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Abstract. The aim of this paper is to investigate the asymptotic behavior of the forward-backward algorithm for solving
null-point problems governed by two maximal monotone operators. An application to the split feasibility problem is also sated.
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1. INTRODUCTION AND PRELIMINARIES

Throughout, H is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Notations not
explicitly defined here are standard.

Recall that the graph, gphA, of a set-valued operator A : H→ 2H is given by

gphA = {(x,y) ∈ H×H;y ∈ A(x)}.

Recall that the mapping A is monotone if 〈x−x′,y−y′〉 ≥ 0, ∀(x,y)∈ gphA, ∀(x′,y′)∈ gphA. A is said to
be maximal monotone if it cannot be properly extended without destroying monotonicity. The inverse of
A is defined via its graph by gphA−1 = {(y,x) ∈ H×H;y ∈ A(x)} and the resolvent of A with parameter
γ > 0 is JA

γ = (I+ γA)−1. This resolvent is not only always single-valued, but also firmly monotone (and
thus Lipschitz continuous), namely

〈JA
γ (x)− JA

γ (y),x− y〉 ≥ ‖JA
γ (x)− JA

γ (y)‖2, ∀x,y ∈ H.

Moreover, the resolvent has full domain H precisely when A is maximal monotone.
Now, let A and B be two maximal monotone operators on H with A cooercive. In this paper, we will be

concerned by some convergence results of a split algorithm for solving the following null-point problem

find x∗ ∈ H such that 0 ∈ (A+B)(x∗). (1.1)

An inclusion problem which subsumes a wide spectrum of problems in nonlinear analysis. Remember
that an operator A is cocoercive if there exists τ > 0 such that

〈A(x)−A(y),x− y〉 ≥ τ‖A(x)−A(y)‖2, ∀x,y ∈ H. (1.2)

We recall the two following facts.
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Fact 1. The resolvent of an operator B is firmly nonexpansive if and olny if, for every x,y ∈H and γ > 0,

‖JB
γ (x)− JB

γ (y)‖2 ≤ ‖x− y‖2−‖(I− JB
γ )(x)− (I− JB

γ )(y)‖2. (1.3)

Fact 2. Using the resolvent operator, we can rewrite problem (1.1) as a fixed point equation

x∗ = JB
γ (x
∗− γAx∗), (1.4)

for some γ > 0.
The forward-backward algorithm (or prox-gradient method) is to solve this fixed point equation via

the iteration
xk+1 = JB

γk
(xk− γkAxk), (1.5)

where γk is a stepsize.
Fact 3. The resolvent of any maximal monotone operator B verifies the following so-called resolvent
inequality

JB
α(x) = JB

α

(
α

β
x+(1− α

β
)JB

β
(x)

)
, (1.6)

for every x ∈ H and every α,β > 0.
After revisiting some convergence properties of (1.5), we propose two convergence rate results based

on bounded linear and bounded Hölder regular assumptions. An application to split feasibility null-point
problems is stated and a remark on a possible extension to general null-point problems is also suggested.

2. THE MAIN CONVERGENCE RESULTS

Now, we are in a position to state and prove some convergence results. To begin with, let us establish
the following key inequality that will be noted (?).

Proposition 2.1. Let γk ∈]0,2τ[, A,B be two maximal monotone operators with A a τ-cocoercive opera-
tor and assume that (1.1) possesses at least one solution. Let (xk)k∈IIN be the sequence defined by (1.5).
Then, we have the following estimate

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2−2γkτ‖Axk−Ax∗− xk− xk+1

2τ
‖2− 2τ− γk

2τ
‖xk− xk+1‖2. (?)

Proof. Let x∗ be a solution of (1.1). In view of relations (1.3) and (1.5) and according to the firm
nonexpansiveness property of the resolvent operators, we can successively write

‖xk+1− x∗‖2 ≤ ‖(xk− γkAxk)− (x∗− γkAx∗),xk− x∗‖2−‖(xk− γkAxk− xk+1)+ γkAx∗‖2

≤ ‖(xk− x∗)− γk(Axk−Ax∗)‖2−‖(xk− xk+1)− γk(Axk−Ax∗)‖2

≤ ‖xk− x∗‖2−2γk〈Axk−Ax∗,xk− x∗〉−‖xk− xk+1‖2

+ 2γk〈Axk−Ax∗,xk− xk+1〉

≤ ‖xk− x∗‖2−2γkτ‖Axk−Ax∗‖2−‖xk− xk+1‖2

+ 2γk〈Axk−Ax∗,xk− xk+1〉

= ‖xk− x∗‖2−2γkτ‖Axk−Ax∗− xk− xk+1

2τ
‖2

− 2τ− γk

2τ
‖xk− xk+1‖2.

This completes the proof. �
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Throughout Ω will denote the solution set of (1.1).

Proposition 2.2. If we suppose that γk ∈]ε,2τ − ε[ for some given ε > 0 small enough, then we obtain
the classical convergence results, namely, (xk) is Fejer monotone with respect to Ω, bounded and asymp-
totically regular, and (Axk) norm converges to Ax∗. Moreover, (xk) weakly converges to some solution of
(1.1).

Proof. From (?) and the conditions on the sequence of parameters (γk), we have

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2−2ετ‖Axk−Ax∗− xk− xk+1

2τ
‖2− ε

2τ
‖xk− xk+1‖2.

This implies that the sequence (‖xk− x∗‖2) is no increasing and thus it converges, which implies in turn
the boundedness of the sequence (xk). We also directly obtain that ∑

∞
k=0 ‖xk− xk+1‖2 < +∞ as well as

that limk→+∞ ‖Axk−Ax∗‖= 0. On the other hand, (1.5) can be rewritten as

xk− xk+1

γk
− (Axk−Axk+1) ∈ (A+B)xk+1. (2.1)

Since A is Lipschitz continuous, we obtain by passing to the limit on a subsequence of (xk) converging
to a weak-cluster point x̃ in (2.1) and by taking into account that A+B is maximal monotone and thus its
graph is weakly-strongly closed, that

0 ∈ (A+B)x̃.

Thus x̃ belongs in Ω and the weak convergence of the whole sequence follows then by the celebrate
Opial’s Lemma. �

Now, let us now focus on the linear convergence of (1.5). To that end, we consider the bounded linear
regular assumption, namely, for some σ > 0 and for every x ∈ H, we have

d(x,Ω)≤ σ‖x− JB
1 (x−Ax)‖. (2.2)

To begin with, let us prove the following key inequality: for all x,z ∈ H, ll α,β > 0, we have

‖x− JA
α(x+αz)‖ ≤ (1+ |1− α

β
|)‖x− JA

β
(x+β z)‖. (2.3)

Indeed, using the resolvent equation, we can write

‖JA
α(x+αz)− JA

β
(x+β z)‖ = ‖JA

α(x+αz)− JA
α

(α

β
(x+β z)

+ (1− α

β
)JA

β
(x+β z)

)
‖

≤ |1− α

β
|‖x− JA

β
(x+β z)‖.

On the other hand, we also have

‖JA
α(x+αz)− JA

β
(x+β z)‖ = ‖(x− JA

α(x+αz))− (x− JA
β
(x+β z))‖

≥ ‖x− JA
α(x+αz)‖−‖x− JA

β
(x+β z)‖.

Combining the two last inequalities, we obtain the desired inequality immediately.
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Proposition 2.3. Let A,B be two maximal monotone operators with A a τ-cocoercive operator. Let
γk ∈]ε,2τ − ε[ and assume that (2.2) is satisfied. Then, the sequence (xk) generated by (1.5) converges
linearly to some x∗ which solves (1.1) and we have

‖xk− x∗‖ ≤ 2χ
k
2 dist(x0,Ω), ∀k ∈ IN, (2.4)

χ is defined in the proof.

Proof. From (?), we directly infer

dist2(xk+1,Ω)≤ dist2(xk,Ω)− 2τ− γk

2τ
‖xk− xk+1‖2. (2.5)

Using (2.3) with x = xk,z =−Axk,α = 1 and β = γk, we obtain relation (??) below

‖xk− JB
1 (xk−Axk)‖ ≤ (1+ |1− 1

γk
|)‖xk− JB

γk
(xk− γkAxk)‖

= (1+ |1− 1
γk
|)‖xk− xk+1‖.

(??)

The latter combined with (2.2) yields

dist2(xk,Ω) ≤ σ
2‖xk− JB

1 (xk−Axk)‖2

=
(
σ(1+ |1− 1

γk
|)
)2‖xk− xk+1‖2

≤
(
σ max(2,

1
γk
)
)2‖xk− xk+1‖2,

which in the light of (2.5) and by taking into account conditions on γk yields

dist2(xk+1,Ω)≤
(

1− ε

2τ
(
σ max(2, 1

ε
)
)2

)
dist2(xk,Ω).

Consequently, one has

dist(xk+1,Ω)≤ χ
1
2 dist(xk,Ω),

from which we infer, thanks to [[1], Theorem 5.12], that

‖xk− x∗‖ ≤ 2χ
k
2 dist(x0,Ω),

with χ = max
(

0,1− ε

2τ

(
σ max(2, 1

ε
)
)2

)
. �

Now, we will propose another convergence rate result based on the bounded Hölder regularity hypoth-
esis. Namely, we assume that there exists η ∈ (0,1) such that, for every x ∈ H,

d(x,Ω)≤ σ‖x− JB
1 (x−Ax)‖η , (2.6)

for some σ > 0.
We obtain the following result.

Proposition 2.4. Let A,B be two maximal monotone operators with A a τ-cocoercive operator. Let
γk ∈]ε,2τ− ε[ and suppose that (2.6) is satisfied. Then, for all k ∈ IN, the following estimate holds

dist2(xk,Ω)≤ dist2(x0,Ω)
(

1+ηdist2η(x0,Ω)
(

ε

2τσ
2
η max(2, 1

ε
)
k
)) η

η−1
.
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Proof. Similarly, by combining inequality (??) with the bounded Hölder regularity assumption (2.6), we
obtain

dist2(xk,Ω)≤ σ
2max2η(2,

1
γk
)‖xk− xk+1‖2η .

Tanking into account (2.5) and conditions on the parameters γk, we infer

dist2(xk+1,Ω)≤ dist2(xk,Ω)− ε

2τσ
2
η max2(2, 1

ε
)
dist

2
η (xk,Ω).

The claimed estimate follows by applying [[2], Lemma 6, page 46]. �

Remark 2.1. It is worth mentioning that our analysis can be applied to the problem of minimizing
the sum of two proper convex lower semicontinuous functions f and g, g being differentiable with a
L-Lipschitz gradient (which, in this case, is well-known to be co-coercive with constant 1

L ). Just take
B = ∂ f and A = ∇g, the subdifferential and the gradient of the functions f and g respectively. Like-
wise, by setting B = NC the normal cone of a closed convex set and A = I− T with T , for instance,
κ-strictly pseudocontrative or ξ -strongly pseudocontractive (the operator I− T is 1−κ

2 -cocoercive and
ξ -cocoercive, rspectively), we can apply our analysis to the variational inequality (I−T )x∗+NC(x∗)3 0
which amount to finding x∗ such that x∗ = PC ◦T (x∗), PC being the projection onto the set C.

3. FEASIBILITY NULL-POINT PROBLEMS

Feasibility null-point consists of finding x∗ ∈ H1 such that

0 ∈ B(x∗) and 0 ∈C(T x∗), (3.1)

where B, and C are two maximal monotone operators defined on two real Hilbert spaces H1,H2, re-
spectively, and T : H1 → H2 a bounded linear operator. Problem (3.1) is equivalent to finding x∗ such
that

0 ∈ T ∗(I− JC
λ
)T x∗+Bx∗,

λ > 0 and T ∗ being the adjoint operator of T , see, for example, [[3], Lemma 3.3]. Moreover A := T ∗(I−
JC

λ
)T x∗ is 1

‖T‖2 -cocoercive, see, for example, [4]. As a direct application, for instance, of Proposition 2.3
gives

‖xk− x∗‖ ≤ 2χ
k
2 dist(x0,Ω), ∀k ∈ IN, (3.2)

with χ = max
(

0,1− ε‖T‖2

2
(

σ max(2, 1
ε
)
)2

)
.

Remark 3.1. Now, we can solve a general split null-point problem, namely,

0 ∈ (B+C)x∗, (3.3)

with B,C two general maximal monotone operators. The key is the use of the smoothing of one of the
two original operators by its Yosida approximate which is always cocoercive. Namely, we may consider
the following approximate problem

0 ∈ (B+Cλ )x
∗
λ
, (3.4)

where Cλ is the Yosida approximate of C. This is a relevant approximation, since in addition to the fact
that Cλ is λ -cocoercive, we have that B+Cλ graph converges to B+C when B+C is a maximal monotone
operator and it was established, for example, that if x∗ is a limit point of the family {x∗

λ
,λ → 0} and if



268 ABDELLATIF MOUDAFI

we assume that {Cλ (x∗λ ),λ → 0} is bounded, then x∗ solve (3.3), see [5]. If in addition C is strongly
monotone and x∗ the soultion of (3.3), by [5]-Theorem 3, we also have the following estimate

‖x∗
λ
− x∗‖ ≤ o(

√
λ ).
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