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Abstract. In this paper, we establish two minimax theorems for a function f : X × I→ R, where I is a real interval, without
assuming that f (x, ·) is quasi-concave. Also, some related applications are presented.
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1. STATEMENTS OF THE MAIN RESULTS AND PRELIMINARIES

The most known minimax theorem ([7]) ensures the occurrence of the equality

sup
Y

inf
X

f = inf
X

sup
Y

f

for a function f : X ×Y → R under the following assumptions: X , Y are convex sets in Hausdorff
topological vector spaces, one of them is compact, and f is lower semicontinuous and quasi-convex in
X , and upper semicontinuous and quasi-concave in Y .

In the past years, we provided some contributions to the subject where, keeping the assumption of
quasi-concavity on f (x, ·), we proposed alternative hypotheses on f (·,y). Precisely, in [2], we assumed
the inf-connectedness of f (·,y) and, the same time, that Y is a real interval, while, in [5], we assumed
the inf-compactness and uniqueness of the global minimum of f (·,y).

In the present paper, we offer a new contribution where the hypothesis that f (x, ·) is quasi-concave is
no longer assumed.

Let T be a topological space. A function g : T → [−∞,+∞[ is said to be relatively inf-compact if, for
each r ∈ R, there exists a compact set K ⊆ T such that g−1(]−∞,r[)⊆ K. Moreover, g is said to be inf-
connected if, for each r ∈ R, the set g−1(]−∞,r[) is connected. For the basic notions on multifunctions,
we refer to [1].

Our main results are as follows.

Theorem 1.1. Let X be a topological space. Let I be a real interval and let f : X×I→R be a continuous
function such that, for each λ ∈ I, the set of all global minima of the function f (·,λ ) is connected. More-
over, assume that there exists a non-decreasing sequence of compact intervals, {In}, with I = ∪n∈NIn,
such that, for each n ∈ N, the following conditions are satisfied:
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(a1) the function infλ∈In f (·,λ ) is relatively inf-compact ;
(b1) for each x∈X, the set of all global maxima of the restriction of the function f (x, ·) to In is connected.

Then, one has

sup
Y

inf
X

= inf
X

sup
Y

f .

Theorem 1.2. Let X be a topological space. Let I be a compact real interval and let f : X × I→ R be
an upper semicontinuous function such that f (·,λ ) is continuous for all λ ∈ I. Assume that:
(a2) there exists a set D⊆ I, dense in I, such that the function f (·,λ ) is inf-connected for all λ ∈ D ;
(b2) for each x ∈ X, the set of all global maxima of the function f (x, ·) is connected.

Then, one has

sup
Y

inf
X

= inf
X

sup
Y

f .

Remark 1.1. In both Theorems 1.1 and 1.2, it is essential that I is a real interval. To see this, consider
the following example. Take

X = I = {(t,s) ∈ R2 : t2 + s2 = 1}

and define f : X× I→ R by

f (t,s,u,v) = tu+ sv

for all (t,s),(u,v) ∈ X . Clearly, f is continuous, f (·, ·,u,v) is inf-connected and has a unique global
minimum, and f (t,s, ·, ·) has a unique global maximum. However, we have

sup
X

inf
I

f =−1 < 1 = inf
X

sup
I

f .

The common key tool in our proofs of Theorems 1.1 and 1.2 is provided by the following general
principle.

Theorem A. [2, Theorem 2.2] Let X be a topological space. Let I be a compact real interval and let
S⊆X×I be a connected set whose projection on I is the whole of I. Then, for every upper semicontinuous
multifunction Φ : X → 2I , with non-empty, closed and connected values, the graph of Φ intersects S.

Another known proposition which is used in the proof of Theorem 1.1 is as follows.

Proposition A. [5, Proposition 2.1] Let X be a topological space and let Y be a non-empty set. Let
y0 ∈ Y and let f : X ×Y → R be a function such that f (·,y) is lower semicontinuous for all y ∈ Y and
relatively inf-compact for y = y0. Assume also that there is a non-decreasing sequence of sets {Yn}, with
Y = ∪n∈NYn, such that

sup
Yn

inf
X

f = inf
X

sup
Yn

f

for all n ∈ N.
Then, one has

sup
Y

inf
X

f = inf
X

sup
Y

f .

A further result which is used in the proofs of Theorems 1.1 and 1.2 is provided by the following
proposition which, in the given generality, is new.
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Proposition 1.1. Let X ,Y be two topological spaces and let f : X ×Y → R be a lower semicontinuous
function such that f (x, ·) is continuous for all x ∈ X. Moreover, assume that, for each y ∈ Y , there exists
a neighbourhood V of y such that the function infv∈V f (·,v) is relatively inf-compact. For each y ∈Y , set

F(y) =
{

u ∈ X : f (u,y) = inf
x∈X

f (x,y)
}
.

Then, the multifunction F is upper semicontinuous.

Proof. Let C ⊆ X be a closed set. We have to prove that F−(C) is closed. So, let {yα}α∈D be a net in
F−(C) converging to some ỹ ∈ Y . For each α ∈ D, pick

uα ∈ F(yα)∩C.

By assumption, there is a neighbourhood V of ỹ such that the function infv∈V f (·,v) is relatively inf-
compact. Since the function infx∈X f (x, ·) is upper semicontinuous, we can assume that it is bounded
above on V . Fix ρ > supV infX f . Then, there is a compact set K ⊆ X such that{

x ∈ X : inf
v∈V

f (x,v)< ρ

}
⊆ K .

But {
x ∈ X : inf

v∈V
f (x,v)< ρ

}
=
⋃
v∈V

{x ∈ X : f (x,v)< ρ} .

It follows that ⋃
v∈V

{x ∈ X : f (x,v)< ρ} ⊆ K. (1.1)

Let α1 ∈ D be such that yα ∈ V for all α ≥ α1. Consequently, by (1.1), uα ∈ K for all α ≥ α1. By
compactness, the net {uα}α∈D has a cluster point ũ ∈ K. Clearly, (ũ, ỹ) is a cluster point in X ×Y of the
net {(uα ,yα)}α∈D. We claim that

f (ũ, ỹ)≤ limsup
α

f (uα ,yα) .

Arguing by contradiction, assume the contrary and fix r so that

limsup
α

f (uα ,yα)< r < f (ũ, ỹ) .

Then, there would be α2 ∈ D such that

f (uα ,yα)< r

for all α ≥ α2. On the other hand, since the set f−1(]r,+∞[) is open, there would be α3 ≥ α2 such that

r < f (uα3 ,yα3)

which gives a contradiction.
Now, fix x ∈ X . Since uα ∈ F(yα), we have

f (ũ, ỹ)≤ limsup
α

f (uα ,yα)≤ lim
α

f (x,yα) = f (x, ỹ).

That is, ũ ∈ F(ỹ). Since C is closed, ũ ∈C. Hence, ỹ ∈ F−(C) and this ends the proof. �
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2. PROOFS AND APPLICATIONS OF THE MAIN RESULTS

We now can prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Fix n ∈ N. Let us prove that

sup
In

inf
X

f = inf
X

sup
In

f . (2.1)

Consider the multifunction F : In→ 2X defined by

F(λ ) =

{
u ∈ X : f (u,λ ) = inf

x∈X
f (x,λ )

}
for all λ ∈ In. Thanks to Proposition 1.1, F is upper semicontinuous and, by assumption, its values
are non-empty, compact and connected. As a consequence, by [1, Theorem 7.4.4], the graph of F is
connected. Let S denote the graph of the inverse of F . So, S is connected as it is homeomorphic to the
graph of F . Now, consider the multifunction Φ : X → 2In defined by

Φ(x) =

{
µ ∈ In : f (x,µ) = sup

λ∈In

f (x,λ )

}
for all x∈ X . By Proposition 1.1 again, the multifunction Φ is upper semicontinuous and, by assumption,
its values are non-empty, closed and connected. After noticing that the projection of S on In is the whole
of In, we can apply Theorem A. Therefore, there exists (x̃, λ̃ ) ∈ S such that λ̃ ∈Φ(x̃), that is,

f (x̃, λ̃ ) = inf
x∈X

f (x, λ̃ ) = sup
λ∈In

f (x̃,λ ) . (2.2)

Clearly, (2.1) follows from (2.2). Now, the conclusion is a direct consequence of Proposition A. This
ends the proof.

Proof of Theorem 1.2. Arguing by contradiction, assume the contrary and fix a constant r such that

sup
I

inf
X

f < r < inf
X

sup
I

f .

Let G : I→ 2X be the multifunction defined by

G(λ ) = {x ∈ X : f (x,λ )< r}

for all λ ∈ I. Notice that G(λ ) is non-empty for all λ ∈ I and connected for all λ ∈ D. Moreover, the
graph of G is open in X× I and so G is lower semicontinuous. Then, by [3, Proposition 5.7], the graph of
G is connected and so the graph of the inverse of G, say S, is connected too. Consider the multifunction
Φ : X → 2I defined by

Φ(x) =
{

µ ∈ I : f (x,µ) = sup
λ∈I

f (x,λ )
}

for all x ∈ X . Notice that Φ(x) is non-empty, closed and connected, in view of (b2). By Proposition 1.1,
the multifunction Φ is upper semicontinuous. Now, we can apply Theorem A. So, there exists (x̂, λ̂ ) ∈ S
such that λ̂ ∈Φ(x̂). This implies that

f (x̂, λ̂ )< r < inf
X

sup
I

f ≤ sup
λ∈I

f (x̂,λ ) = f (x̂, λ̂ )

which is absurd. This completes the proof.

Here is an application of Theorem 1.1.
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Theorem 2.1. Let (H,〈·, ·〉) be a real inner product space. Let K ⊂H be a compact and convex set, with
0 /∈ K, and let f : X → K be a continuous function, where

X =
⋃

λ∈R
λK .

Assume that there are two numbers α,c, with

inf
x∈X
‖ f (x)‖< c < ‖ f (0)‖ ,

such that:
(a) {x ∈ X : 〈x, f (x)〉= α} ⊂ {x ∈ X : ‖ f (x)‖< c} ;
(b) {x ∈ X : c2〈x, f (x)〉= α‖ f (x)‖2} ⊂ {x ∈ X : ‖ f (x)‖ ≥ c} .

Then, there exists λ̃ ∈ R such that the set

{x ∈ X : x = λ̃ f (x)}

is disconnected.

Proof. Consider the function ϕ : X×R→ R defined by

ϕ(x,λ ) = ‖x−λ f (x)‖2− c2
λ

2 +2αλ

for all (x,λ ) ∈ X×R. Notice that

ϕ(x,λ ) = ‖x‖2 +(‖ f (x)‖2− c2)λ 2−2(〈x, f (x)〉−α)λ .

Further, observe that, when ‖ f (x)‖ ≥ c, in view of (a), we have

sup
λ∈R

ϕ(x,λ ) = +∞ (2.3)

as well as
ϕ(x,−λ ) 6= ϕ(x,λ ) (2.4)

for all λ > 0. When ‖ f (x)‖ ≥ c again, the function ϕ(x, ·) is convex and so, by (2.4), for each λ > 0, its
restriction to [−λ ,λ ] it has a unique global maximum. Clearly, ϕ(x, ·) has the same uniqueness property
also when ‖ f (x)‖< c. Now, observe that, for each λ ∈R, the function λ f has a fixed point in X , in view
of the Schauder Theorem. Hence, we have

sup
λ∈R

inf
x∈X

ϕ(x,λ ) = sup
λ∈R

(−c2
λ

2 +2αλ ) =
α2

c2 . (2.5)

We claim that
α2

c2 < inf
x∈X

sup
λ∈R

ϕ(x,λ ). (2.6)

First, observe that, since 0 /∈ K, every closed and bounded subset of X is compact. This easily implies
that, for each µ > 0, the function x → inf|λ |≤µ ϕ(x,λ ) is relatively inf-compact. Consequently, the
sublevel sets of the function x→ supλ∈R ϕ(x,λ ) (which is finite if ‖ f (x)‖< c) are compact. Therefore,
there exists x̃ ∈ X such that

sup
λ∈R

ϕ(x̃,λ ) = inf
x∈X

sup
λ∈R

ϕ(x,λ ). (2.7)

So, by (2.3), one has ‖ f (x̃)‖< c. Clearly, we also have

sup
λ∈R

ϕ(x̃,λ ) = ‖x̃‖2 +
|〈x̃, f (x̃)〉−α|2

c2−‖ f (x̃)‖2 . (2.8)
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Let us prove that

‖x̃‖2 +
|〈x̃, f (x̃)〉−α|2

c2−‖ f (x̃)‖2 >
α2

c2 . (2.9)

After some manipulations, one realizes that (2.9) is equivalent to

1
c2−‖ f (x̃)‖2

(
2α〈x̃, f (x̃)〉− |〈x̃, f (x̃)〉|2− α2

c2 ‖ f (x̃)‖2
)
< ‖x̃‖2 . (2.10)

Now, for each y ∈ X \{0}, t ∈ R, set

I(y, t) = {x ∈ H : 〈x,y〉= t} .

Consider the inequality
1

c2−‖y‖2

(
2αt− t2− α2

c2 ‖y‖
2
)
<

t2

‖y‖2 . (2.11)

After some manipulations, one realizes that (2.11) is equivalent to

(α‖y‖2− tc2)2 > 0 .

So, (2.11) is satisfied if and only if

α‖y‖2 6= tc2 . (2.12)

Observe that
|t|
‖y‖

= dist(0, I(y, t))≤ dist(0, I(y, t)∩X) . (2.13)

Therefore, if (2.12) is satisfied, for each x ∈ I(y, t)∩X , we conclude from (2.11) and (2.13) that

1
c2−‖y‖2

(
2α〈x,y〉− |〈x,y〉|2− α2

c2 ‖y‖
2
)
< ‖x‖2 . (2.14)

At this point, taking into account that c2〈x̃, f (x̃)〉 6= α‖ f (x̃)‖2 (by (b)), we draw (2.10) from (2.14) since
x̃ ∈ I( f (x̃),〈x̃, f (x̃)〉). Summarizing: taking I = R and In = [−n,n] (n ∈ N), the continuous function ϕ

satisfies (a1) and (b1) of Theorem 1.1, but, in view of (2.5)-(2.9), it does not satisfy the conclusion of
that theorem. As a consequence, there exists λ̃ ∈ R such that the set of all global minima of ϕ(·, λ̃ ) is
disconnected. But such a set agrees with the set of all solutions of the equation x = λ̃ f (x), and the proof
is complete. �

Remark 2.1. We do not know whether Theorem 2.1 is still true when 0 ∈ K and (b) is (necessarily)
changed in

{x ∈ X : f (x) 6= 0, c2〈x, f (x)〉= α‖ f (x)‖2} ⊂ {x ∈ X : ‖ f (x)‖ ≥ c} .

However, the proof of Theorem 2.1 shows that the following is true.

Theorem 2.2. Let (X ,〈·, ·〉) be a finite-dimensional real Hilbert space and let f : X→ X be a continuous
function with bounded range. Assume that there are two numbers α,c, with

inf
x∈X
‖ f (x)‖< c < ‖ f (0)‖ ,

such that:
(a′) {x ∈ X : 〈x, f (x)〉= α} ⊂ {x ∈ X : ‖ f (x)‖< c} ;
(b′) {x ∈ X : f (x) 6= 0, c2〈x, f (x)〉= α‖ f (x)‖2} ⊂ {x ∈ X : ‖ f (x)‖ ≥ c} .
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Then, there exists λ̃ ∈ R such that the set

{x ∈ X : x = λ̃ f (x)}

is disconnected.

Finally, we present two applications of Theorem 1.2.

Theorem 2.3. Let X be a Banach space. Let ϕ ∈ X∗ \{0} and let ψ : X→R be a Lipschitzian functional
whose Lipschitz constant is equal to ‖ϕ‖X∗ . Moreover, let [a,b] be a compact real interval, γ : [a,b]→
[−1,1] a convex (resp. concave) and continuous function, with int(γ−1({−1,1}))= /0, and c∈R. Assume
that

γ(a)ψ(x)+ ca 6= γ(b)ψ(x)+ cb

for all x ∈ X such that ψ(x)> 0 (resp. ψ(x)< 0).
Then (with the convention sup /0 =−∞), one has

sup
λ∈γ−1({−1,1})

inf
x∈X

(ϕ(x)+ γ(λ )ψ(x)+ cλ ) = inf
x∈X

sup
λ∈[a,b]

(ϕ(x)+ γ(λ )ψ(x)+ cλ ) .

Proof. Consider the continuous function f : X× [a,b]→ R defined by

f (x,λ ) = ϕ(x)+ γ(λ )ψ(x)+ cλ

for all (x,λ ) ∈ X × [a,b]. By [4, Theorem 2], for each λ ∈ γ−1(]− 1,1[), the function f (·,λ ) is inf-
connected and unbounded below. Also, notice that γ−1(]−1,1[), by assumption, is dense in [a,b]. Now
fix x∈X . If ψ(x)> 0 (resp. ψ(x)< 0) the function f (x, ·) is convex and, by assumption, f (x,a) 6= f (x,b).
As a consequence, the unique global maximum of this function is either a or b. If ψ(x)≤ 0, the function
is concave and so, obviously, the set of all its global maxima is connected. Now, the conclusion follows
directly from Theorem 1.2. �

Let (T,F ,µ) be a σ -finite measure space, E a real Banach space and p≥ 1.
As usual, Lp(T,E) denotes the space of all (equivalence classes of) strongly µ-measurable functions

u : T → E such that
∫

T ‖ u(t) ‖p dµ <+∞, equipped with the norm

‖ u ‖Lp(T,E)=

(∫
T
‖ u(t) ‖p dµ

) 1
p

.

A set D⊆ Lp(T,E) is said to be decomposable if, for every u,v ∈ D and every A ∈F , the function

t→ χA(t)u(t)+(1−χA(t))v(t)

belongs to D, where χA denotes the characteristic function of A.
A real-valued function on T ×E is said to be a Caratéodory function if it is measurable in T and

continuous in E.

Theorem 2.4. Let (T,F ,µ) be a σ -finite non-atomic measure space, E a real Banach space, p∈ [1,+∞[,
X ⊆ Lp(T,E) a decomposable set, [a,b] a compact real interval, and γ : [a,b]→ R a convex (resp.
concave) and continuous function. Moreover, let ϕ,ψ,ω : T ×E → R be three Carathéodory functions
such that, for some M ∈ L1(T ), k ∈ R, one has

max{|ϕ(t,x)|, |ψ(t,x)|, |ω(t,x)|} ≤M(t)+ k‖x‖p
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for all (t,x) ∈ T ×E and

γ(a)
∫

T
ψ(t,u(t))dµ +a

∫
T

ω(t,u(t))dµ 6= γ(b)
∫

T
ψ(t,u(t))dµ +b

∫
T

ω(t,u(t))dµ

for all u ∈ X such that
∫

T ψ(t,u(t))dµ > 0 (resp.
∫

T ψ(t,u(t))dµ < 0).
Then, one has

sup
λ∈[a,b]

inf
u∈X

(∫
T
(ϕ(t,u(t))+ γ(λ )ψ(t,u(t)))+λω(t,u(t)))dµ

)
=

inf
u∈X

sup
λ∈[a,b]

(∫
T
(ϕ(t,u(t))+ γ(λ )ψ(t,u(t)))+λω(t,u(t))dµ

)
.

Proof. The proof goes on exactly as that of Theorem 2.3. So, one considers the function f : X× [a,b]→R
defined by

f (u,λ ) =
∫

T
(ϕ(t,u(t))+ γ(λ )ψ(t,u(t)))+λω(t,u(t)))dµ

for all (u,λ ) ∈ X × [a,b], and realizes that it satisfies the hypotheses of Theorem 1.2. In particular, for
each λ ∈ [a,b], the inf-connectedness of the function f (·,λ ) is due to [6], Théorème 7. �
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