STRONG CONVERGENCE FOR A MODIFIED FORWARD-BACKWARD SPLITTING METHOD IN BANACH SPACES

YASUNORI KIMURA1,∗, KAZUHIDE NAKAJO2

1Department of Information Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
2Sundai Preparatory School, Surugadai, Kanda, Chiyoda-ku, Tokyo 101-8313, Japan

Dedicated to Professor Wataru Takahashi on the occasion of his 75th birthday

Abstract. We propose a modified forward-backward splitting method and prove a new strong convergence theorem of solutions to a zero problem of the sum of a monotone operator and an inverse-strongly-monotone operator in a real 2-uniformly convex and uniformly smooth Banach space. Some new results for variational inequality problems and monotone inclusions are obtained.

Keywords. Sum of maximal monotone operators; Forward-backward splitting method; Variational inequality; Inverse strongly monotone operators; 2-uniformly convex Banach space.

2010 Mathematics Subject Classification. 47H05, 47H14, 49J40.

1. INTRODUCTION

Let E be a real Banach space with norm $\| \cdot \|$ and let E^* be the dual of E. For $x \in E$ and $x^* \in E^*$, let $\langle x, x^* \rangle$ be the value of x^* at x. Let $A \subset E \times E^*$ and $B \subset E \times E^*$ be maximal monotone operators such that $A + B$ is maximal monotone and $(A + B)^{-1}0 \neq \emptyset$. Finding an element of $(A + B)^{-1}0$ is so general that it concludes a number of important problems such as convex minimization problems, variational inequality problems, complementary problems, and others. In a real Hilbert space H, Passty [31] and Lions and Mercier [20] introduced the following forward-backward splitting method as one of the methods of finding an element of $(A + B)^{-1}0$:

$$x_1 = x \in D(B), \quad x_{n+1} = J_{\lambda_n}^A (x_n - \lambda_n w_n)$$

for every $n \in \mathbb{N}$, where $D(B) \subset H$ is the domain of B, $w_n \in Bx_n$, $\{\lambda_n\} \subset (0, \infty)$, and $J_{\lambda_n}^A$ is the resolvent of A. Later, the splitting method was widely studied by Gabay [12], Chen and Rockafellar [9], Moudafi and Théra [26] and Tseng [41].

Let $\alpha > 0$. A single valued operator $B : H \to H$ is said to be α-inverse-strongly-monotone if

$$\langle x - y, Bx - By \rangle \geq \alpha \| Bx - By \|^2$$

for all $x, y \in H$; see [5, 11, 21, 45]. If $\alpha = 1$, B is called a firmly nonexpansive mapping. Gabay [12] proved that the sequence $\{x_n\}$ generated by (1.1) converges weakly to some $z \in (A + B)^{-1}0$ when B is

∗Corresponding author.
E-mail addresses: yasunori@is.sci.toho-u.ac.jp (Y. Kimura), knkjyna@jcom.zaq.ne.jp (K. Nakajo).
Received August 30, 2018; Accepted January 27, 2019.
\(\alpha \)-inverse-strongly-monotone and \(\lambda_n = \bar{\lambda} \) (constant) with \(0 < \bar{\lambda} < 2\alpha \). Later, many researchers studied the weak convergence in a real Hilbert space; see \([4, 27, 28, 37]\) and references therein. Nakajo, Shimoji and Takahashi \([30]\) considered the following Halpern’s type iteration \([13]\):

\[
x_1 = x \in H, \quad x_{n+1} = y_n + (1 - \gamma_n)J_{\lambda_n}^A(x_n - \lambda_n Bx_n)
\]

for all \(n \in \mathbb{N}, \) where \(B \) is \(\alpha \)-inverse-strongly-monotone, \(\{\lambda_n\} \subset [a, 2\alpha] \) for some \(a \in (0, 2\alpha) \) with \(\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty \) and \(\{\gamma_n\} \subset [0, 1) \) such that \(\lim_{n \to \infty} \gamma_n = 0, \) \(\sum_{n=1}^{\infty} (1 - \gamma_n) = 0 \) and \(\sum_{n=1}^{\infty} |\gamma_n - \gamma_{n+1}| < \infty. \)

They proved \(\{x_n\} \) converges strongly to \(P_{(A+B)^{-1}0}x, \) where \(P_{(A+B)^{-1}0} \) is the metric projection of \(H \) onto \((A + B)^{-1}0. \) Later, strong convergence by the viscosity approximation \([25]\) which extends that by Halpern’s type iteration was studied by many researchers \(([7, 10, 32, 36]\) and references therein) in a real Hilbert space. On the other hand, strong convergence by the hybrid method \([14]\) and shrinking projection method \([40]\) were researched by several authors \(([28, 29, 43]\) and references therein) in a real Hilbert space.

In this paper, we consider a new iteration scheme and study its strong convergence in a real Banach space. Let \(C \) be a nonempty closed convex subset of a real \(2 \)-uniformly convex and uniformly smooth Banach space \(E. \) Let \(A \subset E \times E^* \) be a maximal monotone operator, and let \(B \) be an inverse-strongly-monotone operator of \(C \) into \(E^*, \) that is, there exists \(\alpha > 0 \) such that \(\langle x - y, Bx - By \rangle \geq \alpha \|Bx - By\|^2 \)
holds for every \(x, y \in C. \) Suppose that \(F = (A + B)^{-1}0 \neq \emptyset. \) We propose the following modified forward-backward splitting method:

\[
x_1 \in C, \quad x_{n+1} = \Pi_{E}J_{\lambda_n}^AJ^{-1}(\gamma_nJu + (1 - \gamma_n)Jx_n - \lambda_n Bx_n)
\]

for each \(n \in \mathbb{N}, \) where \(u \in E, \) \(\Pi_{E} \) is the generalized projection of \(E \) onto \(C, \) \(\{\lambda_n\} \subset (0, \infty), \) \(J_{\lambda_n}^A \) is the resolvent of \(A, J \) is the duality mapping of \(E, \) and \(\{\gamma_n\} \subset (0, 1] \) such that \(\gamma_n \to 0 \) and \(\sum_{n=1}^{\infty} \gamma_n = \infty. \) We prove that \(\{x_n\} \) converges strongly to \(\Pi_{F}u \) under some conditions on \(\{\lambda_n\}. \) Further, we obtain new results for variational inequality problems and monotone inclusions.

2. Preliminaries

Throughout this paper, we denote by \(\mathbb{N} \) and by \(\mathbb{R} \) the set of all positive integers and the set of all real numbers, respectively. We use \(x_n \to x \) to indicate that a sequence \(\{x_n\} \) converges weakly to \(x \) and \(x_n \to x \) will symbolize strong convergence. We define the modulus of convexity \(\delta_E \) of \(E \) as follows: \(\delta_E \) is a function of \([0, 2]\) into \([0, 1]\) such that

\[
\delta_E(\varepsilon) = \inf \{1 - \|x + y\|/2 : x, y \in E, \|x\| = 1, \|y\| = 1, \|x - y\| \geq \varepsilon\}
\]

for every \(\varepsilon \in [0, 2]. \) \(E \) is said to be uniformly convex if \(\delta_E(\varepsilon) > 0 \) for each \(\varepsilon > 0. \) For \(p > 1, \) we say \(E \) is \(p \)-uniformly convex if there exists a constant \(c > 0 \) such that \(\delta_E(\varepsilon) \geq c\varepsilon^p \) for every \(\varepsilon \in [0, 2]. \) It is obvious that a \(p \)-uniformly convex Banach space is uniformly convex. \(E \) is said to be strictly convex if \(\|x + y\|^2 < 2 \|x\|^2 + 2 \|y\|^2 \) for all \(x, y \in E \) with \(\|x\| = \|y\| = 1 \) and \(x \neq y. \) We know that a uniformly convex Banach space is strictly convex and reflexive. The duality mapping \(J : E \to 2^{E^*} \) of \(E \) is defined by

\[
J(x) = \{f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2\}
\]
for every \(x \in E \). It is also known that if \(E \) is strictly convex and reflexive, then, the duality mapping \(J \) of \(E \) is bijective, and \(J^{-1} : E^* \to 2^E \) is the duality mapping of \(E^* \). \(E \) is said to be smooth if the limit
\[
\lim_{t \to 0} \frac{\|x+ty\| - \|x\|}{t} \quad (2.1)
\]
exists for every \(x, y \in S(E) \), where \(S(E) = \{ x \in E : \|x\| = 1 \} \). \(E \) is said to be uniformly smooth if limit (2.1) is attained uniformly for \((x,y)\in S(E)\times S(E)\). It is known that \(E \) is uniformly smooth if and only if \(E^* \) is uniformly convex. We know that the duality mapping \(J \) of \(E \) is single-valued if and only if \(E \) is smooth. We also know that if \(E \) is uniformly smooth, then the duality mapping \(J \) of \(E \) is uniformly continuous on bounded subsets of \(E \); see [38, 39] for more details.

The following was proved by Xu [42]; see also [44].

Theorem 2.1. Let \(E \) be a smooth Banach space. Then, \(E \) is 2-uniformly convex if and only if there exists a constant \(c > 0 \) such that for each \(x, y \in E \),
\[
\|x + y\|^2 \geq \|x\|^2 + 2\langle y, Jx \rangle + c\|y\|^2 \quad \text{holds.}
\]

Remark 2.1. In a real Hilbert space, we can choose \(c = 1 \).

Let \(E \) be a smooth Banach space. The function \(\phi : E \times E \to \mathbb{R} \) is defined by
\[
\phi(y,x) = \|y\|^2 - 2\langle y, Jx \rangle + \|x\|^2
\]
for every \(x, y \in E \). It is obvious that \((\|y\| - \|x\|)^2 \leq \phi(y, x) \leq (\|y\| + \|x\|)^2 \) for each \(x, y \in E \) and \(\phi(z, x) + \phi(x, y) = \phi(z, y) + 2\langle x-z, Jx-Jy \rangle \) for all \(x, y, z \in E \). We also know that if \(E \) is strictly convex and smooth, then, for \(x, y \in E \), \(\phi(y,x) = 0 \) if and only if \(x = y \); see [23].

We have the following result by Theorem 2.1; see also [17].

Lemma 2.1. Let \(E \) be a 2-uniformly convex and smooth Banach space. Then, for each \(x, y \in E \), \(\phi(x,y) \geq c\|x-y\|^2 \) holds, where \(c \) is the constant in Theorem 2.1.

Let \(C \) be a nonempty closed convex subset of a strictly convex, reflexive and smooth Banach space \(E \) and let \(x \in E \). Then, there exists a unique element \(x_0 \in C \) such that
\[
\phi(x_0, x) = \inf_{y \in C} \phi(y, x).
\]
We denote \(x_0 \) by \(\Pi_Cx \) and call \(\Pi_C \) the generalized projection of \(E \) onto \(C \); see [1, 2, 16]. We have the following well-known result [1, 2, 16] for the generalized projection.

Lemma 2.2. Let \(C \) be a nonempty convex subset of a smooth Banach space \(E \), \(x \in E \) and \(x_0 \in C \). Then, \(\phi(x_0, x) = \inf_{y \in C} \phi(y, x) \) if and only if \(\langle x_0 - z, Jx - Jx_0 \rangle \geq 0 \) for every \(z \in C \), or equivalently, \(\phi(z, x) \geq \phi(x_0, x) + \phi(x_0, z) \) for all \(z \in C \).

An operator \(A \subset E \times E^* \) is said to be monotone if \(\langle x-y, x^*-y^* \rangle \geq 0 \) for every \((x,x^*),(y,y^*) \in A \). A monotone operator \(A \) is said to be maximal if the graph of \(A \) is not properly contained in the graph of any other monotone operator. We know that a monotone operator \(A \) is maximal if and only if for \((u,u^*) \in E \times E^* \), \(\langle x-u, x^*-u^* \rangle \geq 0 \) for every \((x,x^*) \in A \) implies \((u,u^*) \in A \). Rockafellar [35] proved the following result; see also [8].

Theorem 2.2. Let \(E \) be a strictly convex, reflexive and smooth Banach space and let \(A \subset E \times E^* \) be a monotone operator. Then, \(A \) is maximal if and only if \(R(J+rA) = E^* \), for all \(r > 0 \), where \(R(J+rA) \) is the range of \(J+rA \).
Let E be a strictly convex, reflexive and smooth Banach space and let $A \subset E \times E^*$ be a maximal monotone operator. By Theorem 2.2 and strict convexity of E, for any $x \in E$ and $r > 0$, there exists a unique element $x_r \in D(A)$ such that

$$J(x) \in J(x_r) + rAx_r,$$

where $D(A)$ is the domain of A. We define J_r by $J_rx = x_r$ for every $x \in E$ and $r > 0$ and such J_r is called the resolvent of A; see [6, 39] for more details.

Let $f : E \to (-\infty, \infty]$ be a proper, lower semicontinuous and convex function. Then, it is known that the subdifferential ∂f of f defined by

$$\partial f(x) = \{x^* \in E^* : f(y) \geq f(x) + \langle y-x, x^* \rangle, \forall y \in E\}$$

for $x \in E$ is a maximal monotone operator; see [33, 34].

A function $\tau : \mathbb{N} \to \mathbb{N}$ is said to be eventually increasing if $\lim_{n \to \infty} \tau(n) = \infty$ and $\tau(n) \leq \tau(n+1)$ for all $n \in \mathbb{N}$. The following was proved by Aoyama, Kimura and Kohsaka [3, Lemma 3.4]; see also [22, Lemma 3.1].

Lemma 2.3. Let $\{\xi_n\}$ be a sequence of nonnegative real numbers which is not convergent. Then there exist $n_0 \in \mathbb{N}$ and an eventually increasing function τ such that $\xi_{\tau(n)} \leq \xi_{\tau(n)+1}$ for all $n \in \mathbb{N}$ and $\xi_n \leq \xi_{\tau(n)+1}$ for every $n \geq n_0$.

3. MAIN RESULTS

We first prove the following important lemmas.

Lemma 3.1. Let C be a nonempty closed convex subset of a strictly convex, reflexive and smooth Banach space E, $A \subset E \times E^*$ a maximal monotone operator and $B : C \to E^*$ such that $(A+B)^{-1}0 \neq 0$. Suppose that there exists a real number $\alpha > 0$ with $\langle x-z, Bx-Bz \rangle \geq \alpha\|Bx-Bz\|^2$ for all $x \in C$ and $z \in (A+B)^{-1}0$. Let $T_\lambda x = J_\lambda^A J^{-1}_\lambda (Jx - \lambda Bx)$ for $\lambda > 0$ and $x \in C$, where J_λ^A is the resolvent of A. Then, the following hold:

(i) $F(T_\lambda) = (A+B)^{-1}0$ for all $\lambda > 0$, where $F(T_\lambda)$ is the set of all fixed points of T_λ;

(ii) if E is 2-uniformly convex, $\phi(z, T_\lambda x) \leq \phi(z, x) - (c - \lambda \beta)\|x - T_\lambda x\|^2 - \lambda(2\alpha - 1/\beta)\|Bx-Bz\|^2$ holds for every $\lambda, \beta > 0, x \in C$ and $z \in (A+B)^{-1}0$, where c is the constant in Theorem 2.1;

(iii) if E is 2-uniformly convex, $(A+B)^{-1}0$ is closed and convex.

Proof. (i) Let $z \in (A+B)^{-1}0$. Then we have $-Bz \in Az$ and it follows that

$$Jz - \lambda Bz \in Jz + \lambda Az,$$

which is equivalent to $J_\lambda^A J^{-1}_\lambda (Jz - \lambda Bz) = z$. Thus we have $z \in F(T_\lambda)$. The implication of the opposite direction is also straightforward. Hence we have $F(T_\lambda) = (A+B)^{-1}0$.

(ii) Let $\lambda, \beta > 0, x \in C, z \in (A+B)^{-1}0$ and $y = T_\lambda x$. We have

$$\phi(z, y) = \phi(z, x) - \phi(y, x) + 2\langle y - z, Jy - Jx \rangle.$$

Since $z \in (A+B)^{-1}0$ and $y = J_\lambda^A J^{-1}_\lambda (Jx - \lambda Bx)$, we get

$$\langle y - z, \frac{1}{\lambda}(Jx - Jy) - Bx + Bz \rangle \geq 0,$$
which implies
\[\langle y - z, Jx - Jy \rangle \geq \lambda \langle y - z, Bx - Bz \rangle. \]
So, we obtain
\[
\begin{align*}
\phi(z, y) &\leq \phi(z, x) - \phi(y, x) - 2\lambda \langle y - z, Bx - Bz \rangle \\
&= \phi(z, x) - \phi(y, x) - 2\lambda \langle y - x, Bx - Bz \rangle - 2\lambda \langle x - z, Bx - Bz \rangle \\
&\leq \phi(z, x) - \phi(y, x) - 2\lambda \langle y - x, Bx - Bz \rangle - 2\lambda \alpha \|Bx - Bz\|^2.
\end{align*}
\]
By Lemma 2.1,
\[
\phi(z, y) \leq \phi(z, x) - c\|y - x\|^2 + 2\lambda \|y - x\|\|Bx - Bz\| - 2\lambda \alpha \|Bx - Bz\|^2.
\]
Since \(\|y - x\|\|Bx - Bz\| \leq \frac{\beta}{2} \|y - x\|^2 + \frac{1}{2\beta} \|Bx - Bz\|^2\), we have
\[
\phi(z, y) \leq \phi(z, x) - (c - \lambda \beta) \|y - x\|^2 - \lambda \left(2\alpha - \frac{1}{\beta}\right) \|Bx - Bz\|^2.
\]

(iii) For \(\alpha > 0\), there exists \(\lambda_0 > 0\) with \(c/\lambda_0 > 1/(2\alpha)\), where \(c\) is the constant in Theorem 2.1. So, we can select \(\beta > 0\) such that \(c/\lambda_0 > \beta > 1/(2\alpha)\). By (ii), we get \(\phi(z, T_{\lambda_0}x) \leq \phi(z, x)\) for every \(x \in C\) and \(z \in (A + B)^{-1}0\). From (i), \(F(T_{\lambda_0}) = (A + B)^{-1}0\). By the result in [23, 24], we have \(F(T_{\lambda_0})\) is closed and convex. Indeed, let \(\{z_n\} \subset F(T_{\lambda_0})\) such that \(z_n \to z\). We have
\[
\phi(z_n, T_{\lambda_0}z) \leq \phi(z_n, z)
\]
for all \(n \in \mathbb{N}\), which implies
\[
\phi(z, T_{\lambda_0}z) \leq 0.
\]
So, we obtain \(z \in F(T_{\lambda_0})\), that is, \(F(T_{\lambda_0})\) is closed. Next, let \(z_1, z_2 \in F(T_{\lambda_0}), 0 \leq \gamma \leq 1\) and \(x = \gamma z_1 + (1 - \gamma)z_2\). It follows that
\[
\begin{align*}
\phi(x, T_{\lambda_0}x) &= \|x\|^2 - 2\langle x, J(T_{\lambda_0}x) \rangle + \|T_{\lambda_0}x\|^2 \\
&= \|x\|^2 - 2\langle \gamma z_1 + (1 - \gamma)z_2, J(T_{\lambda_0}x) \rangle + \|T_{\lambda_0}x\|^2 \\
&= \|x\|^2 + \gamma \phi(z_1, T_{\lambda_0}x) + (1 - \gamma)\phi(z_2, T_{\lambda_0}x) - \gamma\|z_1\|^2 - (1 - \gamma)\|z_2\|^2 \\
&\leq \|x\|^2 + \gamma \phi(z_1, x) + (1 - \gamma)\phi(z_2, x) - \gamma\|z_1\|^2 - (1 - \gamma)\|z_2\|^2 \\
&= 2\|x\|^2 - 2\langle \gamma z_1 + (1 - \gamma)z_2, Jx \rangle \\
&= 2\|x\|^2 - 2\|x\|^2 = 0.
\end{align*}
\]
Hence \(x = T_{\lambda_0}x\), which implies \(F(T_{\lambda_0})\) is convex. \(\square\)

Lemma 3.2. Let \(C\) be a nonempty closed convex subset of a strictly convex, reflexive and uniformly smooth Banach space \(E\). Let \(A \subseteq E \times E^*\) be a maximal monotone operator, \(\alpha > 0\) and \(B : C \to E^*\) an \(\alpha\)-inverse-strongly-monotone operator such that \(F = (A + B)^{-1}0 \neq \emptyset\). Let \(\{x_n\}\) be a bounded sequence in \(C\), \(u \in E\) and \(y_n = J_{\lambda_n}^A J_{\lambda_n}^{-1}(\gamma_n J + (1 - \gamma_n)Jx_n - \lambda_n Bx_n)\), where \(\{\lambda_n\} \subset (0, \infty)\) with \(\inf_{n \in \mathbb{N}} \lambda_n > 0\), \(J_{\lambda_n}^A\) is the resolvent of \(A\), \(J\) is the duality mapping of \(E\) and \(\{\gamma_n\} \subset (0, 1]\) such that \(\gamma_n \to 0\). If \(\|x_n - y_n\| \to 0\) and \(\|Bx_n - Bz\| \to 0\) for some \(z \in F\), then \(\omega_n(\{x_n\}) \subset F\), where \(\omega_n(\{x_n\})\) is the set of all weak cluster points of \(\{x_n\}\).
Proof. Let \((x, x^*) \in A\) and \(\{x_n\} \subset \{x\}\) such that \(x_n \rightharpoonup v\). Using
\[
\langle x_n - v, Bx_n - Bv \rangle \geq \alpha \|Bx_n - Bv\|^2
\]
and \(\|Bx_n - Bz\| \to 0\), we have \(\|Bx_n - Bv\| \to 0\). Since
\[
\frac{1}{\lambda_n} (Jx_n - Jy_n) - Bx_n - \frac{\gamma_n}{\lambda_n} (Jx_n - Ju) \in Ay_n,
\]
we have
\[
\langle x - y_n, x^* - Bx_n \rangle \geq \frac{1}{\lambda_n} \langle x - y_n, Jx_n - Jy_n \rangle - \frac{\gamma_n}{\lambda_n} \langle x - y_n, Jx_n - Ju \rangle
\]
which implies
\[
\langle x - y_n, x^* + Bx_n \rangle \geq \frac{1}{\lambda_n} \langle x - y_n, Jx_n - Jy_n \rangle - \frac{\gamma_n}{\lambda_n} \langle x - y_n, Jx_n - Ju \rangle - \frac{\gamma_n}{\lambda_n} \|x - y_n\| \|x_n - Jy_n\| - \frac{\gamma_n}{\lambda_n} \|x - y_n\| \|x_n - Jx_n - Ju\|
\]
for all \(i \in \mathbb{N}\). Since \(\|y_n - x_n\| \to 0\) and \(E\) is uniformly smooth, we have \(\|Jy_n - Jx_n\| \to 0\). By \(y_n \rightharpoonup v\), \(\gamma_n \to 0\) and \(\|Bx_n - Bv\| \to 0\), we obtain
\[
\langle x - v, x^* + Bv \rangle \geq 0.
\]
Since \(A\) is maximal monotone, we have \(-Bv \in Ax\), that is, \(v \in (A + B)^{-1}0 = F\). \(\square\)

Now, we prove our main result.

Theorem 3.1. Let \(C\) be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space \(E\). Let \(A\) be a maximal monotone operator in \(E \times E^*\), \(\alpha > 0\) and \(B\) an \(\alpha\)-inverse-strongly-monotone operator of \(C\) into \(E^*\) such that \(F = (A + B)^{-1}0 \neq \emptyset\). Let \(u \in E\) and \(\{x_n\}\) be a sequence generated by
\[
x_1 \in C, \quad x_{n+1} = \Pi_C F_{\lambda_n} J^{-1} (\gamma_n Ju + (1 - \gamma_n)Jx_n - \lambda_n Bx_n)
\]
for each \(n \in \mathbb{N}\), where \(\Pi_C\) is the generalized projection of \(E\) onto \(C\), \(\{\lambda_n\} \subset (0, \infty)\) and \(\{\gamma_n\} \subset (0, 1]\) such that \(\gamma_n \to 0\) and \(\sum_{n=1}^{\infty} \gamma_n = \infty\). Then, if \(0 < \inf_{n \in \mathbb{N}} \lambda_n \leq \sup_{n \in \mathbb{N}} \lambda_n < 2\alpha\), where \(c\) is the constant in Theorem 2.1, then \(\{x_n\}\) converges strongly to \(\Pi_F u\).

Proof. By Lemma 3.1 (iii), \(F\) is closed and convex. Thus \(\Pi_F u\) is well defined. Let \(z \in F\) and
\[
y_n = J_{\lambda_n}^A J^{-1} (\gamma_n Ju + (1 - \gamma_n)Jx_n - \lambda_n Bx_n).
\]
We have
\[
\Phi(z, y_n) = \Phi(z, x_n) - \Phi(y_n, x_n) + 2 \langle y_n - z, Jy_n - Jx_n \rangle.
\]
Since \(-Bz \in Az\) and
\[
\frac{1}{\lambda_n} \{Jx_n - Jy_n - \lambda_n Bx_n - \gamma_n (Jx_n - Ju)\} \in Ay_n,
\]
by the monotonicity of \(A\) we get
\[
\langle y_n - z, \frac{1}{\lambda_n} (Jx_n - Jy_n) - (Bx_n - Bz) - \frac{\gamma_n}{\lambda_n} (Jx_n - Ju) \rangle \geq 0,
\]
which implies
\[
\langle y_n - z, Jx_n - Jy_n \rangle \geq \lambda_n \langle y_n - z, Bx_n - Bz \rangle + \gamma_n \langle y_n - z, Jx_n - Ju \rangle
\]
for all \(n \in \mathbb{N} \). Thus we have
\[
\phi(z, y_n) \leq \phi(z, x_n) - \phi(y_n, x_n) - 2\lambda_n \langle y_n - z, Bx_n - Bz \rangle
- 2\gamma_n \langle y_n - z, Jx_n - Ju \rangle \tag{3.1}
\]
for each \(n \in \mathbb{N} \). Similarly in the calculation of Lemma 3.1 (ii), we get
\[
\phi(z, y_n) \leq \phi(z, x_n) - (c - \lambda_n\beta) \| x_n - y_n \|^2
- \lambda_n(2\alpha - 1/\beta) \| Bx_n - Bz \|^2 - 2\gamma_n \langle y_n - z, Jx_n - Ju \rangle \tag{3.2}
\]
for every \(\beta > 0 \) and \(n \in \mathbb{N} \). Using \(x_{n+1} = \Pi_{C} y_n \) and Lemma 2.2, we obtain
\[
\phi(x_{n+1}, y_n) + \phi(z, x_{n+1}) \leq \phi(z, y_n). \tag{3.3}
\]
Therefore we have
\[
\phi(z, x_{n+1}) \leq \phi(z, x_n) - (c - \lambda_n\beta) \| x_n - y_n \|^2
- \lambda_n(2\alpha - 1/\beta) \| Bx_n - Bz \|^2 - 2\gamma_n \langle y_n - z, Jx_n - Ju \rangle \tag{3.4}
\]
for each \(\beta > 0 \) and \(n \in \mathbb{N} \). Since
\[
0 < \inf_{n \in \mathbb{N}} \lambda_n \leq \sup_{n \in \mathbb{N}} \lambda_n < 2c\alpha,
\]
there exists \(\beta_0 > 0 \) such that \(\inf_{n \in \mathbb{N}} (c - \lambda_n\beta_0) > 0 \) and \(\inf_{n \in \mathbb{N}} \lambda_n(2\alpha - 1/\beta_0) > 0 \). Using
\[
2\langle y_n - z, Jx_n - Ju \rangle = \phi(y_n, u) + \phi(z, x_n) - \phi(y_n, x_n) - \phi(z, u)
\]
with (3.1), we have
\[
\phi(z, x_{n+1}) \leq \phi(z, x_n) - (1 - \gamma_n) \phi(y_n, x_n) - 2\lambda_n \langle y_n - z, Bx_n - Bz \rangle
- \gamma_n \{ \phi(y_n, u) + \phi(z, x_n) - \phi(z, u) \}. \tag{3.5}
\]
Again, since \(0 < \inf_{n \in \mathbb{N}} \lambda_n \leq \sup_{n \in \mathbb{N}} \lambda_n < 2c\alpha \) and \(\gamma_n \to 0 \), there exist \(N \in \mathbb{N} \) and \(\delta_0 > 0 \) such that \(\inf_{n \geq N} \{(1 - \gamma_n)c - \lambda_n\delta_0\} > 0 \) and \(\inf_{n \geq N} \lambda_n(2\alpha - 1/\delta_0) > 0 \). As in the calculation of Lemma 3.1 (ii), we obtain
\[
\phi(z, x_{n+1}) \leq \phi(z, x_n) - \{(1 - \gamma_n)c - \lambda_n\delta_0\} \| y_n - x_n \|^2
- \lambda_n(2\alpha - 1/\delta_0) \| Bx_n - Bz \|^2
- \gamma_n \{ \phi(y_n, u) + \phi(z, x_n) - \phi(z, u) \} \tag{3.5}
\]
for all \(n \in \mathbb{N} \). We prove \(\{x_n\} \) is bounded. If \(\{\phi(z, x_n)\} \) converges, it is trivial. If not so, by Lemma 2.3, there exist \(n_0 \in \mathbb{N} \) and an eventually increasing function \(\tau \) such that \(\phi(z, x_{\tau(n)}) \leq \phi(z, x_{\tau(n)+1}) \) for every \(n \in \mathbb{N} \) and \(\phi(z, x_n) \leq \phi(z, x_{\tau(n)+1}) \) for each \(n \geq n_0 \). Since
\[
\inf_{\tau(n) \geq N} \{(1 - \gamma_{\tau(n)})c - \lambda_{\tau(n)}\delta_0\} > 0,
\inf_{n \in \mathbb{N}} \lambda_{\tau(n)}(2\alpha - 1/\delta_0) > 0,
\phi(z, x_{\tau(n)}) \leq \phi(z, x_{\tau(n)+1}), \text{ and } \gamma_{\tau(n)} > 0 \]
and follows from (3.5) that
\[
\phi(y_{\tau(n)}, u) + \phi(z, x_{\tau(n)}) - \phi(z, u) < 0
\]
for all \(n \) with \(\tau(n) \geq N \), which implies that \(\{x_{\tau(n)}\} \) and \(\{y_{\tau(n)}\} \) are bounded. Further, we have
\[
\phi(z, x_{\tau(n)+1}) \leq \phi(z, x_{\tau(n)}) - \gamma_{\tau(n)} \{ \phi(y_{\tau(n)}, u) + \phi(z, x_{\tau(n)}) - \phi(z, u) \}
\]
for every n with $\tau(n) \geq N$. Thus we have $\{x_{\tau(n)+1}\}$ is bounded. Since $\phi(z,x_n) \leq \phi(z,x_{\tau(n)+1})$ for each $n \geq n_0$, it follows that $\{x_n\}$ is bounded. From (3.2) with $\beta = \beta_0$, we obtain

$$\phi(z,y_n) \leq \phi(z,x_n) - 2\gamma_n \langle y_n - z, Jx_n - Ju \rangle,$$

which implies

$$(\|z\| - \|y_n\|)^2 \leq (\|z\| + \|x_n\|)^2 + 2\gamma_n(\|y_n\| + \|z\|)(\|x_n\| + \|u\|)$$

for each $n \in \mathbb{N}$. Since $\{x_n\}$ is bounded, so is $\{y_n\}$.

Suppose that $\{\phi(Pu,x_n)\}$ is not convergent. By Lemma 2.3, there exist $n_0 \in \mathbb{N}$ and an eventually increasing function τ such that $\phi(Pu,x_{\tau(n)}) \leq \phi(Pu,x_{\tau(n)+1})$ for all $n \in \mathbb{N}$ and $\phi(Pu,x_n) \leq \phi(Pu,x_{\tau(n)+1})$ for every $n \geq n_0$. Since $\{x_n\}$ and $\{y_n\}$ are bounded, and $\gamma_0 \to 0$, using (3.4) with $\beta = \beta_0$, we get

$$\|y_{\tau(n)} - x_{\tau(n)}\| \to 0 \quad \text{and} \quad \|Bx_{\tau(n)} - BPu\| \to 0. \quad (3.6)$$

By Lemma 3.2, we get that F includes $\omega_0(x_{\tau(n)})$. By (3.4) with $\beta = \beta_0$, we have

$$0 \leq (c - \lambda_{\tau(n)}\beta_0)\|x_{\tau(n)} - y_{\tau(n)}\|^2 + \lambda_{\tau(n)}(2\alpha - 1/\beta_0)\|Bx_{\tau(n)} - BPu\|^2$$

$$\leq -2\gamma_{\tau(n)}\langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Ju \rangle$$

for every $n \in \mathbb{N}$. Since $\gamma_{\tau(n)} > 0$,

$$\langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Ju \rangle \leq 0 \quad (3.7)$$

for each $n \in \mathbb{N}$. On the other hand,

$$\langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Ju \rangle = \langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Jy_{\tau(n)} \rangle$$

$$+ \langle y_{\tau(n)} - Pu, Jy_{\tau(n)} - JPu \rangle$$

$$+ \langle y_{\tau(n)} - Pu, JPu - Ju \rangle$$

$$\geq \langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Jy_{\tau(n)} \rangle$$

$$+ \frac{1}{2}\phi(Pu,y_{\tau(n)}) + \langle y_{\tau(n)} - Pu, JPu - Ju \rangle.$$

By (3.7), we get

$$-\frac{1}{2}\phi(Pu,y_{\tau(n)}) \leq \langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Jy_{\tau(n)} \rangle + \langle y_{\tau(n)} - Pu, JPu - Ju \rangle$$

for all $n \in \mathbb{N}$. So,

$$-\frac{1}{2}\limsup_{n \to \infty}\phi(Pu,y_{\tau(n)}) \geq \liminf_{n \to \infty}\langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Jy_{\tau(n)} \rangle$$

$$+ \liminf_{n \to \infty}\langle y_{\tau(n)} - Pu, JPu - Ju \rangle. \quad (3.8)$$

Since J is uniformly continuous on bounded subsets of E and $\|x_{\tau(n)} - y_{\tau(n)}\| \to 0$ in (3.6), we obtain

$$\|Jx_{\tau(n)} - Jy_{\tau(n)}\| \to 0,$$

which implies

$$\|\langle y_{\tau(n)} - Pu, Jx_{\tau(n)} - Jy_{\tau(n)} \rangle \leq \|y_{\tau(n)} - Pu\| \cdot \|Jx_{\tau(n)} - Jy_{\tau(n)}\| \to 0.$$
There exists a subsequence \(\{y_{n_i}\} \) of \(\{y_{n}\} \) such that \(y_{n_i} \to w \in F \) and
\[
\liminf_{n \to \infty}\langle y_{\tau(n)} - \Pi_F u, J\Pi_F u - Ju \rangle = \lim_{n \to \infty} \langle y_{n_i} - \Pi_F u, J\Pi_F u - Ju \rangle = \langle w - \Pi_F u, J\Pi_F u - Ju \rangle \geq 0
\]
by Lemma 2.2. So, from (3.8), we get
\[
\limsup_{n \to \infty} \phi(\Pi_F u, y_{\tau(n)}) = 0.
\]
Since \(\phi(\Pi_F u, x_n) \leq \phi(\Pi_F u, x_{\tau(n)+1}) \) for every \(n \geq n_0 \), by (3.3) we obtain
\[
\lim_{n \to \infty} \phi(\Pi_F u, x_n) = 0.
\]
This is a contradiction. So, \(\{\phi(\Pi_F u, x_n)\} \) is convergent. Since \(\{x_n\} \) and \(\{y_n\} \) are bounded and \(\gamma_n \to 0 \), by (3.4) with \(\beta = \beta_0 \), we have
\[
||x_n - y_n|| \to 0 \quad \text{and} \quad ||Bx_n - B\Pi_F u|| \to 0.
\]
By Lemma 3.2, we get \(\omega_n(\{x_n\}) \subset F \). We show that
\[
\limsup_{n \to \infty} \langle \Pi_F u - y_n, Jx_n - Ju \rangle \geq 0. \tag{3.9}
\]
Suppose that \(\limsup_{n \to \infty} \langle \Pi_F u - y_n, Jx_n - Ju \rangle = l < 0 \). There exists \(n_1 \in \mathbb{N} \) such that
\[
\langle \Pi_F u - y_n, Jx_n - Ju \rangle \leq \frac{1}{2} l
\]
for every \(n \geq n_1 \). From (3.4) with \(\beta = \beta_0 \), we have
\[
|l| \gamma_n \leq 2 \gamma_n \langle y_n - \Pi_F u, Jx_n - Ju \rangle \leq \phi(\Pi_F u, x_n) - \phi(\Pi_F u, x_{n+1})
\]
for each \(n \geq n_1 \), which implies
\[
\sum_{n=n_1}^{\infty} |l| \gamma_n \leq \phi(\Pi_F u, x_{n_1}) < \infty.
\]
Since \(\sum_{n=1}^{\infty} \gamma_n = \infty \), this is a contradiction. So, we get (3.9). Next, we have
\[
\langle \Pi_F u - y_n, Jx_n - Ju \rangle = \langle \Pi_F u - y_n, Jx_n - Jy_n \rangle + \langle \Pi_F u - y_n, Jy_n - J\Pi_F u \rangle \\
+ \langle \Pi_F u - y_n, J\Pi_F u - Ju \rangle \leq ||\Pi_F u - y_n|| \cdot ||Jx_n - Jy_n|| - \frac{1}{2} \phi(\Pi_F u, y_n) \\
+ \langle \Pi_F u - y_n, J\Pi_F u - Ju \rangle
\]
for all \(n \in \mathbb{N} \). Since \(J \) is uniformly continuous on bounded subsets of \(E \) and \(||x_n - y_n|| \to 0 \), we have
\[
||Jx_n - Jy_n|| \to 0.
\]
So, we obtain
\[
0 \leq \limsup_{n \to \infty} \langle \Pi_F u - y_n, Jx_n - Ju \rangle \\
\leq - \frac{1}{2} \liminf_{n \to \infty} \phi(\Pi_F u, y_n) + \limsup_{n \to \infty} \langle \Pi_F u - y_n, J\Pi_F u - Ju \rangle.
\]
There exists a subsequence \(\{y_{n_j}\} \) of \(\{y_n\} \) such that \(y_{n_j} \rightharpoonup w \in F \) and
\[
\limsup_{n \to \infty} (\Pi_F u - y_n, J\Pi_F u - Ju) = \lim_{j \to \infty} (\Pi_F u - y_{n_j}, J\Pi_F u - Ju) = (\Pi_F u - w, J\Pi_F u - Ju) \leq 0
\]
from Lemma 2.2. So, we have
\[
\liminf_{n \to \infty} \phi(\Pi_F u, y_n) = 0.
\]
By (3.3), we get \(\liminf_{n \to \infty} \phi(\Pi_F u, x_{n+1}) = 0 \), that is, \(\{x_n\} \) converges strongly to \(\Pi_F u \) from Lemma 2.1. □

By Theorem 3.1, we have the following new result in real Hilbert spaces. This holds under weaker conditions than the result in [30].

Theorem 3.2. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(A \) be a maximal monotone operator in \(H \times H \), \(\alpha > 0 \), \(B \) an \(\alpha \)-inverse-strongly-monotone operator of \(C \) into \(H \) such that \(F = (A + B)^{-1}0 \neq 0 \). Let \(u \in H \) and \(\{x_n\} \) be a sequence generated by
\[
x_1 \in C, \quad x_{n+1} = P_C J_{\lambda_n}^A (\gamma_n u + (1 - \gamma_n)x_n - \lambda_n Bx_n)
\]
for each \(n \in \mathbb{N} \), where \(P_C \) is the metric projection of \(H \) onto \(C \), \(\{\lambda_n\} \subset (0, \infty) \) and \(\{\gamma_n\} \subset (0, 1] \) such that \(\gamma_n \to 0 \) and \(\sum_{n=1}^{\infty} \gamma_n = \infty \). Then, if \(0 < \inf_{n \in \mathbb{N}} \lambda_n \leq \sup_{n \in \mathbb{N}} \lambda_n < 2\alpha \), then \(\{x_n\} \) converges strongly to \(P_C u \).

4. DEDUCED RESULTS

Let \(C \) be a nonempty closed convex subset of \(E \) and \(A \) a single valued monotone operator of \(C \) into \(E^* \), that is, \(\langle x - y, Ax - Ay \rangle \geq 0 \) for all \(x, y \in C \). We consider the variational inequality problem [19] for \(A \), that is, the problem of finding an element \(z \in C \) such that
\[
\langle x - z, Az \rangle \geq 0 \quad \text{for all} \quad x \in C.
\]
The set of all solutions of the variational inequality problem for \(A \) is denoted by \(VI(C,A) \). By Theorem 3.1, we obtain a new result for the variational inequality problem of an inverse-strongly-monotone operator in a 2-uniformly convex and uniformly smooth Banach space \(E \).

Theorem 4.1. Let \(C \) be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space \(E \). For \(\alpha > 0 \), let \(B \) be an \(\alpha \)-inverse-strongly-monotone operator of \(C \) into \(E^* \) with \(VI(C,B) \neq \emptyset \). Let \(u \in E \) and \(\{x_n\} \) a sequence generated by \(x_1 \in C \) and
\[
x_{n+1} = \Pi_{VI(C,B)} (\gamma_n u + (1 - \gamma_n)Jx_n - \lambda_n Bx_n)
\]
for every \(n \in \mathbb{N} \), where \(\{\lambda_n\} \subset (0, \infty) \) and \(\{\gamma_n\} \subset (0, 1] \) are real sequences. Suppose that \(0 < \inf_{n \in \mathbb{N}} \lambda_n \leq \sup_{n \in \mathbb{N}} \lambda_n < 2\alpha c \), where \(c \) is the constant in Theorem 2.1, \(\gamma_n \to 0 \), and \(\sum_{n=1}^{\infty} \gamma_n = \infty \). Then, \(\{x_n\} \) converges strongly to \(\Pi_{VI(C,B)} u \).

Proof. Let \(i_C : E \to (\infty, \infty] \) be the indicator function of \(C \). We know that \(i_C \) is proper lower semicontinuous and convex, and hence its subdifferential \(\partial i_C \) is a maximal monotone operator. Let \(A = \partial i_C \). Then, it is easy to see that \(J_\lambda x = \Pi_{C}x \) for every \(\lambda > 0 \) and \(x \in E \), where \(J_\lambda \) is the resolvent of \(A \). Further, we also get \((A + B)^{-1}0 = VI(C,B) \). Hence the proof is complete. □
Remark 4.1. Using Theorem 4.1, we get a result for the variational inequality problem for a finite family of inverse-strongly-monotone operators as follows: Let C be a nonempty closed convex subset of E, $r \in \mathbb{N}$ and B_i a β_i-inverse-strongly-monotone operator of C into E^* for $i = 1, 2, \ldots, r$. Suppose $\bigcap_{i=1}^{r} VI(C, B_i) \neq \emptyset$ and let $Ax = \frac{1}{r}(B_1x + B_2x + \cdots + B_rx)$ for every $x \in C$. Then, we have A is also inverse-strongly-monotone and $VI(C, A) = \bigcap_{i=1}^{r} VI(C, B_i)$. Indeed, for $x, y \in C$ and $\alpha = \min\{\beta_1, \beta_2, \ldots, \beta_r\}$, we get

\[
\langle x - y, Ax - Ay \rangle \\
= \frac{1}{r} \left(\langle x - y, B_1x - B_1y \rangle + \langle x - y, B_2x - B_2y \rangle + \cdots + \langle x - y, B_rx - B_ry \rangle \right) \\
\geq \frac{1}{r} \left(\beta_1 \|B_1x - B_1y\|^2 + \beta_2 \|B_2x - B_2y\|^2 + \cdots + \beta_r \|B_rx - B_ry\|^2 \right) \\
\geq \alpha \left(\frac{1}{r} \|B_1x - B_1y\|^2 + \frac{1}{r} \|B_2x - B_2y\|^2 + \cdots + \frac{1}{r} \|B_rx - B_ry\|^2 \right) \\
\geq \alpha \left(\frac{1}{r} \|B_1x - B_1y\| + \frac{1}{r} \|B_2x - B_2y\| + \cdots + \frac{1}{r} \|B_rx - B_ry\| \right) \\
= \alpha \|Ax - Ay\|^2.
\]

Thus A is an α-inverse strongly monotone operator. Next, we show

\[
VI(C, A) = \bigcap_{i=1}^{r} VI(C, B_i).
\]

The inclusion $VI(C, A) \supset \bigcap_{i=1}^{r} VI(C, B_i)$ is trivial. Let $u \in VI(C, A)$ and $z \in \bigcap_{i=1}^{r} VI(C, B_i)$. We have $\langle z - u, Au \rangle \geq 0$ and $\langle u - z, B_i z \rangle \geq 0$ for all $i = 1, 2, \ldots, r$, we also get

\[
\langle u - z, Az \rangle = \frac{1}{r} \sum_{i=1}^{r} \langle u - z, B_i z \rangle \geq 0.
\]

It follows that

\[
\langle z - u, Au - Az \rangle = \langle z - u, Au \rangle + \langle u - z, Az \rangle \geq \frac{1}{r} \sum_{i=1}^{r} \langle u - z, B_i z \rangle \geq 0.
\]

On the other hand, we have

\[
\langle z - u, Au - Az \rangle \leq -\frac{\alpha}{r} \sum_{i=1}^{r} \|B_i z - B_i u\|^2 \leq 0.
\]

Therefore, we obtain

\[
B_i z = B_i u \text{ and } \langle u - z, B_i z \rangle = 0 \text{ for all } i = 1, 2, \ldots, r.
\]

Hence we have

\[
\langle x - u, B_i u \rangle = \langle x, B_i z \rangle - \langle u, B_i z \rangle = \langle x, B_i z \rangle - \langle z, B_i z \rangle = \langle x - z, B_i z \rangle \geq 0
\]

for every $i = 1, 2, \ldots, r$ and $x \in C$, that is, $u \in VI(C, B_i)$ for all $i = 1, 2, \ldots, r$. Therefore, $VI(C, A) \subset \bigcap_{i=1}^{r} VI(C, B_i)$.

Remark 4.2. In the result of Iiduka and Takahashi [15], under the assumption that (i) $\|By\| \leq \|By - Bu\|$ for every $y \in C$ and $u \in VI(C, A)$, and (ii) J is weakly sequentially continuous, they proved the weak convergence of the generated sequence to an element of $VI(C, B)$, whereas we get the strong convergence to an element of $VI(C, B)$ in Theorem 4.1, without the assumptions (i) and (ii); see also [18].
Remark 4.3. In Lemma 3.2, if \(A = 0 \), then, \(J^A_\lambda = I \) for every \(\lambda > 0 \). Moreover, we can get the inclusion \(\omega_w(\{x_n\}) \subseteq B^{-1}0 \) from the assumption \(\|Bx_n - Bz\| \to 0 \) for \(z \in B^{-1}0 \) only. In fact, suppose \(x_n \rightharpoonup w \in C \). Since

\[
\langle x_n - w, Bx_n - Bw \rangle \geq \alpha \|Bx_n - Bw\|^2
\]

for every \(i \in \mathbb{N} \), we have \(Bw = Bz = 0 \), that is, \(w \in B^{-1}0 \). Therefore, instead of uniform smoothness of \(E \), smoothness of \(E \) guarantees that Lemma 3.2 holds. Hence we obtain the following strong convergence theorem for monotone inclusions by Theorem 3.1. This is a result of strong convergence under weaker conditions than that of weak convergence in [15].

Theorem 4.2. Let \(C \) be a nonempty closed convex subset of a 2-uniformly convex and smooth Banach space \(E \). For \(\alpha > 0 \), let \(B \) be an \(\alpha \)-inverse-strongly-monotone operator of \(C \) into \(E^* \) with \(B^{-1}0 \neq \emptyset \). Let \(u \in E \) and \(\{x_n\} \) a sequence generated by \(x_1 \in C \) and

\[
x_{n+1} = \Pi_C J^{-1}(\gamma_n Ju + (1 - \gamma_n)Jx_n - \lambda_n Bx_n)
\]

for every \(n \in \mathbb{N} \), where \(\{\lambda_n\} \subseteq (0, \infty) \) and \(\{\gamma_n\} \subseteq (0, 1] \) are real sequences. Suppose that \(0 < \inf_{n \in \mathbb{N}} \lambda_n \leq \sup_{n \in \mathbb{N}} \lambda_n < 2\alpha c \), where \(c \) is the constant in Theorem 2.1, \(\gamma_n \to 0 \), and \(\sum_{n=1}^{\infty} \gamma_n = \infty \). Then, \(\{x_n\} \) converges strongly to \(\Pi_{B^{-1}0} u \).

Acknowledgment

This paper was supported by JSPS KAKENHI Grant No. 15K05007.

REFERENCES