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1. INTRODUCTION

Let H be a real Hilbert space. We use symbols 〈., .〉 and ‖.‖ to denote the inner product and the norm
in H, respectively. Let C be a nonempty closed convex subset of H and let F : C −→ H be a nonlinear
mapping. A variational inequality problem, denoted by VI(F,C), is to find a point x∗ ∈C such that

〈F(x∗),x− x∗〉 ≥ 0, ∀x ∈C. (1.1)

There are many problems of mathematics can be recast in terms of the problem of finding a solution
of the variational inequality, for instance, partial differential equations, optimal control, optimization,
mathematical programming, mechanics and finance; see [9] and the references therein.

In 2001, Yamada [18] introduced the hybrid steepest-descent method for solving problem (1.1), where
F : H −→H is Lipschitz and strongly monotone operator and C is the set of fixed points of a nonexpan-
sive mapping T : H −→ H, i.e., C = Fix(T ). Moreover, in this paper, Yamada also considered problem
(1.1) in the case that C is the set of common fixed points of a finite family of nonexpansive mappings
T1,T2, ...,TN , i.e., C = ∩N

i=1Fix(Ti). He proved the following theorem.

Theorem 1.1. [18, Theorem 3.3] Let Ti : H −→ H, i = 1,2, ...,N be nonexpansive mappings with
C = ∩N

i=1Fix(Ti) 6= /0 and

C = Fix(TN ...T1) = Fix(T1TN ...T2) = ...= Fix(TN−1...T1TN).

Suppose that a mapping F : H −→H is k-Lipschitz and η-strongly monotone over4=∪N
i=1Ti(H). With

any u0 ∈ H, any µ ∈ (0,2η/k2), and any sequence {λn} ⊂ (0,1) satisfying
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(L1) limn→∞ λn = 0;
(L2) ∑

∞
n=1 λn = ∞;

(L3) ∑
∞
n=1 |λn+N−λn|< ∞,

the sequence {un} generated by
un+1 = (I−λn+1µF)T[n+1]un (1.2)

converges strongly to a unique solution of problem VI(C,F).

Let E be a real Banach space and let C be a nonempty closed convex subset of E. Let F : E −→ E
be a mapping. We consider the following variational inequality in the setting of Banach spaces: Find an
element x∗ ∈ E such that

〈F(x∗), j(x− x∗)〉 ≥ 0, ∀x ∈C. (1.3)

This problem is denoted by VI∗(F,C) in this paper.
Problem VI∗(F,C) for an inverse-strongly accretive operator F over a nonempty closed and convex

subset C of a uniformly convex and 2-uniformly smooth Banach space E has already been presented by
Aoyama, Iiduka and Takahahsi in [1, 2]. This problem with F = I− f , where f is a contractive mapping
and C is set of zeros or common zeros of accretive operators in Banach spaces, is also studied by many
authors, see, for example, [6, 7, 8, 11, 14, 15, 19] and the references therein.

In 2008, Ceng, Ansari and Yao [5] studied problem VI∗(F,C) with C is the set of fixed points of a
nonexpansive mapping or C is the set of zeros of an accretive operator in Banach spaces. They proved
the following propositions.

Proposition 1.1. Let E be a real reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm. Suppose that T : E −→ E is a continuous pseudocontractive mapping and S =

Fix(T ) 6= /0. Assume that F : E −→ E is δ -strongly accretive and λ -strictly pseudocontractive with
δ +λ > 1. For each t ∈ (0,1), choose a number µt ∈ (0,1) arbitrarily and let {xt} be defined by

xt = t(I−µtF)(xt)+(1− t)T (xt). (1.4)

Then as t −→ 0+, {xt} converges strongly to a unique solution u∗ of VI∗(F,C).

Proposition 1.2. Let E be a real Banach space with a uniformly Gâteaux differentiable norm. Suppose
that T : E −→ E is a continuous pseudocontractive mapping and S = Fix(T ) 6= /0. Assume that F : E −→
E is δ -strongly accretive and λ -strictly pseudocontractive with δ + λ > 1. If there exists a bounded
sequence {xn} such that limn→∞ ‖xn−T (xn)‖ = 0 and u∗ = limt→0+ xt , where {xt} is defined by (1.4),
then

limsup
n→∞

〈F(u∗), j(u∗− xn)〉 ≤ 0.

When C = A−10, with an m-accretive operator A : E −→ 2E in an uniformly smooth Banach space E,
and the steepest-descent method, Ceng, Ansari and Yao [5] introduced the following iterative methodyn = αnxn +(1−αn)JA

rn
xn

xn+1 = (I−λnF)(yn)
(1.5)

to solve problem VI∗(F,C), where F : E −→ E is δ -strongly accretive and λ -strictly pseudocontractive
with δ +λ > 1. They proved that, if the sequences of positive real numbers {αn}, {rn} and {λn} ⊂ (0,1)
satisfy the following conditions
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C1) limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

C2) rn ≥ ε > 0 for all n, {αn} ⊂ (a,b) for some a,b ∈ (0,1),
C3) ∑

∞
n=0 |αn+1−αn|< ∞, ∑

∞
n=0 |λn+1−λn|< ∞ and ∑

∞
n=0 |rn+1− rn|< ∞,

then the sequence {xn} generated by (1.5) converges strongly to an element x∗ ∈C which is the unique
solution of VI∗(F,C).

In this paper, we introduce two new algorithms which are the extensions of iterative method (1.5)
for problem VI∗(F,C), where C is the set of common zeros of a finite family of m-accretive operators
in a uniformly convex Banach space. Moreover, we also show that conditions C1) and C2) above are
sufficient to ensure the strong convergence of the iterative method. In Section 4, we give an application
of the main result for the problem of finding a common fixed point of nonexpansive mappings. Finally,
in Section 5, a numerical example is given to illustrate the main result and to show its performance.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖.‖ and let E∗ be its dual. The value of f ∈ E∗ at x ∈ E is
denoted by 〈x, f 〉. Let {xn} be a sequence in E. xn −→ x (resp. xn ⇀ x, xn

∗
⇀ x) denotes the strong (resp.

weak, weak∗) convergence of the sequence {xn} to x.
Let J denote the normalized duality mapping from E into 2E∗ given by

J(x) = { f ∈ E∗ : 〈x, f 〉= ‖x‖2 = ‖ f‖2}, ∀x ∈ E,

where 〈., .〉 denotes the generalized duality pairing. It is well known that if E∗ is strictly convex, then J
is single-valued. In the sequel, we denote the single-valued normalized duality mapping by j.

We always use SE to denote the unit sphere SE = {x ∈ E : ‖x‖ = 1} and Fix(T ) to denote the set of
the fixed point of the mapping T : C ⊆ E −→ E, i.e., Fix(T ) = {x ∈C : T (x) = x}.

A Banach space E is said to be strictly convex if

x,y ∈ SE with x 6= y, implies that ‖(1− t)x+ ty‖< 1 for all t ∈ (0,1).

A Banach space E is said to be uniformly convex if for any ε ∈ (0,2] the inequalities ‖x‖ ≤ 1, ‖y‖ ≤
1, ‖x− y‖ ≥ ε imply there exists a δ = δ (ε)> 0 such that

‖x+ y‖
2

≤ 1−δ .

A Banach E is said to be smooth provided the limit

lim
t→0

‖x+ ty‖−‖x‖
t

exists for each x and y in SE . In this case, the norm of E is said to be Gâteaux differentiable. It is said
to be uniformly Gâteaux differentiable if for each y ∈ SE , this limit is attained uniformly for x ∈ SE . It is
well known that every uniformly smooth space has uniformly Gâteaux differentiable norm.

For an operator A : E −→ 2E , we define its domain, range and graph as follows:

D(A) = {x ∈ E : Ax 6= /0},

R(A) = ∪{Az : z ∈ D(A)},

and

G(A) = {(x,y) ∈ E×E : x ∈ D(A), y ∈ Ax},
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respectively. The inverse A−1 of A is defined by

x ∈ A−1y, if and only if y ∈ Ax.

The operator A is said to be accretive if, for each x,y ∈D(A), there exists j(x−y) ∈ J(x−y) such that
〈u− v, j(x− y)〉 ≥ 0 for all u ∈ Ax and v ∈ Ay. We denote by I the identity operator on E. An accretive
operator A is said to be maximal accretive if there is no proper accretive extension of A and m-accretive if
R(I+λA) = E for all λ > 0. If A is m-accretive, then it is maximal accretive, but the converse is not true
in general. If A is accretive, then we can define, for each λ > 0, a nonexpansive single-valued mapping
JA

λ
: R(I +λA)−→ D(A) by

JA
λ
= (I +λA)−1,

which is called the resolvent of A. An accretive operator A defined on a Banach space E is said to satisfy
the range condition if D(A) ⊂ R(I +λA) for all λ > 0, where D(A) denotes the closure of the domain
of A. We know that for an accretive operator A which satisfies the range condition, A−10 = Fix(JA

λ
) for

all λ > 0. It is easy to see that if A is an m-accretive operator, then A satisfies the range condition (see
[12, 13]).

Recall that a mapping F : E −→ E is said to be δ -strongly accretive if for each x,y ∈ E there exists
j(x− y) ∈ J(x− y) such that

〈F(x)−F(y), j(x− y)〉 ≥ δ‖x− y‖2

for some δ ∈ (0,1). A mapping F : E −→ E is said to be λ -strictly pseudocontractive [4] if for each
x,y ∈ E there exists j(x− y) ∈ J(x− y) such that

〈F(x)−F(y), j(x− y)〉 ≤ ‖x− y‖2−λ‖x− y− (F(x)−F(y))‖2

for some λ ∈ (0,1). Recall that F is said to be pseudocontractive if, for each x,y ∈ E, there exists
j(x− y) ∈ J(x− y) such that

〈F(x)−F(y), j(x− y)〉 ≤ ‖x− y‖2.

So, if F is a nonexpansive mapping, that is, ‖F(x)−F(y)‖ ≤ ‖x−y‖ for all x,y ∈ E, then F is a pseudo-
contractive mapping.

Lemma 2.1. [16] E is uniformly convex if and only if, for each r > 0, there exists a continuous strictly
increasing and convex function ϕ : R+ −→ R+ with ϕ(0) = 0 such that

‖αx+(1−α)y‖2 ≤ α‖x‖2 +(1−α)‖y‖2−α(1−α)ϕ(‖x− y‖),

for all x,y ∈ E with max{‖x‖,‖y‖} ≤ r and α ∈ [0,1].

Lemma 2.2. [5] Let E be a real smooth Banach space and let F : E −→ E be a mapping. If F is δ -
strongly accretive and λ - strictly pseudocontractive with δ +λ > 1, then, for any fixed number τ ∈ (0,1],

I− τF is contractive with constant 1− τ(1−
√

1−δ

λ
).

Lemma 2.3. [3] Let A : D(A)⊂ E −→ 2E be an accretive operator. For λ , µ > 0, and x ∈ E, we have

JA
λ

x = JA
µ

(
µ

λ
x+
(
1− µ

λ

)
JA

λ
x
)
.
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Lemma 2.4. Let A : D(A)⊂ E −→ 2E be an accretive operator. For r ≥ s > 0, we have

‖x− JA
s x‖ ≤ 2‖x− JA

r x‖,

for all x ∈ R(I + rA)∩R(I + sA).

Proof. From Lemma 2.3, we have

‖x− JA
s x‖ ≤ ‖x− JA

r x‖+‖JA
r x− JA

s x‖

= ‖x− JA
r x‖+‖JA

s (
s
r

x+(1− s
r
)JA

r x)− JA
s x‖

≤ ‖x− JA
r x‖+(1− s

r
)‖x− JA

r x‖

≤ 2‖x− JA
r x‖.

This completes the proof. �

Lemma 2.5. [10] Let {sn} be a real sequence that does not decrease at infinity, in the sense that there
exists a subsequence {snk} such that

snk ≤ snk+1, ∀k ≥ 0.

For every n > n0, define an integer sequence {τ(n)} as

τ(n) = max{n0 ≤ k ≤ n : sk < sk+1}.

Then τ(n)→ ∞ as n→ ∞ for all n > n0,

max{sτ(n),sn} ≤ sτ(n)+1.

Lemma 2.6. [17] Let {sn} be a sequence of nonnegative numbers. Let {αn} be a sequence in (0,1), and
let {cn} be a sequence of real numbers satisfying the conditions

i) sn+1 ≤ (1−αn)sn +αncn,
ii) ∑

∞
n=0 αn = ∞, limsupn→∞ cn ≤ 0.

Then limn→∞ sn = 0.

3. MAIN RESULTS

Let E be a real uniformly convex Banach space with a uniformly Gâteaux differential norm. Assume
that F : E −→ E is δ -strongly accretive and λ -strictly pseudocontractive with δ +λ > 1. Let Ai : E −→
2E , i = 1,2, ...,N, be m-accretive operators such that S = ∩N

i=1A−1
i 0 6= /0. We consider the following

problem:

Find an element p ∈ S which is a solution of VI∗(F,S). (3.1)

3.1. A cyclic algorithm. First, in order to solve Problem (3.1), we propose the following cyclic algo-
rithm.

Algorithm 3.1. For any x0 ∈ E, let {xn} be a sequence generated by

y0
n = xn, n≥ 0,

yi
n = (1−β

i
n)y

i−1
n +β

i
nJi,nyi−1

n , i = 1,2, ...,N, n≥ 0, Ji,n = JAi
ri

n
,

xn+1 = (I−λnF)(yN
n ), n≥ 0,

(3.2)
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where {λn}, {ri
n} and {β i

n}, i = 1,2, ...,N, are sequences of positive real numbers.

Now, we have the following theorem.

Theorem 3.1. Let {xn} be a sequence generated by Algorithm 3.1. If sequences {λn}, {ri
n} and {β i

n},
i = 1,2, ...,N satisfy the following conditions:

i) mini=1,2,...,N{infn{ri
n}} ≥ r > 0 for all i = 1,2, ...,N;

ii) {β i
n} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

iii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

then {xn} converges strongly to an element p ∈ S, which is the unique solution of VI∗(F,S).

Proof. First, we show that the sequence {xn} is bounded.
Taking u ∈ S, we have

‖yN
n −u‖= ‖(1−β

i
n)y

i−1
n +β

i
nJi,nyi−1

n −u‖

≤ (1−β
i
n)‖yi−1

n −u‖+β
i
n‖Ji,nyi−1

n −u‖

≤ (1−β
i
n)‖yi−1

n −u‖+β
i
n‖yi−1

n −u‖

= ‖yi−1
n −u‖

...

≤ ‖y0
n−u‖= ‖xn−u‖. (3.3)

Thus, by Lemma 2.2, we have

‖xn+1−u‖= ‖(I−λnF)(yN
n )−u‖

= ‖(I−λnF)(yN
n )− (I−λnF)(u)−λnF(u)‖

≤ ‖(I−λnF)(yN
n )− (I−λnF)(u)‖+λn‖F(u)‖

≤
(
1−λn(1−

√
1−δ

λ
)
)
‖yN

n −u‖+λn‖F(u)‖

≤max{‖yN
n −u‖,(1−

√
1−δ

λ
)−1‖F(u)‖}

≤max{‖xn−u‖,(1−
√

1−δ

λ
)−1‖F(u)‖}. (3.4)

By induction, we get

‖xn−u‖ ≤max{‖x0−u‖,(1−
√

1−δ

λ
)−1‖F(u)‖}, ∀n≥ 0.

Thus, {xn} is bounded. {yi
n}, {F(yi

n)}, i = 1,2, ...,N are also bounded. Let p is the unique solution of
VI∗(F,S), that is,

〈F(p), j(p−u)〉 ≤ 0, ∀u ∈ S.
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From (3.2), we have

‖xn+1− p‖2 = 〈(I−λnF)(yN
n )− p, j(xn+1− p)〉

= 〈(I−λnF)(yN
n )− (I−λnF)(p), j(xn+1− p)〉+λn〈F(p), j(p− xn+1)〉

≤
(
1−λn(1−

√
1−δ

λ
)
)
‖yN

n − p‖‖xn+1− p‖+λn〈F(p), j(p− xn+1)〉

≤
(
1−λn(1−

√
1−δ

λ
)
)‖yN

n − p‖2 +‖xn+1− p‖2

2
+λn〈F(p), j(p− xn+1)〉.

This implies that

‖xn+1− p‖2 ≤

(
1−λn(1−

√
1−δ

λ
)
)

1+λn(1−
√

1−δ

λ
)

‖yN
n − p‖2

+
2λn

1+λn(1−
√

1−δ

λ
)

〈F(p), j(p− xn+1)〉

=

(
1−

2λn(1−
√

1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

)
‖yN

n − p‖2

+
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

(1−
√

1−δ

λ
)−1〈F(p), j(p− xn+1)〉. (3.5)

From Lemma 2.1, we have

‖yN
n − p‖2 = ‖(1−β

N
n )yN−1

n +β
N
n JN,nyN−1

n − p‖2

≤ (1−β
N
n )‖yN−1

n − p‖2 +β
N
n ‖JN,nyN−1

n − p‖2

−β
N
n (1−β

N
n )ϕ(‖yN−1

n − JN,nyN−1
n ‖)

≤ (1−β
N
n )‖yN−1

n − p‖2 +β
N
n (‖yN−1

n − p‖2

−α(1−β )ϕ(‖yN−1
n − JN,nyN−1

n ‖)

= ‖yN−1
n − p‖2−α(1−β )ϕ(‖yN−1

n − JN,nyN−1
n ‖)

...

= ‖y0
n− p‖2−α(1−β )

N

∑
i=1

ϕ(‖yi−1
n − Ji,nyi−1

n ‖)

= ‖xn− p‖2−α(1−β )
N

∑
i=1

ϕ(‖yi−1
n − Ji,nyi−1

n ‖). (3.6)
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From (3.5) and (3.6), we obtain that

‖xn+1− p‖2 ≤
(

1−
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

)
‖xn− p‖2

+
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

(1−
√

1−δ

λ
)−1〈F(p), j(p− xn+1)〉

−α(1−β )

(
1−

2λn(1−
√

1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

) N

∑
i=1

ϕ(‖yi−1
n − Ji,nyi−1

n ‖). (3.7)

Putting

sn = ‖xn− p‖2,

bn =
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

,

and

cn = (1−
√

1−δ

λ
)−1〈F(p), j(p− xn+1)〉,

σn = (1−bn)α(1−β )
N

∑
i=1

ϕ(‖yi−1
n − Ji,nyi−1

n ‖),

inequality (3.7) can be rewritten as

sn+1 ≤ (1−bn)sn +bncn−σn. (3.8)

We will show that sn→ 0 by considering two possible cases.

Case 1. {sn} is eventually decreasing, i.e., there exists N0 ≥ 0 such that {sn} is decreasing for n≥ N0

and thus {sn} must be convergent. It then follows from (3.8) that

0≤ σn ≤ (sn− sn+1)+bn(cn− sn)→ 0,

which implies that

‖yi−1
n − Ji,nyi−1

n ‖→ 0,

for all i = 1,2, ...,N.

Next, we will show that ‖xn− JAi
r xn‖→ 0, for all i = 1,2, ...,N.

Indeed, in the case that i = 1, ‖xn− J1,nxn‖= ‖y0
n− J1,ny0

n‖→ 0. In the case that i = 2, we have

‖xn− J2,nxn‖ ≤ ‖xn− y1
n‖+‖y1

n− J2,ny1
n‖+‖J2,ny1

n− J2,nxn‖

≤ 2‖xn− y1
n‖+‖y1

n− J2,ny1
n‖

= 2‖y0
n− J1,ny0

n‖+‖y1
n− J2,ny1

n‖→ 0.
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So, we get ‖xn− J2,nxn‖ → 0. Similarly, we obtain ‖xn− Ji,nxn‖ → 0 for all i = 3,4, ...,N. By Lemma

2.2, ‖xn− JAi
r xn‖ ≤ 2‖xn− Ji,nxn‖. So, ‖xn− JAi

r xn‖→ 0 for all i = 1,2, ...,N. Let T =
1
N

∑
N
i=1 JAi

r . Then

T is a nonexpansive mapping and S = Fix(T ). From ‖xn−Ti(xn)‖ → 0 for all i = 1,2, ...,N and by the
following estimate

‖xn−T (xn)‖ ≤
1
N

N

∑
i=1
‖xn−Ti(xn)‖,

we get limn→∞ ‖xn−T (xn)‖= 0. From Proposition 1.1 and Proposition 1.2, we obtain

limsup
n→∞

〈F(p), j(p− xn)〉 ≤ 0. (3.9)

Letting K = supn{‖F(yN
n )‖}, we have

‖xn+1− xn‖= ‖(I−λnF)(yN
n )− xn‖

≤ ‖(I−λnF)(xn)− (I−λnF)(yN
n )‖+λnK

≤
(
1−λn(1−

√
1−δ

λ
)
)
‖xn− yN

n ‖+λnK

≤ ‖xn− (1−β
N
n )yN−1

n −β
N
n JN,nyN−1

n ‖+λnK

≤ ‖xn− yN−1
n ‖+‖yN−1

n − JN,nyN−1
n ‖+λnK

...

≤
N

∑
i=1
‖yi−1

n − Ji,nyi−1
n ‖+λnK, (3.10)

which implies that ‖xn+1− xn‖ → 0, as n→ ∞. Thus, by (3.9) and the fact that the duality map j is
uniformly norm-to-weak* continuous on bounded set, we get

limsup
n→∞

〈F(p), j(p− xn+1)〉 ≤ 0, (3.11)

that is, limsupn→∞ cn ≤ 0. From (3.8), we have

sn+1 ≤ (1−bn)sn +bncn

and applying Lemma 2.6, we obtain limn→∞ sn = 0.

Case 2. {sn} is not eventually decreasing. Hence, there exists a subsequence {snk} of {sn} such that
snk ≤ snk+1 for all k ≥ 0. By Lemma 2.3, we can define a subsequence {sτ(n)} such that

max{sτ(n),sn} ≤ sτ(n)+1,∀n≥ n0. (3.12)

From (3.8), we have

0≤ στ(n) ≤ bτ(n)(cτ(n)− sτ(n))→ 0. (3.13)

Thus στ(n)→ 0. By similar argument to Case 1, we get

limsup
n→∞

〈F(p), j(p− xτ(n)+1)〉 ≤ 0,

or limsupn→∞ cτ(n) ≤ 0. From sτ(n) < sτ(n+1), bn > 0, σn ≥ 0 and the following estimate

sτ(n+1) ≤ (1−bτ(n))sτ(n)+bτ(n)cτ(n)−στ(n),
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we obtain sτ(n) ≤ cτ(n). Hence, it follows from limsupn→∞ cτ(n) ≤ 0 that limsupn→∞ sτ(n) ≤ 0. Thus

lim
n→∞

sτ(n) = 0. (3.14)

Similar to (3.10), we have
‖xτ(n)+1− xτ(n)‖→ 0.

Thus, from the boundedness of {xn}, we get

|sτ(n)+1− sτ(n)|= |‖xτ(n)+1− p‖2−‖xτ(n)+1− p‖2|

≤ ‖xτ(n)+1− xτ(n)‖(‖xτ(n)+1− p‖+‖xτ(n)+1− p‖)→ 0.

Hence, |sτ(n)+1− sτ(n)| → 0. From (3.12) and (3.14), for all n≥ n0, we have

0≤ sn ≤ sτ(n)+1 = sτ(n)+(sτ(n)+1− sτ(n))→ 0,

which implies that sn→ 0. Consequently, we obtain sn→ 0 in both cases, that is, xn→ p.
This completes the proof. �

In the case that N = 1, we have the following corollary:

Corollary 3.1. Let E be a real uniformly convex Banach space with a uniformly Gâteaux differential
norm. Assume that F : E −→ E is δ -strongly accretive and λ -strictly pseudocontractive with δ +λ > 1.
Let A : E −→ 2E be an m-accretive operator such that S = A−10 6= /0. If the sequences {λn}, {rn} and
{βn} satisfy the following conditions:

i) infn{rn} ≥ r > 0;
ii) {βn} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

iii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

then the sequence {xn} defined by x0 ∈ E andyn = (1−βn)xn +βnJA
rn

xn,

xn+1 = (I−λnF)(yn), n≥ 0
(3.15)

converges strongly to an element p ∈ S, which is the unique solution of VI∗(F,S).

Remark 3.1. Corollary 3.1 is more general than Theorem 5.7 in [5].

Next, we give an analogue result in the case Ai is maximal monotone operators in a real Hilbert space
H and F is L-Lipschitz and η-strongly monotone operator. We need the following lemma.

Lemma 3.1. [18] Let F : H −→ H be an L-Lipschitz and η-strongly monotone operator. Then f =

I−λ µF is a contraction mapping with the contraction coefficient c = 1−
√

1−µ(2η−µL2), for each
µ ∈ (0,2η/L2) and λ ∈ [0,1].

So, by using Lemma 3.1 and by a similar argument to the proof of Theorem 3.1, we get the following
theorem.

Theorem 3.2. Let H be a real Hilbert space. Assume that F : H −→ H is an L-Lipschitz and η-
strongly monotone operator. Let Ai : H −→ 2H , i = 1,2, ...,N, be maximal monotone operators such that
S = ∩N

i=1A−1
i 0 6= /0. If the sequences {λn}, {ri

n}, and {β i
n}, i = 1,2, ...,N satisfy the following conditions:

i) mini=1,2,...,N{infn{ri
n}} ≥ r > 0 for all i = 1,2, ...,N;
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ii) {β i
n} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

iii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

then, for any µ ∈ (0,2η/L2), the sequence {xn} defined by x0 ∈ H and

y0
n = xn, n≥ 0,

yi
n = (1−β

i
n)y

i−1
n +β

i
nJi,nyi−1

n , i = 1,2, ...,N, n≥ 0, Ji,n = JAi
ri

n
,

xn+1 = (I−λnµF)(yN
n ), n≥ 0

(3.16)

converges strongly to an element p ∈ S, which is the unique solution of VI(F,S).

3.2. A parallel algorithm. In this section, we introduce a new parallel algorithm for solving Problem
(3.1).

Algorithm 3.2. For any x0 ∈ E, we define the sequence {xn} by

yi
n = (1−β

i
n)xn +β

i
nJi,nxn, i = 1,2, ...,N, n≥ 0, Ji,n = JAi

ri
n
,

chosse in such that ‖yin
n − xn‖= max

i=1,...,N
{‖yi

n− xn‖}, let yn = yin
n ,

xn+1 = (I−λnF)(yn), n≥ 0,

(3.17)

where {λn}, {ri
n}, and {β i

n}, i = 1,2, ...,N, are sequences of positive real numbers.

The strong convergence of Algorithm 3.2 is given by the following theorem.

Theorem 3.3. Let {xn} be a sequence generated by Algorithm 3.2. If the sequences {λn}, {ri
n}, and

{β i
n}, i = 1,2, ...,N satisfy the following conditions:

i) mini=1,2,...,N{infn{ri
n}} ≥ r > 0 for all i = 1,2, ...,N;

ii) {β i
n} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

iii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

then the sequence {xn} converges strongly to an element p ∈ S, which is the unique solution of VI∗(F,S).

Proof. First, we show that {xn} is bounded. Indeed, letting u ∈ S, we have

‖yi
n−u‖= ‖(1−β

i
n)xn +β

i
nJi,nxn−u‖

≤ (1−β
i
n)‖xn−u‖+β

i
n‖Ji,nxn− Ji,nu‖

≤ (1−β
i
n)‖xn−u‖+β

i
n‖xn−u‖

≤ ‖xn−u‖, (3.18)

for all i = 1,2, . . . ,N. From Lemma 2.2, we have

‖xn+1−u‖= ‖(I−λnF)(yn)−u‖

= ‖(I−λnF)(yn)− (I−λnF)(u)−λnF(u)‖

≤ ‖(I−λnF)(yn)− (I−λnF)(u)‖+λn‖F(u)‖

≤
(
1−λn(1−

√
1−δ

λ
)
)
‖yn−u‖+λn‖F(u)‖

≤max{‖yn−u‖,(1−
√

1−δ

λ
)−1‖F(u)‖}. (3.19)
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From (3.18), (3.19), and the definition of yn, we get

‖xn+1−u‖ ≤max{‖xn−u‖,(1−
√

1−δ

λ
)−1‖F(u)‖}.

By induction, we obtain

‖xn−u‖ ≤max{‖x0−u‖,(1−
√

1−δ

λ
)−1‖F(u)‖}. (3.20)

Thus, {xn} is bounded. So {yi
n}, {F(yi

n)}, i = 1,2, ...,N are also bounded. Let p is the unique solution
of VI∗(F,S), that is,

〈F(p), j(p−u)〉 ≤ 0, ∀u ∈ S,

From (3.2), we have

‖xn+1− p‖2 = 〈(I−λnF)(yn)− p, j(xn+1− p)〉

= 〈(I−λnF)(yn)− (I−λnF)(p), j(xn+1− p)〉

+λn〈F(p), j(p− xn+1)〉

≤
(
1−λn(1−

√
1−δ

λ
)
)
‖yn− p‖.‖xn+1− p‖

+λn〈F(p), j(p− xn+1)〉

≤
(
1−λn(1−

√
1−δ

λ
)
)‖yn− p‖2 +‖xn+1− p‖2

2
+λn〈F(p), j(p− xn+1)〉.

This implies that

‖xn+1− p‖2 ≤

(
1−λn(1−

√
1−δ

λ
)
)

1+λn(1−
√

1−δ

λ
)

‖yn− p‖2

+
2λn

1+λn(1−
√

1−δ

λ
)

〈F(p), j(p− xn+1)〉

=

(
1−

2λn(1−
√

1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

)
‖yn− p‖2

+
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

(1−
√

1−δ

λ
)−1〈F(p), j(p− xn+1)〉. (3.21)
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From Lemma 2.1, we have

‖yn− p‖2 = ‖(1−β
in
n )xn +β

in
n Jin,nxn− p‖2

≤ (1−β
in
n )‖xn− p‖2 +β

in
n ‖Jin,nxn− p‖2

−β
in
n (1−β

in
n )ϕ(‖xn− Jin,nxn‖). (3.22)

From (3.21) and (3.22), we obtain

‖xn+1− p‖2 ≤
(

1−
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

)
‖xn− p‖2

+
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

(1−
√

1−δ

λ
)−1〈F(p), j(p− xn+1)〉

−α(1−β )

(
1−

2λn(1−
√

1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

)
)ϕ(‖xn− Jin,nxn‖). (3.23)

Putting
sn = ‖xn− p‖2,

bn =
2λn(1−

√
1−δ

λ
)

1+λn(1−
√

1−δ

λ
)

,

and

cn = (1−
√

1−δ

λ
)−1〈F(p), j(p− xn+1)〉,

σn = (1−bn)α(1−β ))ϕ(‖xn− Jin,nxn‖).
we obtain that inequality (3.23) can be rewritten as

sn+1 ≤ (1−bn)sn +bncn−σn. (3.24)

We will show that sn→ 0 by considering two possible cases.

Case 1. {sn} is eventually decreasing, i.e., there exists N0 ≥ 0 such that {sn} is decreasing for n≥ N0

and thus {sn} must be convergent. It then follows from (3.8) that

0≤ σn ≤ (sn− sn+1)+bn(cn− sn)→ 0,

which implies that
‖xn− Jin,nxn‖→ 0.

Thus, we have

‖yn− xn‖= β
in
n ‖xn− Jin,nxn‖→ 0. (3.25)

From the definition of yn, we get
‖yi

n− xn‖→ 0,
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for all i = 1,2, . . . ,N,. Hence

‖xn− Ji,nxn‖=
1
β i

n
‖yi

n− xn‖→ 0, (3.26)

for all i = 1,2, . . . ,N. Let T =
1
N

∑
N
i=1 JAi

r . Then T is a nonexpansive mapping and S = Fix(T ). From

‖xn−Ti(xn)‖→ 0 for all i = 1,2, ...,N and by the following estimate

‖xn−T (xn)‖ ≤
1
N

N

∑
i=1
‖xn−Ti(xn)‖,

we get limn→∞ ‖xn−T (xn)‖= 0. From Proposition 1.1 and Proposition 1.2, we obtain

limsup
n→∞

〈F(p), j(p− xn)〉 ≤ 0. (3.27)

Letting K = supn{‖F(yn)‖}, from (3.25) and Lemma 2.2, we have

‖xn+1− xn‖= ‖(I−λnF)(yn)− xn‖

≤ ‖(I−λnF)(xn)− (I−λnF)(yn)‖+λnK

≤
(
1−λn(1−

√
1−δ

λ
)
)
‖xn− yn‖+λnK→ 0,

which implies that

‖xn+1− xn‖→ 0. (3.28)

Thus, by (3.27) and the fact that the duality map j is uniformly norm-to-weak∗ continuous on bounded
set, we get

limsup
n→∞

〈F(p), j(p− xn+1)〉 ≤ 0, (3.29)

that is, limsupn→∞ cn ≤ 0. From (3.24), we have

sn+1 ≤ (1−bn)sn +bncn.

Applying Lemma 2.6, we obtain limn→∞ sn = 0.

Case 2. {sn} is not eventually decreasing. Hence, there exists a subsequence {snk} of {sn} such that
snk ≤ snk+1 for all k ≥ 0. By Lemma 2.3, we can define a subsequence {sτ(n)} such that

max{sτ(n),sn} ≤ sτ(n)+1,∀n≥ n0. (3.30)

From (3.24), we have

0≤ στ(n) ≤ bτ(n)(cτ(n)− sτ(n))→ 0. (3.31)

Thus στ(n)→ 0. By a similar argument to Case 1, we get

limsup
n→∞

〈F(p), j(p− xτ(n)+1)〉 ≤ 0,

or limsupn→∞ cτ(n) ≤ 0. From sτ(n) < sτ(n+1), bn > 0, σn ≥ 0 and the following estimate

sτ(n+1) ≤ (1−bτ(n))sτ(n)+bτ(n)cτ(n)−στ(n),
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we obtain sτ(n) ≤ cτ(n). Hence, it follows from limsupn→∞ cτ(n) ≤ 0 that limsupn→∞ sτ(n) ≤ 0. Thus

lim
n→∞

sτ(n) = 0. (3.32)

Similar to (3.28), we have

‖xτ(n)+1− xτ(n)‖→ 0.

Thus, from the boundedness of the sequence {xn}, we get

|sτ(n)+1− sτ(n)|= |‖xτ(n)+1− p‖2−‖xτ(n)+1− p‖2|

≤ ‖xτ(n)+1− xτ(n)‖(‖xτ(n)+1− p‖+‖xτ(n)+1− p‖)→ 0.

Hence, |sτ(n)+1− sτ(n)| → 0. From (3.30) and (3.32), for all n≥ n0, we have

0≤ sn ≤ sτ(n)+1 = sτ(n)+(sτ(n)+1− sτ(n))→ 0,

which implies that sn→ 0. Consequently, we obtain sn→ 0 in both cases, that is, xn→ p. This completes
the proof. �

So, by using Lemma 3.1 and by a similar argument to the proof of Theorem 3.3, we get the following
theorem.

Theorem 3.4. Let H be a real Hilbert space. Assume that F : H −→ H is an L-Lipschitz and η-
strongly monotone operator. Let Ai : H −→ 2H , i = 1,2, ...,N, be maximal monotone operators such that
S = ∩N

i=1A−1
i 0 6= /0. If the sequences {λn}, {ri

n}, and {β i
n}, i = 1,2, ...,N satisfy the following conditions:

i) mini=1,2,...,N{infn{ri
n}} ≥ r > 0 for all i = 1,2, ...,N;

ii) {β i
n} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

iii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

then, for any µ ∈ (0,2η/L2), the sequence {xn} defined by x0 ∈ H and

yi
n = (1−β

i
n)xn +β

i
nJi,nxn, i = 1,2, ...,N, n≥ 0, Ji,n = JAi

ri
n
,

chosse in such that ‖yin
n − xn‖= max

i=1,...,N
{‖yi

n− xn‖}, let yn = yin
n ,

xn+1 = (I−λnµF)(yn), n≥ 0

(3.33)

converges strongly to an element p ∈ S, which is the unique solution of VI(F,S).

4. APPLICATIONS

By the careful analysis of the proof of Theorem 3.1 and Theorem 3.3, we can obtain the following
result for the problem of finding a common fixed point of a family of finite nonexpansive mappings in a
uniformly convex Banach space.

Theorem 4.1. Let E be a real uniformly convex Banach space with a uniformly Gâteaux differential
norm. Assume that F : E −→ E is δ -strongly accretive and λ -strictly pseudocontractive with δ +λ >

1. Let Ti : E −→ E, i = 1,2, ...,N, be nonexpansive mappings such that S = ∩N
i=1Fix(Ti) 6= /0. If the

sequences {λn} and {β i
n}, i = 1,2, ...,N satisfy the following conditions:

i) {β i
n} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

ii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,
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then the sequence {xn} defined by x0 ∈ E and

y0
n = xn, n≥ 0,

yi
n = (1−β

i
n)y

i−1
n +β

i
nTiyi−1

n , i = 1,2, ...,N, n≥ 0,

xn+1 = (I−λnF)(yN
n ), n≥ 0,

(4.1)

or

yi
n = (1−β

i
n)xn +β

i
nTixn, i = 1,2, ...,N, n≥ 0,

chosse in such that ‖yin
n − xn‖= max

i=1,...,N
{‖yi

n− xn‖}, let yn = yin
n ,

xn+1 = (I−λnF)(yn), n≥ 0,

(4.2)

converges strongly to an element p ∈ S, which is a unique solution of VI∗(F,S).

Remark 4.1. Theorem 4.1 is more general than the result of Yamada [18] (Theorem 3.3), it does not
require the conditions:

C = Fix(TN ...T1) = Fix(T1TN ...T2) = ...= Fix(TN−1...T1TN),

and ∑
∞
n=1 |λn+N −λn| < ∞. Moreover, iterative method (4.2) is a new result for solving the variational

inequality over the set of common fixed points of a finite family of nonexpansive mappings in Banach
spaces.

Let H be a real Hilbert space. We consider variational inequality (1.1) with the fact thats F : H −→H
is L-Lipschitz and η-strongly monotone operator and C = ∩N

i=1Ci, where Ci is a nonempty closed convex
subset of H. Let Ti = PCi , where PCi is metric projection from H onto Ci for all i = 1,2, ...,N. By the
careful analysis of Theorem 3.2, we obtain the following theorem.

Theorem 4.2. If the sequences {λn} and {β i
n}, i = 1,2, ...,N satisfy the following conditions:

i) {β i
n} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

ii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

then, for any µ ∈ (0,2η/k2), the sequence {xn} defined by x0 ∈ H and

y0
n = xn, n≥ 0,

yi
n = (1−β

i
n)y

i−1
n +β

i
nPCiy

i−1
n , i = 1,2, ...,N, n≥ 0,

xn+1 = (I−λnµF)(yN
n ), n≥ 0

(4.3)

or

yi
n = (1−β

i
n)xn +β

i
nPCixn, i = 1,2, ...,N, n≥ 0,

chosse in such that ‖yin
n − xn‖= max

i=1,...,N
{‖yi

n− xn‖}, let yn = yin
n ,

xn+1 = (I−λnµF)(yn), n≥ 0

(4.4)

converges strongly to an element p ∈C, which is the unique solution of VI(F,C).

We have the following corollary for the convex feasibility problem.

Corollary 4.1. Let Ci be a nonempty closed convex subset of a real Hilbert space H, i = 1,2, ...,N, with
C = ∩N

i=1Ci 6= /0. If the sequences {λn} and {β i
n}, i = 1,2, ...,N satisfy the following conditions:
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i) {β i
n} ⊂ (α,β ) with α, β ∈ (0,1) for all i = 1,2, ...,N;

ii) {λn} ⊂ (0,1), limn→∞ λn = 0, ∑
∞
n=0 λn = ∞,

then the sequence {xn} defined by u, x0 ∈ H and

y0
n = xn, n≥ 0,

yi
n = (1−β

i
n)y

i−1
n +β

i
nPCiy

i−1
n , i = 1,2, ...,N, n≥ 0,

xn+1 = λnu+(1−λn)yN
n , n≥ 0

(4.5)

or

yi
n = (1−β

i
n)xn +β

i
nPCixn, i = 1,2, ...,N, n≥ 0,

chosse in such that ‖yin
n − xn‖= max

i=1,...,N
{‖yi

n− xn‖}, let yn = yin
n ,

xn+1 = λnu+(1−λn)yn, n≥ 0

(4.6)

converges strongly to an element PCu ∈C, where PC : H −→C is the metric projection from H onto C.

Proof. Let f (x) =
1
2
‖x− u‖2 for all x ∈ H. Then F =5 f = x− u, for all x ∈ H, is a 1-Lipschitz and

1-strongly monotone operator in H. So, applying Theorem 4.2 with µ = 1, we get the proof of this
corollary. This completes the proof. �

5. A NUMERICAL EXAMPLE

Example 5.1. Consider the problem of finding an element x∗ ∈ S such that

ϕ(x∗) = min
x∈S

ϕ(x),

where ϕ(x) = (x1 +1)2 +(x2−1)2 + x2
3 for all x = (x1,x2,x3) ∈ R3, S = ∩100

i=1Ci with

Ci = {(x1,x2,x3) : (x1 +1/i)2 +(x2−1/i)2 + x2
3 ≤ 2}, i = 1,2, ...,100.

It is easy to show that ϕ is a convex function for F = 5ϕ is a 2-Lipschitz, 2-strongly monotone
operator, and x∗ = (−1,1,0) is the minimum point of ϕ on S.

a) Numerical results for Algorithm 3.1
- Applying iterative process (4.3) with µ = 9/10, β i

n = 1/2 and λn = 1/n for all n ≥ 1 and for all
i = 1,2, ...,N, and x0 = (3,4,5), we obtain the following table of results:

TOL ‖xn− x∗‖ n xn

10−5 9.96×10−6 193 (−1.000003,9.99993×10−1,−6.95×10−6)

10−6 9.97×10−7 692 (−1.000000,9.99999×10−1,−6.96×10−7)

10−7 9.99×10−8 2483 (−1.000000,9.99999×10−1,−6.98×10−8)

10−8 9.99×10−9 8922 (−1.000000,9.99999×10−1,−6.98×10−9)

10−9 9.99×10−10 32063 (−1.000000,9.99999×10−1,−6.98×10−10)
TABLE 1. Table of numerical results

- Applying iterative process (4.3) with µ = 9/10, β i
n = 1/2+ 1/4

√
n and λn = 1/

√
n for all n ≥ 1 and

for all i = 1,2, ...,N (note that in this case the sequences {β i
n} and {λn} do not satisfy the conditions
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TOL ‖xn− x∗‖ n xn

10−5 3.69×10−6 8 (−1.000001,9.99998×10−1,−2.62×10−6)

10−6 6.37×10−7 10 (−1.000000,9.99999×10−1,−4.52×10−7)

10−7 7.00×10−8 13 (−1.000000,9.99999×10−1,−4.97×10−8)

10−8 6.03×10−9 17 (−1.000000,9.99999×10−1,−4.28×10−9)

10−9 7.39×10−10 21 (−1.000000,9.99999×10−1,−5.25×10−10)
TABLE 2. Table of numerical results

∑
∞
n=1 |β i

n+1−β i
n| < ∞ for all i = 1,2, ...,N and ∑

∞
n=1 |λn+1−λn| < ∞), and x0 = (3,4,5), we obtain the

following table of results:
The strong convergence of iterative process (4.3) is also described in Fig. 1.
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FIGURE 1.

b) Numerical results for Algorithm 3.2
- Applying iterative process (4.4) with µ = 9/10, β i

n = 1/2 and λn = 1/n for all n ≥ 1 and for all
i = 1,2, ...,N, and x0 = (3,4,5), we obtain the following table of results:

TOL ‖xn− x∗‖ n xn

10−5 9.97×10−6 412 (−1.000004,9.99994×10−1,−7.05×10−6)

10−6 9.99×10−7 1478 (−1.000000,9.99999×10−1,−7.07×10−7)

10−7 9.99×10−8 5308 (−1.000000,9.99999×10−1,−7.07×10−8)

10−8 9.99×10−9 19075 (−1.000000,9.99999×10−1,−7.07×10−9)

10−9 9.99×10−10 68548 (−1.000000,9.99999×10−1,−7.07×10−10)
TABLE 3. Table of numerical results

- Applying iterative process (4.4) with µ = 9/10, β i
n = 1/2+ 1/4

√
n and λn = 1/

√
n for all n ≥ 1 and
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for all i = 1,2, ...,N (note that in this case the sequences {β i
n} and {λn} do not satisfy the conditions

∑
∞
n=1 |β i

n+1−β i
n| < ∞ for all i = 1,2, ...,N and ∑

∞
n=1 |λn+1−λn| < ∞), and x0 = (3,4,5), we obtain the

following table of results:

TOL ‖xn− x∗‖ n xn

10−5 4.08×10−6 9 (−1.000002,9.99997×10−1,−2.90×10−6)

10−6 8.05×10−7 11 (−1.000000,9.99999×10−1,−5.72×10−7)

10−7 5.37×10−8 15 (−1.000000,9.99999×10−1,−3.82×10−8)

10−8 9.59×10−9 18 (−1.000000,9.99999×10−1,−6.82×10−9)

10−9 7.86×10−10 23 (−1.000000,9.99999×10−1,−5.59×10−10)
TABLE 4. Table of numerical results

The strong convergence of iterative process (4.4) is also described in Fig. 2.
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