ_{Crp} -convergence for a sequence of set-valued functions similar to the Definition 2.1 in [20].

Definition 2.1. (Definition 2.1 in [20]) Let X be a topological space, Y be a topological vector space and $C \subseteq Y$ be a closed, convex and pointed cone such that $intC \neq \emptyset$ and $\mathfrak{U}(x)$ be the family of neighborhoods of x. Let $f_n, f: X \longrightarrow \bar{Y}, n \in \mathbb{N}$ be given functions, We say that (f_n) is Γ_C -convergence to f and we shall write $f_n \xrightarrow{\Gamma_C} f$, if for every $x \in X$, the following statements are true:

(i) for all $U \in \mathfrak{U}(x)$ and for all $\varepsilon \in \mathbb{R}^+$, there exists $n_{\varepsilon,U} \in \mathbb{N}$ such that

$$\forall n \geq n_{\varepsilon,U} \exists x_n \in U \ f_n(x_n) \leq f(x) + \varepsilon e$$

(ii) for all $\varepsilon \in \mathbb{R}^+$ there exist $U_{\varepsilon} \in \mathfrak{U}(x)$ and n_{ε} such that

$$\forall \bar{x} \in U_{\varepsilon}, \ \forall \ n > n_{\varepsilon} \ f_n(\bar{x}) > f(x) - \varepsilon e.$$

Definition 2.2. Suppose for all $n \in \mathbb{N}$, $F_n, F : A \times B \times D \times P \longrightarrow 2^Y$ are defined. Then, the sequence (F_n) is said to be Γ_{Crp} - convergence to F and we denote by $F_n \xrightarrow{\Gamma_{Crp}} F$, iff for every $x \in X$ the following statements hold,

(i) for all $U \in \mathfrak{U}(x)$ and for all $\varepsilon \in \mathbb{R}^+$, there exists $n_{\varepsilon,U} \in \mathbb{N}$ such that for all $n \ge n_{\varepsilon,U}$ there exists $x_n \in U$ such that

$$(y,z)rK_2(x,p)\times K_3(x,p), \quad F_n(x_n,y,z,p)-F(x,y,z,p)-\varepsilon e(x,p)\subseteq -C(x,p),$$

(ii) for all $\varepsilon \in \mathbb{R}^+$ there exist $U_{\varepsilon} \in \mathfrak{U}(x)$ and $n_{\varepsilon} \in \mathbb{N}$ such that for all $\bar{x} \in U_{\varepsilon}$ and for all $n \geq n_{\varepsilon}$, we obtain

$$(y,z)rK_2(x,p)\times K_3(x,p), \quad F(x,y,z,p)-F_n(\bar{x},y,z,p)-\varepsilon e(x,p)\subseteq -C(x,p).$$

Now, we can define some new notions of Hadamard well-posedness for vector parametric equilibrium problem that include Definitions 2.5 and 2.6 in [16], Definition 4 in [24] and Definitions 4.1 and 4.2 in [9].

Definition 2.3. Let $(\lambda_n, p_n) \subseteq \Lambda \times P$ be a sequence converging to (λ_0, p_0) and $F_{\lambda_n} \xrightarrow{\Gamma_{Crp}} F_{\lambda_0}$. The Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$, is said to be

- (a) Hadamard well-posed corresponding to (F_{λ_n}) , iff:
- (i) there exists only one solution for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$;
- (ii) for all sequence $(\varepsilon_n) \subseteq \mathbb{R}^+$ that $\varepsilon_n \longrightarrow \varepsilon$,

$$\limsup_{n} [S_r(F_{\lambda_n}, p_n, \varepsilon_n)] \subseteq S_r(F_{\lambda_0}, p_0, \varepsilon).$$

- (b) Generalized Hadamard well-posed corresponding to (F_{λ_n}) , iff:
- (i) there exists one solution for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$;
- (ii) for all sequence $(\varepsilon_n) \subseteq \mathbb{R}^+$ that $\varepsilon_n \longrightarrow \varepsilon$, condition (ii) of part (a) holds.
- (c) Extended Hadamard well-posed corresponding to (F_{λ_n}) , iff
- (i) there exists one solution for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$;
- (ii) there exists $\varepsilon_0 \in \mathbb{R}^+$ such that for all $0 \le \varepsilon' \le \varepsilon_0$,

$$\limsup[S_r(F_{\lambda_n},p_{\alpha},\varepsilon')]\subseteq S_r(F_{\lambda_0},p_0,\varepsilon').$$

Example 2.1. Let $X = P = \mathbb{R}$, $Y = \mathbb{R}^2$, $K_1(x,p) = K_2(x,p) = K_3(x,p) = [-1,0]$, for all $x \in X$ and $p \in P$, $r = r_1$, $C(x,p) = \mathbb{R}^2_+$, e(x,p) = (1,1) and $F : X \times X \times X \times P \longrightarrow 2^Y$ be defined by $F(x,y,z,p) = \{(x,x)\}$ and for all $n \in \mathbb{N}$, $F_n : X \times X \times X \times P \longrightarrow 2^Y$ be defined by $F_n(x,y,z,p) = \{(x+\frac{1}{n},t) : t \in [x,x+\frac{1}{n}[]\}$. We show that $F_n \xrightarrow{\Gamma_{Crp}} F$. In fact for all $x \in X$, $U \in \mathfrak{U}(x)$ and $\varepsilon \in \mathbb{R}^+$, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$ and for all $n \geq N$, $x - \frac{1}{n} \in U$. Therefore, for $x_n = x - \frac{1}{n}$, we have

$$F_n(x_n, y, z, p) - F(x, y, z, p) - \varepsilon(1, 1) = (x_n + \frac{1}{n}, t) - (x, x) - (\varepsilon, \varepsilon)$$
 (2.1)

$$= (x - \frac{1}{n} + \frac{1}{n}, t) - (x, x) - (\varepsilon, \varepsilon)$$
 (2.2)

$$= (0, t - x) - (\varepsilon, \varepsilon) \tag{2.3}$$

$$= (-\varepsilon, t - x - \varepsilon), \tag{2.4}$$

that is, $t \in [x_n, x_n + \frac{1}{n}[= [x - \frac{1}{n}, x[$ and

$$t - x - \varepsilon < x - x - \varepsilon < -\varepsilon < 0. \tag{2.5}$$

Therefore, $F_n(x_n, y, z, p) - F(x, y, z, p) - \varepsilon(1, 1) \subseteq -C(x, p)$ and condition (i) of Definition 2.2 holds. For condition (ii) of Definition 2.2, for each $x \in X$ and $\varepsilon \in \mathbb{R}^+$, we suppose that $U_{\varepsilon} = B_{\varepsilon}(x)$ (where $B_{\varepsilon}(x)$ is the ball with center x and radius ε). Since there exists $N \in \mathbb{N}$ such that $\frac{2}{N} < \varepsilon$, for all $n \ge N$ and $x' \in U_{\varepsilon}$, we have

$$F(x, y, z, p) - F_n(x', y, z, p) - \varepsilon(1, 1) = (x, x) - (x' + \frac{1}{n}, t) - (\varepsilon, \varepsilon)$$
 (2.6)

$$= (x - x' - \frac{1}{n} - \varepsilon, x - t - \varepsilon), \tag{2.7}$$

but $x-x^{'}-\frac{1}{n}-\varepsilon=(x-x^{'}-\varepsilon)-\frac{1}{n}<-\frac{1}{n}<0$. On the other hand $\frac{1}{n}<\frac{2}{N}<\varepsilon$, we have

$$x-t-\varepsilon < x-x'-\varepsilon < 0.$$

and for all $n \ge N$ and $x' \in U_{\varepsilon}$, we obtain $F(x, y, z, p) - F_n(x', y, z, p) - \varepsilon(1, 1) \subseteq -C(x, p)$.

Obviously, Problem $(P_r(F, p, \varepsilon))$ is extended Hadamard well-posed corresponding to (F_n) . Since, for all $\varepsilon \in \mathbb{R}^+$, $S_{r_1,p}(F, p, \varepsilon) = S_{r_1,p}(F_n, p, \varepsilon) = [-\varepsilon, 0]$. It follows that

$$\limsup_{n} [S_{r_1,p}(F_n,p,\varepsilon)] \subseteq S_{r_1}(F,p,\varepsilon).$$

Note that, if Problem $(P_r(F, p, \varepsilon))$ is Hadamard well-posed corresponding to (F_{λ_n}) , it is also generalized Hadamard well-posed corresponding to (F_{λ_n}) . In the following result, we show that if Problem $(P_r(F, p, \varepsilon))$ is extended Hadamard well-posed corresponding to (F_{λ_n}) , it is also generalized Hadamard well-posed corresponding to (F_{λ_n}) .

Proposition 2.1. Let $(\lambda_n, p_n) \subseteq \Lambda \times P$ be a sequence converging to (λ_0, p_0) and $F_{\lambda_n} \xrightarrow{\Gamma_{Crp_0}} F_{\lambda_0}$. If Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$, is extended Hadamard well-posed corresponding to (F_{λ_n}) , then Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$, is generalized Hadamard well-posed corresponding to (F_{λ_n}) .

Proof. The proof with minor modifications is similar to the proof of Proposition 2.2 in [16], therefore, it is omitted. \Box

Motivated by an idea of Tam and Loan in [25] and by using Proposition 2.1, we can deduce some sufficient conditions for generalized Hadamard well-posedness.

Theorem 2.1. Suppose that X is a metric vector topological space, Y is a topological vector space and $(\lambda_n, p_n) \subseteq \Lambda \times P$ is a sequence converging to (λ_0, p_0) , $F_{\lambda_n}, F_{\lambda_0} : X \longrightarrow 2^Y$ and the following conditions hold:

- $(i) F_{\lambda_n} \stackrel{\Gamma_{Cr_1p_0}}{\longrightarrow} F_{\lambda_0},$
- (ii) for all $\varepsilon \in \mathbb{R}^+$, the solution set of Problem $(P_{r_1}(F_{\lambda_0}, p_0, \varepsilon))$ is nonempty;
- (iii) clK_1 is upper semi continuous and compact valued;
- (iv) K2 and K3 are lower semi continuous;

(v) F_{λ_n} is inner converge continuously to F_{λ_0} .

Then, Problem $(P_{r_1}(F_{\lambda_0}, p_0, \varepsilon))$ is extended Hadamard well-posed corresponding to (F_{λ_n}) .

Proof. We show for all $\varepsilon \in \mathbb{R}^+$

$$\limsup_{n} [S_{r_1}(F_{\lambda_n}, p_n, \varepsilon)] \subseteq S_{r_1}(F_{\lambda_0}, p_0, \varepsilon).$$

Suppose that $w \in \limsup_n [S_{r_1}(F_{\lambda_n}, p_n, \varepsilon)]$ and $w \notin S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$. Then, there exist a subsequence of $(S_{r_1}(F_{\lambda_n}, p_n, \varepsilon))$ and sequence w_{n_k} such that for all n_k , $w_{n_k} \in S_{r_1}(F_{\lambda_{n_k}}, p_{n_k}, \varepsilon)$ and $w_{n_k} \longrightarrow w$. Since $w_{n_k} \in S_{r_1}(F_{\lambda_{n_k}}, p_{n_k}, \varepsilon)$, one sees that $w_{n_k} \in clK_1(w_{n_k}, p_{n_k})$ and for all $(y, z) \in K_2(w_{n_k}, p_{n_k}) \times K_3(w_{n_k}, p_{n_k})$

$$F_{\lambda_{n_k}}(w_{n_k}, y, z, p_{n_k}) + \varepsilon e(w_{n_k}, p_{n_k}) \subseteq C(w_{n_k}, p_{n_k}). \tag{2.8}$$

But $w_{n_k} \in clK_1(w_{n_k}, p_{n_k})$ and clK_1 is upper semi continuous and compact valued. Then $w \in clK_1(w, p)$. Since $w \notin S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$, one sees that

$$\exists (y_0, z_0) \in K_2(w, p_0) \times K_3(w, p_0) : F_{\lambda_0}(w, y_0, z_0, p_0) + \varepsilon e(w, p_0) \not\subseteq C(w, p_0). \tag{2.9}$$

Therefore, there exists $u_0 \in F_{\lambda_0}(w, y_0, z_0, p_0)$ such that $u_0 + \varepsilon e(w, p_0) \notin C(w, p_0)$. Since K_2 and K_3 are lower semi continuous, one finds that there exists a sequence

$$(y_{n_k}, z_{n_k}) \in K_2(w_{n_k}, p_{n_k}) \times K_3(w_{n_k}, p_{n_k})$$

such that $(y_{n_k}, z_{n_k}) \longrightarrow (y_0, z_0)$. From (2.8),

$$F_{\lambda_{n_k}}(w_{n_k}, y_{n_k}, z_{n_k}, p_{n_k}) + \varepsilon e(w_{n_k}, p_{n_k}) \subseteq C(w_{n_k}, p_{n_k}),$$
 (2.10)

as $(F_{\lambda_{n_k}})$ is inner converge continuously to F_{λ_0} at (w, y_0, z_0, p_o) , therefore

$$u_0 \in F_{\lambda_0}(w, y_0, z_0, p_0) \subseteq \underset{n_k}{\operatorname{liminf}} F_{\lambda_{n_k}}(w_{n_k}, y_{n_k}, z_{n_k}, p_{n_k}).$$

So, there exists (u_{n_k}) such that $u_{n_k} \in F_{\lambda_{n_k}}(w_{n_k}, y_{n_k}, z_{n_k}, p_{n_k})$ and $u_{n_k} \longrightarrow u_0$. By using (2.10), $u_{n_k} + \varepsilon e(w_{n_k}, p_{n_k}) \subseteq C(w_{n_k}, p_{n_k})$, and since e is continuous and C is closed, one find that $u_0 + \varepsilon e(w, p_0) \in C(w, p_0)$, which is a contradiction. This completes the proof.

Remark 2.1. (a) In the previous theorem, if we replace condition (iv) by the following condition:

- (iv)' K_2 is lower semi continuous on $A \times P$ and K_3 is upper semi continuous and compact valued on $A \times P$. Then, with minor modifications in the proof, one can conclude the extended Hadamard well-posedness of the Problem $(P_r, (F_{\lambda_0}, p_0, \varepsilon))$.
- (b) In the previous theorem, if we replace condition (iv) by the following condition:
- (iv)'' K_2 is upper semi continuous and compact valued on $A \times P$ and K_3 is lower semi continuous on $A \times P$.

Then, with minor modifications in the proof, one can deduce the extended Hadamard well-posedness of the Problem $(P_{r_3}(F_{\lambda_0}, p_0, \varepsilon))$.

The next example shows that our assumptions in Theorem 2.3 is weaker than Salamon's assumptions in [24].

Example 2.2. For r = 1 and fixed p, let $K_1, K_2 : [-1, 1] \times \{p\} \longrightarrow [-1, 1], K_1(x, p) = K_2(x, p) = [-1, 1]$ and $K_3 : [-1, 1] \times \{p\} \longrightarrow \{1\}$ and let $F : [-1, 1] \times [-1, 1] \times \{1\} \times \{p\} \longrightarrow \{0, 1\}$ and for all $n \in \mathbb{N}$, $F_n : [-1, 1] \times [-1, 1] \times \{1\} \times \{p\} \longrightarrow \{0, 1\}$ be defined by

$$F(x, y, 1, p) = \begin{cases} 0 & x = 0, \\ 1 & \text{o.w.} \end{cases}$$

$$F_n(x, y, 1, p) = \begin{cases} 0 & x \in] -\frac{1}{n}, \frac{1}{n}[, \\ 1 & \text{o.w}, \end{cases}$$

For all $x, p \in [-1, 1]$, let $C(x, p) = [0, +\infty[$. Since condition (iii) of Theorem 1 in [24] doesn't hold, therefore we can not achieve any results. But the conditions of Theorem 2.3 hold, therefore this problem is extended Hadamard well-posed corresponding by (F_n) .

The next theorem and its corollary show some alternative characterization for extended Hadamard well-posedness and Hadamard well-posedness of Problem $(P_r(F, p, \varepsilon))$. In fact, we obtain a relation between Hadamard well-posed of Problem $(P_r(F, p, \varepsilon))$ and its approximate solutions. For this idea, we need to define approximate solutions of Problem $(P_r(F, p, \varepsilon))$, denoted by:

$$\Pi_r(F, p, \varepsilon, \delta)$$

=
$$\{x \in clK_l(x, p) : F(x, y, z, p) + \varepsilon e(x, p) + \delta e(x, p) \subseteq C(x, p), (y, z)rK_2(x, p) \times K_3(x, p)\}.$$

Obviously, if $\delta_1 \leq \delta_2$, then $\Pi_r(F, p, \delta_1) \subseteq \Pi_r(F, p, \delta_2)$ and

$$S_r(F, p, \varepsilon) = \bigcap_{\delta > 0} \Pi_r(F, p, \varepsilon, \delta) = \Pi_r(F, p, \varepsilon, 0).$$

The following theorem and its corollary improve Theorems 4.8 and 4.10 in [9].

Theorem 2.2. Let X be a metric topological vector space, Y be a Hausdorff topological vector space and (λ_n, p_n) be a sequence converges to (λ_0, p_0) , \bar{E} (where, $\bar{E}(p_0) = \{x \in X : x \in clK_1(x, p_0)\}$) be a compact-valued and upper semi continuous set-valued map and $F_{\lambda_n} \stackrel{\Gamma_{Cr_1p_0}}{\longrightarrow} F_{\lambda_0}$. If Problem $(P_{r_1}(F_{\lambda_0}, p_0, \varepsilon))$ is extended Hadamard well-posed corresponding to (F_{λ_n}) , then there exists a nonempty and compact subset M of $S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$ such that for every neighborhood U of O_X , there exists $\delta > 0$ such that

$$x \in \Pi_{r_1}(F_{\lambda_r}, p_n, \varepsilon, \delta) \implies x \in M + V.$$

Conversely, if

(i) there exists a nonempty compact subset M of $S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$ such that for every neighborhood V of 0, there exists $\delta > 0$ such that

$$x \in \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon, \delta) + V \implies x \in M + V;$$

(ii) Π_{r_1} , is upper semi continuous in its third argument.

Then, Problem $(P_{r_1}(F_{\lambda_0}, p_0, \varepsilon))$, is extended Hadamard well-posed corresponding to (F_{λ_n}) .

Proof. Suppose that Problem $(P_{r_1}(F_{\lambda_0}, p_0, \varepsilon))$ is extended Hadamard well-posed corresponding to (F_{λ_n}) . Let $M = S_{r_1}(F_{\lambda_0}, p_0, \varepsilon) \neq \emptyset$. We will show that $S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$ is a compact set. If (x_n) is a sequence in $S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$, then

$$(y,z)r_1K_2(x_n,p_0) \times K_3(x_n,p_0), \quad F_{\lambda_0}(x_n,y,z,p_0) + \varepsilon e(x_n,p_0) \subseteq C(x_n,p_0).$$
 (2.11)

Since $F_{\lambda_n} \xrightarrow{\Gamma_{Cr_1p_0}} F_{\lambda_0}$, one sees that if $(\delta_n) \subseteq \mathbb{R}^+$ and $\delta_n \longrightarrow 0$. For any δ_n , $(y,z)r_1K_2(x_n,p_0) \times K_3(x_n,p_0)$

$$F_{\lambda_0}(x_n, y, z, p_0) - F_{\lambda_n}(x_n, y, z, p_0) - \delta_n e(x_\alpha, p_0) \subseteq -C(x_n, p_0).$$
 (2.12)

By summing (2.11) and (2.12), we obtain

$$(y,z)r_1K_2(x_n,p_0) \times K_3(x_n,p_0), F_{\lambda_n}(x_n,y,z,p_0) + \varepsilon e(x_n,p_0) + \delta_n e(x_n,p_0) \subseteq C(x_n,p_0).$$
 (2.13)

Therefore $x_n \in S_{r_1}(F_{\lambda_n}, p_0, \varepsilon + \delta_n)$. Since $x_n \in \bar{E}(p_0)$, one sees that (x_n) has a subsequence converges to some x_0 of $\bar{E}(p_0)$. Let for all n, $p_n = p_0$ and $\varepsilon_n = \varepsilon + \delta_n$. Since Problem $(P_{r_1}(F_{\lambda_0}, p_0, \varepsilon))$ is generalized Hadamard well-posed corresponding to (F_{λ_n}) , one finds that

$$\limsup_{n} [S_{r_1}(F_{\lambda_n}, p_0, \varepsilon_n)] \subseteq S_{r_1}(F_{\lambda_0}, p_0, \varepsilon),$$

and $x_0 \in S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$. Therefore $S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$ is a compact set.

Now, we show the existence of δ for any neighborhood of 0_X . On the contrary, there existence a neighborhood U of 0_X and a sequence $(\delta_n) \subseteq \mathbb{R}^+$ such that $\delta_n \longrightarrow 0$ and $(x_n) \subseteq X$ such that for all $n, x_n \in \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon, \delta_n)$, but $x_n \notin S_{r_1}(F_{\lambda_0}, p_0, \varepsilon) + U$. Since $x_n \in \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon, \delta_n)$, one obtains that $x_n \in S_{r_1}(F_{\lambda_n}, p_n, \varepsilon + \delta_n)$. On the other hand, $x_n \in \bar{E}(p_n)$. Using our assumption, one obtains that there exists $x_0 \in \bar{E}(p_0)$ and subsequence x_{n_k} such that $x_{n_k} \longrightarrow x_0$. But Problem $(P_{r_1}(F_{\lambda_0}, p, \varepsilon))$ is generalized Hadamard well-posed corresponding to (F_{λ_n}) . Then

$$\limsup_{r}[S_{r_1}(F_{\lambda_{n_k}},p_{n_k},\varepsilon+\delta_{n_k})]\subseteq S_{r_1}(F_{\lambda_0},p_0,\varepsilon),$$

and $x_0 \in S_{r_1}(F_{\lambda_0}, p_0, \varepsilon)$, which is a contradiction.

Conversely, we show that for any sequence $(\lambda_n, p_n) \subseteq \Lambda \times P$ converges to (λ_0, p_0) , $\varepsilon_n \longrightarrow \varepsilon$ and $F_{\lambda_n} \xrightarrow{\Gamma_{Cr_1p_0}} F_{\lambda_0}$. Note that

$$\limsup_{n} [S_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n)] \subseteq S_{r_1}(F_{\lambda_0}, p_0, \varepsilon).$$

Let $\bar{x} \in \limsup_n [S_{r_1}(F_{\lambda_n}, p_0, \varepsilon_n)]$. Hence, there exists a sequence (x_n) such that $x_n \longrightarrow \bar{x}$ and $x_n \in S_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n)$. For completing the proof, we show that (x_n) contains a subsequence converges to a point $x_0 \in M$. Suppose on the contrary that for all $x \in M$ there exists a neighborhood U_x of 0 such that $\{x\} + U_x$ does not contain any subsequence of x_n . Also, for all $x \in M$, there exists a neighborhood V_x of 0 such that $V_x + V_x \subseteq U_x$. Since $M \subseteq \bigcup_{x \in M} (\{x\} + V_x)$ and M is compact, we see that there exists $n \in \mathbb{N}$ such that

$$M\subseteq\bigcup_{i=1}^n(\{x_i\}+V_{x_i}).$$

Letting $V = \bigcap_{i=1}^n V_{x_i}$, we find from the assumption that there exists $\delta > 0$ such that

$$x \in \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon, \delta) + V \implies x \in M + V.$$

Obviously, there exists n_1 such that for all $n \ge n_1$,

$$\Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n, \delta_n) \subseteq \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n, \delta).$$

On the other hand, $x_n \in S_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n)$. Then $x_n \in \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n, 0) \subseteq \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n, \delta_n)$. Since Π_{r_1} is upper semi continuous in its third argument and $\varepsilon_n \longrightarrow \varepsilon$, we see that there exists n_2 such that for all $n \ge n_2$, $\Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n, \delta) \subseteq \Pi_{r_1}(F_{\lambda_n}, p_n, \varepsilon, \delta) + V$. Now, if $n \ge \max\{n_1, n_2\}$, then $x_n \in \Pi_r(F_{\lambda_n}, p_0, \delta) + V$. Therefore, $x_n \in M + V$. But

$$M+V \subseteq \bigcup_{i=1}^{n} (\{x_i\} + V_{x_i}) + V \subseteq \bigcup_{i=1}^{n} (\{x_i\} + V_{x_i} + V)$$

$$\subseteq \bigcup_{i=1}^{n} (\{x_i\} + V_{x_i} + V_{x_i}) \subseteq \bigcup_{i=1}^{n} (\{x_i\} + U_{x_i}).$$

Hence, for those $n \ge \max\{n_1, n_2\}$, $x_n \in \bigcup_{i=1}^n (\{x_i\} + U_{x_i})$, which is a contradiction, since for all $x \in M$, $\{x\} + U_x$ does not contain any subsequence of x_n , but as the limit is unique. Therefore, $x_0 = \bar{x}$.

Now, we obtain the Tykhonov well-posedness and the Levitin-Polayk well-posedness from the Hadamard well-posedness.

Definition 2.4. [5] The Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$, is said to be

- (a) Tykhonov wellposed iff
- (i) there exists only one solution for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$;
- (ii) for any sequence $(\lambda_n, p_n) \subseteq \Lambda \times P$ converging to (λ_0, p_0) , every asymptotically solving sequence for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ corresponding to (λ_n, p_n) , converges to $S_r(F_{\lambda_0}, p_0, \varepsilon)$.
- (b) Tykhonov well-posed in the general sense iff
- (i) there exists one solution for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$;
- (ii) for any sequence $(\lambda_n, p_n) \subseteq \Lambda \times P$ converging to (λ_0, p_0) , every asymptotically solving sequence for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ corresponding to (λ_n, p_n) , contains a susequence converges to some point of $S_r(F_{\lambda_0}, p_0, \varepsilon)$.

Definition 2.5. [4] Let X and Y be two metric spaces, $(\lambda_n, p_n) \subseteq \Lambda \times P$ be a sequence converging to (λ_0, p_0) . A sequence $\{x_n\} \subset A$ is said to be

(a) type I LP asymptotically solving sequence corresponding to (λ_n, p_n) , for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$, if $x_n \in clK_1(x_n, p_n)$ and there exists a sequence $(\varepsilon_n) \subseteq \mathbb{R}^+$ with $\varepsilon_n \longrightarrow 0$ such that

$$(y,z) r K_2(x_n,p_n) \times K_3(x_n,p_n), F(x_n,y,z,p_n) + \varepsilon_n e(x_n,\lambda_n,p_n) \subseteq C(x_n,p_n). \tag{2.14}$$

(b) type II LP asymptotically solving sequence corresponding to (λ_n, p_n) , for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$, if there exists a sequence $(\varepsilon_n) \subseteq \mathbb{R}^+$ with $\varepsilon_n \longrightarrow 0$ such that

$$d(x_n, K_1(x_n, p_n)) \le \varepsilon_n \tag{2.15}$$

and (2.14) holds.

(c) The Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ is LP well-posed of type I (resp. type II) if and only if

- (i) there is only one solution for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$;
- (ii) for any sequence $(\lambda_n, p_n) \subseteq \Lambda \times P$, which converges to (λ_0, p_o) , every LP of type I (resp. type II) asymptotically solving sequence for Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ corresponding to (λ_n, p_n) , converges to $S_r(F_{\lambda_0}, p_0, \varepsilon)$.

In the following result, we obtain a generalization of Theorem 2.2 in [21]. As a matter of fact, Revalski in [21], have shown that if X is a real Banach space and $f: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is a convex lower semi-continuous extended real-valued function, then the Tykhonov well-posedness and the Levitin-Polayk well-posedness are deduced from Hadamard well-posedness. Here, we obtain those results for set-valued maps in topological spaces.

Theorem 2.3. Let $(\lambda_n, p_n) \subseteq \Lambda \times P$ be a sequence converging to (λ_0, p_0) for all $n, F_{\lambda_n} = F_{\lambda_0}$. If Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ is Hadamard well-posed corresponding to (F_{λ_n}) and one of the following conditions holds:

- (i) clK_1 is compact valued and upper semi-continuous in the first argument;
- (ii) clK_1 is closed map.

Then, Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ is Tykhonov well-posed, type I Levitin-Polayk well-posed and type II Levitin-Polayk well-posed.

Proof. (i) It suffices to prove for generalized Hadamard well-posed. Other case obtains from Proposition 2.1. Suppose Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ is generalized Hadamard well-posed and clK_1 is compact valued and upper semi-continuous. If (x_n) is an asymptotically solving sequence, (resp. type I LP asymptotically solving sequence), since for all n, $x_n \in clK_1(x_n, p_0)$, then there exists $x_0 \in clK_1(x_0, p_0)$ such that $x_n \longrightarrow x_0$. On the other hand, (x_n) is an asymptotically solving sequence (resp. type I LP asymptotically solving sequence and type II LP asymptotically solving sequence) then for all n, $x_n \in S_{r_1}(F_{\lambda_n}, p_n, \varepsilon_n)$. Since for all n, $F_{\lambda_n} = F_{\lambda_0}$ and $F_{\lambda_0} = F_{\lambda_0}$ and $F_{\lambda_0} = F_{\lambda_0}$ and $F_{\lambda_0} =$

If condition (ii) holds, then (x_n) has a subsequence converges to x_0 . The remaining proof is similar to the proof of part (i).

3. A SCALARIZATION FOR HADAMARD WELL-POSEDNESS

In this section, let $(\lambda_n, p_n) \subseteq \Lambda \times P$ be a sequence converging to (λ_0, p_0) . We shall show that the Hadamard well-posedness of Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ reaches from the Hadamard wellposed of scalar optimization problem. In this Section, we suppose that maps C, e, K_2, K_3 are constant maps and therefore, for all $x \in X$ and $p \in P$, C(x, p) = C and $e(x, p) = e \in \text{int}C$, $K_2(x, p) = B$ and $K_3(x, p) = D$.

Here, we use a modified version of a result of Sach [23] for obtaining a nonlinear scalarization function to define a gap function for problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$.

Following the idea in [23], we need to define the following notations.

Definition 3.1. Let $Q \subset Y$, C be a closed convex cone in a topological vector space Y. Then

(i) Q is called C-bounded if for each neighborhood U of the origin of Y there exists a positive t, such that

 $Q \subset C + tU$.

(ii) Q is called -C-closed if Q-C is closed.

Remark 3.1. One can show that when Q is C-compact, then Q is -C-closed and C-bounded. If the set-valued function F satisfies condition(i) (resp. (ii)) of Definition 3.1 at each point of $A \times B \times D \times P$, then we say that F is C-bounded (resp. -C-closed). It is evident that if F has bounded values in Y, then it is C-bounded and furthermore, if F has compact values in Y, then F is simultaneously C-bounded and -C-closed.

The proof of the following results are similar to the corresponding ones in [23], with replacing C by -C, therefore it is omitted.

Lemma 3.1. Let $Q \subset Y$, C be a closed convex cone in Y with $intC \neq \emptyset$ and $e \in int C$. For a subset Q of Y, $e \in intC$ and $\varepsilon > 0$, we have

- (i) If Q is C-bounded, then $s_0 := \min\{t \ge 0 : Q + te \subseteq C\}$ is well-defined.
- (ii) If Q is C-bounded, then $s_Q = 0$ iff $Q \subseteq C$ and $s_Q \le \varepsilon$ iff $Q \subseteq C \varepsilon e$.

Remark 3.2. Let F be a set-valued map with compact values. Using the Remark 3.1, all of the consequences of Lemma 3.1 is valid for

 $\varphi_F: X \times P \times \mathbb{R} \longrightarrow \mathbb{R}$ which is defined by

$$\varphi_F(x, p, \varepsilon) := \min\{t \in \mathbb{R}^+ : F(x, y, z, p) + \varepsilon e + te \subseteq C \ \forall \ (y, z) \in B \times D\}. \tag{3.1}$$

Obviously, $\bar{x} \in S_{r_1}(F, p, \varepsilon)$ iff, $\varphi_F(\bar{x}, p, \varepsilon) = 0$.

Lemma 3.2. Let $(\lambda_n, p_n) \subseteq \Lambda \times P$ be a sequence converging to (λ_0, p_0) and $F_{\lambda_n} \xrightarrow{\Gamma_{Crp_0}} F_{\lambda_0}$. Then $-\varphi_{F_{\lambda_n}} \xrightarrow{\Gamma_{\mathbb{R}^+}} -\varphi_{F_{\lambda_0}}$.

Proof. Suppose that $F_{\lambda_n} \xrightarrow{\Gamma_{Crp_0}} F_{\lambda_0}$. For every $\bar{x} \in X$, conditions (i) and (ii) of Definition 2.2 hold. Since $F_{\lambda_n} \xrightarrow{\Gamma_{Crp_0}} F_{\lambda_0}$, of condition (i) of Definition 2.2, for all $U \in \mathfrak{U}(\bar{x})$ and for all $\varepsilon \in \mathbb{R}^+$, there exists $\alpha_{\varepsilon,U}$ such that for all $n \geq n_{\varepsilon,U}$ and there exists $x_n \in U$ such that for all $y, z \in B$

$$F_{\lambda_n}(x_n, y, z, p_0) - F_{\lambda_0}(\bar{x}, y, z, p_0) - \varepsilon e \subseteq -C. \tag{3.2}$$

If t belongs to

$$\{t \in \mathbb{R}^{+}: F_{\lambda_{n}}(x_{n}, y, z, p_{0}) + \varepsilon' e + te \subseteq C \ \forall \ (y, z) \in B \times D\},$$

$$(3.3)$$

then by summing (3.2) and (3.3), we obtain $t + \varepsilon$ belongs to

$$\{t \in \mathbb{R}^+: F_{\lambda_0}(\bar{x}, y, z, p_0) + \varepsilon'e + te \subseteq C \ \forall \ (y, z) \in B \times D\}.$$

Therefore, $\varphi_{\lambda_0}(\bar{x}, p_0, \varepsilon') \leq t + \varepsilon$ and $\varphi_{\lambda_0}(\bar{x}, p_0, \varepsilon') \leq \varphi_{\lambda_n}(x_\alpha, p_0, \varepsilon') + \varepsilon$. Then condition (i) of Definition 2.1 holds. From condition (ii) of Definition 2.2, we obtain for all $\varepsilon \in \mathbb{R}^+$ there exist $U_{\varepsilon} \in \mathfrak{U}(\bar{x})$ and n_{ε} such that for all $x \in U_{\varepsilon}$, for all $n \geq n_{\varepsilon}$, and for all $y, z \in S$, we have

$$F_{\lambda_0}(\bar{x}, y, z, p_0) - F_{\lambda_n}(x, y, z, p_0) - \varepsilon e \subseteq -C. \tag{3.4}$$

If t belongs to

$$\{t \in \mathbb{R}^{+}: F_{\lambda_{0}}(\bar{x}, y, z, p_{0}) + \varepsilon' e + te \subseteq C \ \forall \ (y, z) \in B \times D\},$$

$$(3.5)$$

by summing (3.4) and (3.5), we deduce $t + \varepsilon$ belonging to

$$\{t \in \mathbb{R}^+: F_{\lambda_n}(x, y, z, p_0) + \varepsilon'e + te \subseteq C \ \forall \ (y, z) \in B \times D\}.$$

So,
$$\varphi_{\lambda_n}(x, p_0, \varepsilon') \leq \varphi_{\lambda_0}(\bar{x}, p_0, \varepsilon') + \varepsilon$$
, and condition (ii) of Definition 2.1 holds and $-\varphi_{\lambda_\alpha} \xrightarrow{\Gamma_{\mathbb{R}^+}} -\varphi_{\lambda_0}$. \square

In the following theorem, we obtain an equivalence relation between generalized Hadamard well-posedness of Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ and the generalized Hadamard well-posedness of scalar optimization problems.

Theorem 3.1. Suppose that (λ_n, p_n) is a sequence converging to (λ_0, p_0) and F_{λ_0} and F_{λ_n} have compact values and $F_{\lambda_n} \xrightarrow{\Gamma_{Crp_0}} F_{\lambda_0}$, such that F_{λ_n} is inner converge continuously to F_{λ_0} . Then Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ is generalized Hadamard wellposed corresponding to (F_{λ_n}) if the following scalar optimization problem

$$(OP(\varphi_{F_{\lambda_0}}, p_0, \varepsilon)) \max_{x \in S} -\varphi_{F_{\lambda_0}}(x, p_0, \varepsilon)$$

is generalized Hadamard wellposed corresponding to $(-\varphi_{F_{\lambda_n}})$ defined in Remark 3.2.

Proof. We denote the solution set of Problem $(OP(\varphi_{F_{\lambda_0}}, p_0, \varepsilon))$ by $eff(-\varphi_{F_{\lambda_0}}, p, \varepsilon))$. Suppose that $(\varepsilon_n) \subseteq \mathbb{R}^+$, $\varepsilon_n \longrightarrow \varepsilon'$ and Problem $(OP(\varphi_{F_{\lambda_0}}, p_0, \varepsilon))$ is generalized Hadamard wellposed corresponding to $(-\varphi_{F_{\lambda_n}})$. Then

$$\limsup_{n} [eff(-\varphi_{F_{\lambda_{n}}}, p_{n}, \varepsilon_{n})] \subseteq eff(-\varphi_{F_{\lambda_{0}}}, p_{0}, \varepsilon').$$

If $x^{'} \in \limsup_{n} [S_{r}(F_{\lambda_{n}}, p_{n}, \varepsilon_{n})]$, then there exists $(x^{'}_{n_{k}})$ such that for all n_{k} , $x^{'}_{n_{k}} \in S_{r}(F_{\lambda_{n_{k}}}, p_{n_{k}}, \varepsilon_{n_{k}})$ and $x^{'}_{n_{k}} \longrightarrow x^{'}$. Since $x^{'}_{n_{k}} \in S_{r_{1}}(F_{\lambda_{n_{k}}}, p_{n_{k}}, \varepsilon_{n_{k}})$, we have $\varphi_{F_{\lambda_{n_{k}}}}(x^{'}_{n_{k}}, p_{n_{k}}, \varepsilon_{n_{k}}) = 0$ and $x^{'}_{n_{k}} \in eff(-\varphi_{F_{\lambda_{n_{k}}}}, p_{n_{k}}, \varepsilon_{n_{k}})$. Hence, we deduce $x^{'} \in \limsup_{n} [eff(\varphi_{F_{\lambda_{n}}}, p_{n}, \varepsilon_{n})]$ and $x^{'} \in eff(-\varphi_{F_{\lambda_{0}}}, p_{0}, \varepsilon^{'})$. For completing the proof, it is enough to show that $\varphi_{F_{\lambda_{0}}}(x^{'}, p_{0}, \varepsilon^{'}) = 0$. Suppose on the contrary, there exists $t_{0} > 0$ such that $\varphi_{F_{\lambda_{0}}}(x^{'}, p_{0}, \varepsilon^{'}) = t_{0}$ and for all $t < t_{0}$, there exists $u_{t} \in F_{\lambda_{0}}(x^{'}, p_{0}, \varepsilon^{'})$ that $u_{t} + \varepsilon^{'} + te \notin C$. Now for a fix $t > t_{0}$, Since $F_{\lambda_{n}}$, is inner converge continuously to $F_{\lambda_{0}}$, we see that there exists $u_{n_{k}} \in F_{\lambda_{n_{k}}}(x^{'}_{n_{k}}, p_{n_{k}}, \varepsilon_{n_{k}})$ such that $\lim_{k} u_{n_{k}} = u_{t}$, since $\varphi_{F_{\lambda_{n_{k}}}}(x^{'}_{n_{k}}, p_{n_{k}}, \varepsilon_{n_{k}}) = 0$ and C is closed cone. Hence,

$$u_t + \varepsilon' = \lim_{k} u_{n_k} + \varepsilon_{n_k} \in C,$$

since $e \in intC$. Then we deduce $u_t + \varepsilon' + te \in C$. This is a contradiction.

The following definition is a generalization of Definition 2.3 in [16].

Definition 3.2. Let $F: X \times B \times D \times P \to 2^Y$ be a set-valued map. F is said to be strongly upper $C_{(e)}$ -semicontinuous at the point $x_0 \in X$, if for all $\varepsilon \in \mathbb{R}^+$, there exists $U_{x_0,\varepsilon} \in \mathfrak{U}(x_0)$ such that

$$\forall x \in U_{x_0,\varepsilon}, \ F(x,y,z,p) - F(x_0,y,z,p) - \varepsilon e \subseteq -\mathrm{int}C, \ \forall (y,z,p) \in B \times D \times P.$$

Lemma 3.3. Let F be a strongly upper $C_{(e)}$ -semicontinuous map at the first argument and lower semi continuous at the forth argument. Then, function $-\varphi_F$ that defined in Remark 3.2 is a strongly $\mathbb{R}^+_{(1)}$ -upper semi-continuous map at the first argument.

Proof. By Remark 2.1 in [16], we have to show that $-\varphi_F$ is upper semi continuous, i.e., for all $a \in \mathbb{R}$, $\{(x, p, \varepsilon) : -\varphi_F(x, p, \varepsilon) \ge a\}$ is a closed set. Suppose there exists sequence $(x_n, p_n, \varepsilon_n) \longrightarrow (x_0, p_0, \varepsilon_0)$ such that $-\varphi_F(x_n, p_n, \varepsilon_n) \ge a$. We show $-\varphi_F(x_0, p_0, \varepsilon_0) \ge a$.

Since F is a strongly upper $C_{(e)}$ -semicontinuous map at the point $x_0 \in X$, then for all $\delta \in \mathbb{R}^+$, there exists $U_{x_0,\delta} \in \mathfrak{U}(x_0)$ such that

$$\forall x \in U_{x_0,\delta}, \ F(x,y,z,p) - F(x_0,y,z,p) - \delta e \subseteq -intC, \ \forall (y,z,p) \in B \times D \times P.$$

Since $x_n \longrightarrow x_0$, we have

$$F(x_n, y, z, p) - F(x_0, y, z, p) - \delta e \subseteq -intC, \ \forall (y, z, p) \in B \times D \times P.$$
(3.6)

On the other hand, $-\varphi_F(x_n, p_n, \varepsilon_n) \ge a$. Then there exists $t_0 \le -a$ belonging to

$$\{t \in \mathbb{R}^+ : F(x_n, y, z, p_n) + \varepsilon_n e + t e \subseteq C, \ \forall \ (y, z) \in B \times D\}.$$

Therefore, one has

$$F(x_n, y, z, p_n) + \varepsilon_n e + t_0 e \subseteq C \ \forall \ (y, z) \in B \times D. \tag{3.7}$$

Putting $p = p_n$ in (3.6) and summing (3.6) and (3.7), we obtain

$$F(x_0, y, z, p_n) + \varepsilon_n e + t_0 e + \delta e \subseteq int C.$$

Since F is lower semi continuous on the forth argument and C is closed cone, one has

$$F(x_0, y, z, p_o) + \varepsilon_o e + t_0 e + \delta e \subseteq C$$
.

So, $t_0 + \delta$ belongs to

$$\{t \in \mathbb{R}^+: F(x_0, y, z, p_0) + \varepsilon_0 e + t e \subseteq C, \forall (y, z) \in B \times D\}.$$

Then $\varphi_F(x_0, p_0, \varepsilon_0) \le t_0 + \delta$. If $\delta \longrightarrow 0$, then $\varphi_F(x_0, p_0, \varepsilon_0) \le t_0$. So, $-\varphi_F(x_0, p_0, \varepsilon_0) \ge -t_0 \ge a$. It follows that $-\varphi_F$ is upper semicontinuous at the point x_0 .

Theorem 3.2. (Theorem 4.1 in [16]) Assume that $\varphi_n, \varphi: S \longrightarrow Y$, $\varphi_n \xrightarrow{\Gamma_{\mathbb{R}_+}} \varphi$ and φ is strongly upper \mathbb{R}_+ -semi continuous. Then Problem $\min_{x \in S} \varphi(x)$ is extended Hadamard wellposed with respect to (φ_n) .

Theorem 3.3. Suppose that $F_n, F: A \times B \times D \times P \to 2^Y$ are compact valued, $F_n \xrightarrow{\Gamma_{Crp}} F$ and F is strongly upper $C_{(e)}$ -semicontinuous and inner converge continuously. Then Problem $(P_r(F_{\lambda_0}, p_0, \varepsilon))$ is extended Hadamard wellposed with respect to F_{λ_n} .

Proof. By using of Lemma 3.3, Theorem 3.1 and the above theorem, we can obtain the desired conclusion immediately. \Box

4. CONCLUSION

Well-posedness plays a crucial role in the theory and numerical methods of optimization problems. There are three concepts of well-posedness, namely: Tykhonov well-poedness, Levitin-Polyak well-posedness and Hadamard well-posedness. The two first concepts of well-posedness deal with the behavior of a prescribed class of approximating solution sequences. While the Hadamard well-posedness of a problem means the continuous behavior of the solution with respect to the perturbations of the data. In this article, we introduce two kinds of Hadamard well-posedness for vector parametric quasi-equilibrium problems which include some of the main results in this area. Furthermore, by introducing a gap function, we establish a scalarization for our problem. We obtain a sufficient condition for Hadamard well-posedness of vector parametric quasi-equilibrium problem in terms of the Hadamard well-posedness of the gap function.

REFERENCES

- [1] R. Agarwal, M. Balaj, D. O'Regan, A unifying approach to variational relation problems, J. Optim. Theory appl. 155 (2012), 417–429.
- [2] C. Aliprantis, K. Border, Infinite Dimensional Analysis, Springer, Berlin, 2006.
- [3] J. W. Chen, Z. Wan, Y. J. Cho, Levitin-Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems, Math. Meth. Oper. Res. 77 (2013), 33–64.
- [4] M. Darabi, J. Zafarani, M-well-posedness and B-well-posedness for vector quasi-equilibrium problems, J. Nonlinear Convex Anal. 17 (2016),1607-1625.
- [5] M. Darabi, J. Zafarani, Tykhonov well-posedness for quasi-equilibrium problems, J. Optim. Theory Appl. 165 (2015), 458–479.
- [6] M. Darabi, J. Zafarani, Levitin-Polyak Well-Posedness of Strong Parametric Vector Quasi-equilibrium Problems. In: J.M. Cushing et al. (eds.), Applied Analysis in Biological and Physical Sciences, Applied Analysis in Biological and Physical Sciences, Springer India (2016), 321-337.
- [7] A. Dontchev, T. Zolezzi, Well-posed Optimization Problems, Springer-Verlag, Berlin, 1993.
- [8] Y. Gao, S. H. Hou, X. M. Yang, Existence and optimality conditions for approximate solutions to vector optimization problems, J. Optim. Theory appl. 152 (2012), 97–120.
- [9] C. Gutierrez, R. Lopez, V. Novo, On Hadamard well-posedness of families of Pareto optimization problems, J. Math. Anal. Appl. 444 (2016), 881–899.
- [10] J. Hadamard, Sur les probl'emes aux d'erivees partielles et leur signification physique, Bull. Univ. Princeton, 13 (1902), 49-52.
- [11] S. Hou, H. Yu, G. Chen, On vector quasi-equilibrium problems with set-valued maps, J. Optim. Theory appl. 119 (2012), 485–498.
- [12] R. Hu, Y. Fang, Levitin-Polyak well-posedness by perturbations of invers variational inequalities, Optim. Lett. 7 (2013), 343–359.
- [13] C. Lalitha, G. Bhatia, Levitin-Polyak well-posedness for parametric quasivariational inequality problem of the Minty type, Positivity 16 (2012), 527–541.
- [14] C. Lalitha, P. Chatterjee, Levitin-Polyak well-posedness for constrained quasiconvex vector optimization problems, J. Global Optim. 59 (2014), 191–205.
- [15] E. Levitin, B. Polyak, Convergence of minimizing sequences in conditional extremum problems, Soviet Math. Dokl. 7 (1966) 764–767.
- [16] S. J. Li, W. Y. Zhang, Hadamard well-posed vector optimization problems, J. Global Optim. 46 (2010), 383-393.

- [17] S. Li, K. Teo, X. Yang, S. Wu, Gap functions and existence of solutions to generalized vector quasi-equilibrium problems, J. Global Optim. 34 (2006), 427–440.
- [18] S. J. Li, W. Y. Zhang, Hadamard well-posed vector optimization problems, J. Global Optim. 46 (2010) 383–393.
- [19] J. Lin, Y. Huang, Generalized vector quasi-equilibrium problems with applications to common fixed point theorems and optimization problems, Nonlinear Anal. 66 (2007), 1275–1289.
- [20] P. Oppezzi, A.M. Rossi, A convergence for vector-valued functions, Optimization 57 (2008), 435–448.
- [21] J. P. Revalski, Hadamard and strong wellposedness for convex programs, SIAM J. Optim. 7 (1997), 519-526.
- [22] R. T. Rockafellar, R. J. B. Wets, Variational Analysis, Springer, Berlin, 1998.
- [23] P. Sach, New nonlinear scalarization functions and applications, Nonlinear Anal. 75 (2012), 2281–2292.
- [24] J. Salamon, Closedness and Hadamard well-posedness of the solution map for parametric vector equilibrium problems, J. Global Optim. 47 (2010), 173-183.
- [25] V. M. Tam, H. T. K. Loan, Painleve-Kuratowski upper convergence of the solution sets for vector quasi-equilibrium problems, Science Research Conference of Fmitte, 2015.
- [26] A. Tykhonov, On the stability of the functional optimization problem, USSR J. Comput. Math. Math. Phys. 6 (1966), 631–634.
- [27] S. Wang, N. Huang, M. Wong, Strong Levitin-Polyak well-posedness for generalized quasi-variational inclusion problems with applications, Taiwanese J. Math. 16 (2012), 665–690.
- [28] T. Zolezzi, Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal. 25 (1995), 437–453.
- [29] T. Zolezzi, Extended well-posedness of optimization problems, J. Optim. Theory Appl. 91 (1996), 257–266.