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Abstract. We consider the problem of minimizing the sum of convex functions over the intersection of fixed point sets of
nonexpansive mappings. Two parallel optimization methods are investigated for solving this problem. One of the two methods
is based on the Krasnosel’skiı̆-Mann fixed point algorithm, and the other one is based on the Halpern fixed point algorithm. We
provide their convergence analyses under certain assumptions.
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1. INTRODUCTION

In this paper, we consider the problem of minimizing the sum of convex functions over the inter-
section of fixed point sets of nonexpansive mappings defined on a real Hilbert space [8, Problem 2.1].
Applications of the problem are, for example, optimization over generalized convex feasible set [8, 19],
network resource allocation [4, 9, 10], and optimal control [11]. In relation to this problem, decentralized
optimization methods have been presented [4, 10] for the case that the objective functions of the problem
are smooth and convex, and subgradient methods have been devised [5, 7] for the case that the objective
functions are convex but nonsmooth. Moreover, incremental proximal point algorithms [8] have been
proposed for nonsmooth convex optimization.

In this paper, we present two parallel optimization methods for solving the problem. One of the two
parallel optimization methods is based on the Krasnosel’skiı̆-Mann fixed point algorithm [12, 14] and the
proximal point algorithm. The other one is based on the Halpern fixed point algorithm [3, 18] and the
proximal point algorithm. We give the convergence analysis showing that there exists a subsequence of
the sequence generated by the Krasnosel’skiı̆-Mann type algorithm which weakly converges to a solution
of the problem under certain assumptions (Theorem 3.1). We also show that, if one of the convex func-
tions is strongly convex, then the whole sequence generated by the Krasnosel’skiı̆-Mann type algorithm
strongly converges to the unique solution (Theorem 3.1). We also give the convergence analysis showing
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that any weak sequential cluster point of the sequence generated by the Halpern type algorithm belongs
to the solution set of the problem (Theorem 3.2).

2. MATHEMATICAL PRELIMINARIES

2.1. Notation and definitions. Let H be a real Hilbert space with inner product 〈·, ·〉 and its induced
norm ‖ · ‖, and let R be the set of all real numbers and let N be the set of all positive integers including
zero. The identity mapping on H is denoted by Id. Let (xn)n∈N be a sequence in H. A point x ∈ H is
said to be a weak sequential cluster point of (xn)n∈N [1, Subchapters 1.7 and 2.5] if (xn)n∈N possesses a
subsequence that weakly converges to x ∈ H.

A mapping T : H→ H is said to be nonexpansive if ‖T (x)−T (y)‖ ≤ ‖x− y‖ (x,y ∈ H). T is said to
be firmly nonexpansive if

‖T (x)−T (y)‖2 +‖(Id−T )(x)− (Id−T )(y)‖2 ≤ ‖x− y‖2 (x,y ∈ H).

Let Fix(T ) := {x ∈ H : T (x) = x} be the fixed point set of a mapping T : H→ H. The metric projection
PC onto a nonempty, closed convex subset C of H is firmly nonexpansive with Fix(PC)=C [1, Proposition
4.8, (4.8)].

Let f : H → (−∞,∞] be proper, lower semicontinuous, and convex. Then, the proximity operator of
f [1, Definition 12.23], [16], denoted by Prox f , maps every x ∈ H to the unique minimizer of f (·)+
(1/2)‖x−·‖2; i.e.,

Prox f (x) = argmin
y∈H

[
f (y)+

1
2
‖x− y‖2

]
(x ∈ H) .

The uniqueness and existence of Prox f (x) are guaranteed for all x ∈ H [1, Definition 12.23], [15]. Let
dom( f ) := {x ∈ H : f (x) < ∞} be the domain of a function f : H → (−∞,∞]. A function f : H → R
is said to be strictly convex [1, Definition 8.6] if, for all x,y ∈ H and for all α ∈ (0,1), x 6= y implies
f (αx+(1−α)y) < α f (x)+ (1−α) f (y). f is strongly convex with constant β [1, Definition 10.5] if
there exists β > 0 such that, for all x,y ∈ H and for all α ∈ (0,1),

f (αx+(1−α)y)+
β

2
α(1−α)‖x− y‖2 ≤ α f (x)+(1−α) f (y).

2.2. Main problem. We will consider the following problem.

Problem 2.1. [8, Problem 2.1] Let I := {1,2, . . . , I}. Suppose that

(A1) Ti : H→ H (i ∈I ) is firmly nonexpansive with
⋂

i∈I Fix(Ti) 6= /0;
(A2) fi : H → R (i ∈ I ) is continuous and convex with dom( fi) = H, and Prox fi can be computed

efficiently.

Then

minimize f (x) := ∑
i∈I

fi(x) subject to x ∈ X :=
⋂

i∈I
Fix(Ti).

Problem 2.1 includes applications such as optimization over generalized convex feasible sets [8, 19],
network resource allocation [4, 9, 10], and optimal control [11].
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Algorithm 1 Krasnosel’skiı̆-Mann type algorithm

Require: (αn)n∈N ⊂ (0,1], (γn)n∈N ⊂ (0,∞)

1: n← 0, x0 ∈ H
2: loop
3: for i = 1 to i = I do
4: yn,i := Proxγn fi(xn)

xn,i := αnxn +(1−αn)Ti(yn,i)

xn+1 :=
1
I ∑

i∈I
xn,i

5: end for
6: n← n+1
7: end loop

3. PROPOSED PARALLEL ALGORITHMS

3.1. Krasnosel’skiı̆-Mann type algorithm. The algorithm is as follows.
Let us consider a network system with I users. We assume that user i has its own private objective

function fi and mapping Ti and tries to minimize fi over Fix(Ti). Moreover, we assume that each user
can communicate with other users. Then, at iteration n, each user can have commonly xn. Since user i
has its own objective function fi, it computes yn,i := Proxγn fi(xn). Moreover, user i has its own constraint
set Fix(Ti), with which it tries to find a fixed point of Ti by using the Krasnosel’skiı̆-Mann fixed point
algorithm [12, 14], i.e.,

xn,i := αnxn +(1−αn)Ti(yn,i).

Since the users can communicate with each other, user i can receive all xn,i, and hence, user i can compute
xn+1 := (1/I)∑i∈I xn,i.

We assume the following:

Assumption 3.1. [8, Assumptions 4.1 and 4.2] The sequence (yn,i)n∈N (i ∈I ) in Algorithm 1 is bound-
ed. Moreover, the sequences (αn)n∈N and (γn)n∈N satisfy the following conditions:

(C1) 0 < liminf
n→∞

αn ≤ limsup
n→∞

αn < 1, (C2) lim
n→∞

γn = 0, (C3)
∞

∑
n=0

γn = ∞.

See [8, Corollary 4.1] for an example of Algorithm 1 satisfying Assumption 3.1.
The following theorem is the convergence analysis of Algorithm 1.

Theorem 3.1. Consider Problem 2.1 and suppose that Assumption 3.1 holds. Then, there exists a sub-
sequence of (xn)n∈N generated by Algorithm 1 which weakly converges to a solution of Problem 2.1. In
addition, the sequence (xn)n∈N strongly converges to the unique solution of Problem 2.1 if one of the
following holds:

(i) One fi is strongly convex;
(ii) H is finite-dimensional, and one fi is strictly convex.

3.1.1. Proof of Theorem 3.1. We can prove Theorem 3.1 using the proofs of [4, Theorem 4.1], [6, The-
orem 3.2], and [8, Theorem 4.1]. We first prove the following useful lemma.
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Lemma 3.1. The sequence (xn)n∈N generated by Algorithm 1 satisfies that, for all x ∈ X and for all
n ∈ N,

‖xn+1− x‖2 ≤ ‖xn− x‖2− 1
I
(1−αn) ∑

i∈I

{
‖xn− yn,i‖2 +‖yn,i−Ti(yn,i)‖2

}
+

2
I
(1−αn)γn ∑

i∈I
[ fi(x)− fi(yn,i)] .

Proof. The definition of xn,i and the convexity of ‖ ·‖2 ensure that, for all x ∈ X , for all n ∈N, and for all
i ∈I ,

‖xn,i− x‖2 = ‖αn(xn− x)+(1−αn)(Ti(yn,i)− x)‖2 ≤ αn ‖xn− x‖2 +(1−αn)‖Ti(yn,i)− x‖2 ,

which, together with (A1), implies that

‖xn,i− x‖2 ≤ αn‖xn− x‖2 +(1−αn)
{
‖yn,i− x‖2−‖yn,i−Ti(yn,i)‖2

}
= αn‖xn− x‖2 +(1−αn)‖yn,i− x‖2− (1−αn)‖yn,i−Ti(yn,i)‖2 .

(3.1)

From [1, Proposition 12.26] and the definition of yn,i, for all x ∈ X , for all n ∈ N, and for all i ∈I ,

〈x− yn,i,xn− yn,i〉 ≤ γn ( fi(x)− fi(yn,i)) .

Since 〈x,y〉= (1/2)(‖x‖2 +‖y‖2−‖x− y‖2) (x,y ∈ H) holds, we have that

〈x− yn,i,xn− yn,i〉 =
1
2

{
‖x− yn,i‖2 +‖xn− yn,i‖2−‖x− xn‖2

}
.

Hence, for all x ∈ X , for all n ∈ N, and for all i ∈I ,

‖yn,i− x‖2 ≤ ‖xn− x‖2−‖xn− yn,i‖2 +2γn ( fi(x)− fi(yn,i)) . (3.2)

Accordingly, (3.1) and (3.2) guarantee that, for all x ∈ X , for all n ∈ N, and for all i ∈I ,

‖xn,i− x‖2 ≤ ‖xn− x‖2− (1−αn)‖xn− yn,i‖2 +2(1−αn)γn ( fi(x)− fi(yn,i))

− (1−αn)‖yn,i−Ti(yn,i)‖2 .

Summing the above inequality from i = 1 to i = I and the convexity of ‖ ·‖2 imply that, for all x ∈ X and
for all n ∈ N,

I‖xn+1− x‖2 ≤ ∑
i∈I
‖xn,i− x‖2

≤ I‖xn− x‖2− (1−αn) ∑
i∈I

{
‖xn− yn,i‖2 +‖yn,i−Ti(yn,i)‖2

}
+2(1−αn)γn ∑

i∈I
[ fi(x)− fi(yn,i)] ,

which completes the proof of Lemma 3.1. �

Next, we show the following lemma indicating that Theorem 3.1 holds when (xn)n∈N in Algorithm 1
is Fejér monotone [1, Chapter 5] with respect to the solution set X? of Problem 2.1.

Lemma 3.2. Suppose that Assumption 3.1 holds and that there exists n0 ∈ N such that, for all x? ∈ X?

and for all n ∈ N, n≥ n0 implies ‖xn+1− x?‖ ≤ ‖xn− x?‖. Then, the following hold:

(i) limn→∞ ‖xn− yn,i‖= 0 and limn→∞ ‖yn,i−Ti(yn,i)‖= 0 (i ∈I );
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(ii) limn→∞ ‖xn− xn,i‖= 0 and limn→∞ ‖xn−Ti(xn)‖= 0 (i ∈I );
(iii) liminfn→∞ f (xn)≤ f (x) (x ∈ X);
(iv) There exists a subsequence of (xn) which weakly converges to a point in X?.

Proof. (i) From the definition of the subdifferential of fi (denoted by ∂ fi) and (A2), we have that, for all
x? ∈ X?, for all n ∈ N, and for all i ∈I ,

fi(x?)− fi(yn,i)≤ 〈x?− yn,i,zi〉,

where zi ∈ ∂ fi(x?). Let x? ∈ X? be fixed arbitrarily. Since (yn,i)n∈N (i ∈ I ) is bounded, there exists
N1 ∈R such that, for all n ∈N and for all i ∈I , fi(x?)− fi(yn,i)≤ N1. Accordingly, Lemma 3.1 implies
that, for all n ∈ N and for all i ∈I ,

1−αn

I ∑
i∈I
‖xn− yn,i‖2 ≤ ‖xn− x?‖2−‖xn+1− x?‖2 +2N1(1−αn)γn,

1−αn

I ∑
i∈I
‖yn,i−Ti(yn,i)‖2 ≤ ‖xn− x?‖2−‖xn+1− x?‖2 +2N1(1−αn)γn.

(3.3)

Since (xn)n∈N is Fejér monotone with respect to X?, there exists limn→∞ ‖xn−x?‖. Hence, (3.3), together
with (C1) and (C2), yields that limn→∞ ‖xn− yn,i‖= 0 and limn→∞ ‖yn,i−Ti(yn,i)‖= 0 (i ∈I ).

(ii) The definition of xn,i and the triangle inequality mean that, for all n ∈ N and for all i ∈I ,

‖xn,i− xn‖= (1−αn)‖Ti(yn,i)− xn‖ ≤ ‖Ti(yn,i)− yn,i‖+‖yn,i− xn‖,

which, together with Lemma 3.2(i), implies that limn→∞ ‖xn−xn,i‖= 0 (i ∈I ). Moreover, for all n ∈N
and for all i ∈I ,

‖xn−Ti(xn)‖ ≤ ‖xn− yn,i‖+‖yn,i−Ti(yn,i)‖+‖Ti(yn,i)−Ti(xn)‖,

which, together with (A1), implies that

‖xn−Ti(xn)‖ ≤ 2‖xn− yn,i‖+‖yn,i−Ti(yn,i)‖.

Lemma 3.2(i) thus guarantees that limn→∞ ‖xn−Ti(xn)‖= 0 (i ∈I ).
(iii) Let zn,i ∈ ∂ fi(xn) (n ∈ N, i ∈I ). Then, (A2) and Propositions 16.14 and 16.17 in [1] imply that

there exists N2 ∈ R such that, for all n ∈ N and for all i ∈I , ‖zn,i‖ ≤ N2. Accordingly, the definition of
∂ fi guarantees that, for all n ∈ N and for all i ∈I ,

fi(xn)− fi(yn,i)≤ 〈xn− yn,i,zn,i〉 ≤ N2 ‖xn− yn,i‖ .

Hence, we have that, for all x ∈ X and for all n ∈ N,

f (x)− ∑
i∈I

fi(yn,i) = f (x)− f (xn)+ ∑
i∈I

[ fi(xn)− fi(yn,i)]≤ f (x)− f (xn)+N2 ∑
i∈I
‖xn− yn,i‖ .

Lemma 3.1 thus ensures that, for all x ∈ X and for all n ∈ N,

2
I
(1−αn)γn

{
f (xn)− f (x)−N2 ∑

i∈I
‖xn− yn,i‖

}
≤ ‖xn− x‖2−‖xn+1− x‖2 . (3.4)
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Summing up (3.4) from n = 0 to n = m ∈ N implies that

2
I

m

∑
n=0

(1−αn)γn

{
f (xn)− f (x)−N2 ∑

i∈I
‖xn− yn,i‖

}
≤ ‖x0− x‖2−‖xm+1− x‖2

≤ ‖x0− x‖2 < ∞.

Therefore, we have that, for all x ∈ X ,
∞

∑
n=0

(1−αn)γn

{
f (xn)− f (x)−N2 ∑

i∈I
‖xn− yn,i‖

}
< ∞. (3.5)

We shall show that, for all x ∈ X ,

liminf
n→∞

(1−αn)

{
f (xn)− f (x)−N2 ∑

i∈I
‖xn− yn,i‖

}
≤ 0. (3.6)

If (3.6) does not hold, there exist x ∈ X , m0 ∈ N, and γ > 0 such that, for all n≥ m0,

(1−αn)

{
f (xn)− f (x)−N2 ∑

i∈I
‖xn− yn,i‖

}
≥ γ.

Then, (3.5) and (C3) guarantee that

∞ = γ

∞

∑
n=m0

γn ≤
∞

∑
n=m0

(1−αn)γn

{
f (xn)− f (x)−N2 ∑

i∈I
‖xn− yn,i‖

}
< ∞,

which is a contradiction. Hence, (3.6) holds for all x ∈ X . Lemma 3.2(i) and (C1) thus imply that, for all
x ∈ X ,

liminf
n→∞

f (xn)≤ f (x).

(iv) From Lemma 3.2(iii), there exists a subsequence (xnk)k∈N of (xn)n∈N such that, for all x ∈ X ,

lim
k→∞

f (xnk) = liminf
n→∞

f (xn)≤ f (x). (3.7)

Since (xn)n∈N is bounded, we have (xnkl
)l∈N⊂ (xnk)k∈N which weakly converges to x∗ ∈H. We next show

that x∗ ∈ X =
⋂

i∈I Fix(Ti). If this assertion does not hold, there exists i0 ∈I such that x∗ /∈ Fix(Ti0). In
this case, Opial’s lemma [17, Lemma 3.1] leads to

liminf
l→∞

∥∥∥xnkl
− x∗

∥∥∥< liminf
l→∞

∥∥∥xnkl
−Ti0(x

∗)
∥∥∥ ,

which, together with the triangle inequality, Lemma 3.2(ii), and (A1), implies that

liminf
l→∞

∥∥∥xnkl
− x∗

∥∥∥< lim
l→∞

∥∥∥xnkl
−Ti0

(
xnkl

)∥∥∥+ liminf
l→∞

∥∥∥Ti0

(
xnkl

)
−Ti0(x

∗)
∥∥∥≤ liminf

l→∞

∥∥∥xnkl
− x∗

∥∥∥ .
This is a contradiction. Hence, we have x∗ ∈ X . Moreover, (3.7) and (A2) ensure that, for all x ∈ X ,

f (x∗)≤ lim
l→∞

f
(

xnkl

)
= lim

k→∞

f (xnk) = liminf
n→∞

f (xn)≤ f (x),

which implies that x∗ ∈ X?. Let (xnkm
)m∈N be a subsequence of (xnk)k∈N which weakly converges to

x∗ ∈ H. The same discussion as in the proof of x∗ ∈ X? leads to x∗ ∈ X?. If x∗ 6= x∗ holds, then the
existence of L := limn→∞ ‖xn− x?‖ (x? ∈ X?) and Opial’s lemma [17, Lemma 3.1] imply that

L = lim
l→∞

∥∥∥xnkl
− x∗

∥∥∥< lim
l→∞

∥∥∥xnkl
− x∗

∥∥∥= lim
n→∞
‖xn− x∗‖= lim

m→∞

∥∥xnkm
− x∗

∥∥< lim
m→∞

∥∥xnkm
− x∗

∥∥= L,
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which is a contradiction. Accordingly, any subsequence of (xnk)k∈N converges weakly to x∗ ∈ X?. This
completes the proof. �

We show the following lemma indicating that Theorem 3.1 holds when (xn)n∈N in Algorithm 1 is not
Fejér monotone [1, Chapter 5] with respect to X?.

Lemma 3.3. Suppose that Assumption 3.1 holds and that, for all n ∈ N, there exist x? ∈ X? and n1 ∈ N
such that n1 ≥ n and ‖xn1+1− x?‖> ‖xn1 − x?‖. Then, there exists a subsequence (xτ(n))n∈N of (xn)n∈N,
where τ(n) := max{k ≤ n : ‖xk− x?‖< ‖xk+1− x?‖}, which satisfies the following:

(i) limn→∞ ‖xτ(n)− yτ(n),i‖= 0 and limn→∞ ‖yτ(n),i−Ti(yτ(n),i)‖= 0 (i ∈I );
(ii) limn→∞ ‖xτ(n)− xτ(n),i‖= 0 and limn→∞ ‖xτ(n)−Ti(xτ(n))‖= 0 (i ∈I );

(iii) limsupn→∞ f (xτ(n))≤ f (x?);
(iv) There exists a subsequence of (xτ(n)) which weakly converges to a point in X?.

Proof. Let Γn := ‖xn− x?‖ for all n ∈ N. Since (xn)n∈N is not Fejér monotone, there exists (xn j) j∈N ⊂
(xn)n∈N such that, for all j ∈ N, ‖xn j − x?‖< ‖xn j+1− x?‖. In this case, Lemma 2.1 in [13] ensures that
limn→∞ τ(n) = ∞ and that there exists m1 ∈ N such that, for all n≥ m1, Γτ(n) ≤ Γτ(n)+1.

(i) From (3.3), we have that

1−ατ(n)

I ∑
i∈I

∥∥xτ(n)− yτ(n),i
∥∥2 ≤ 2N1(1−ατ(n))γτ(n),

1−ατ(n)

I ∑
i∈I

∥∥yτ(n),i−Ti
(
yτ(n),i

)∥∥2 ≤ 2N1(1−ατ(n))γτ(n),

which, together with (C1) and (C2), implies that limn→∞ ‖xτ(n)− yτ(n),i‖= 0 and

lim
n→∞
‖yτ(n),i−Ti(yτ(n),i)‖= 0 (i ∈I ).

Since (yn,i)n∈N (i ∈I ) is bounded, (xτ(n))n∈N is also bounded.
(ii) The same reasoning as in the proofs of Lemmas 3.2(ii) and 3.3(i) leads to

lim
n→∞
‖xτ(n)− xτ(n),i‖= 0, lim

n→∞
‖xτ(n)−Ti(xτ(n))‖= 0 (i ∈I ).

(iii) From (3.4) and Γτ(n) ≤ Γτ(n)+1 (n≥ m1), we have that, for all n≥ m1,

2
I
(1−ατ(n))γτ(n)

{
f
(
xτ(n)

)
− f (x?)−N2 ∑

i∈I

∥∥xτ(n)− yτ(n),i
∥∥}≤ Γ

2
τ(n)−Γ

2
τ(n)+1 ≤ 0,

which implies that, for all n≥ m1,

f (xτ(n))− f (x?)−N2 ∑
i∈I
‖xτ(n)− yτ(n),i‖ ≤ 0.

Accordingly,

limsup
n→∞

f
(
xτ(n)

)
≤ f (x?)+N2 lim

n→∞
∑

i∈I

∥∥xτ(n)− yτ(n),i
∥∥= f (x?).

(iv) From Lemma 3.3(iii), we can choose any subsequence (xτ(nk))k∈N of (xτ(n))n≥m1 such that

limsup
k→∞

f
(
xτ(nk)

)
≤ limsup

n→∞

f
(
xτ(n)

)
.
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The boundedness of (xτ(nk))k∈N guarantees the existence of (xτ(nkl )
)l∈N ⊂ (xτ(nk))k∈N which weakly con-

verges to x̂ ∈ H. The same discussion as in the proof of Lemma 3.2(iv) leads to x̂ ∈ X . Lemma 3.3(iii)
and (A2) thus ensure that

f (x?)≤ f (x̂)≤ limsup
l→∞

f
(

xτ(nkl )

)
≤ limsup

k→∞

f
(
xτ(nk)

)
≤ limsup

n→∞

f
(
xτ(n)

)
≤ f (x?),

which implies that x̂ ∈ X?. This completes the proof. �

Theorem 3.1 and the proof of [6, Theorem 3.2] lead to the following lemma. Hence, we will omit the
proof here.

Lemma 3.4. Suppose that Assumption 3.1 and one of conditions (i) and (ii) in Theorem 3.1 hold. Then,
(xn)n∈N strongly converges to the unique point in X?.

3.2. Halpern type algorithm. The algorithm is as follows:

Algorithm 2 Halpern type algorithm

Require: (αn)n∈N ⊂ (0,1], (γn)n∈N ⊂ (0,∞)

1: n← 0, x0 ∈ H, zi ∈ H (i ∈I )

2: loop
3: for i = 1 to i = I do
4: yn,i := Proxγn fi(xn)

xn,i := αnzi +(1−αn)Ti(yn,i)

xn+1 :=
1
I ∑

i∈I
xn,i

5: end for
6: n← n+1
7: end loop

Algorithm 2 can be obtained by replacing xn,i in Algorithm 1 with the point computed by the Halpern
fixed point algorithm [3, 18], i.e., xn,i := αnzi +(1−αn)Ti(yn,i).

We assume the following.

Assumption 3.2. [8, Assumptions 3.1 and 3.2] The sequence (yn,i)n∈N (i ∈I ) in Algorithm 1 is bound-
ed. Moreover, the sequences (αn)n∈N and (γn)n∈N converge to zero and satisfy the following conditions:

(C1)
∞

∑
n=0

αn = ∞, (C2) lim
n→∞

1
αn+1

∣∣∣∣ 1
γn+1

− 1
γn

∣∣∣∣= 0, (C3) lim
n→∞

αn

γn
= 0,

(C4) lim
n→∞

1
γn+1

∣∣∣∣1− αn

αn+1

∣∣∣∣= 0, (C5) lim
n→∞

1
αn+1

|γn+1− γn|
γ2

n+1
= 0.

See [8, Corollary 3.1] for an example of Algorithm 1 satisfying Assumption 3.2.
The following theorem is the convergence analysis of Algorithm 2.

Theorem 3.2. Consider Problem 2.1 and suppose that Assumption 3.2 holds. Then, any weak sequential
cluster point of the sequence (xn)n∈N generated by Algorithm 2 belongs to the solution set of Problem
2.1.
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3.2.1. Proof of Theorem 3.2. We can prove Theorem 3.2 using the proofs of [4, Theorem 4.1] and [8,
Theorem 3.1]. First, we give the following lemma.

Lemma 3.5. Suppose that Assumption 3.2 holds. Then, the following hold:

(i) limn→∞ ‖xn+1− xn‖/γn = 0;
(ii) limn→∞ ‖yn,i−Ti(yn,i)‖= 0 and limn→∞ ‖xn− yn,i‖= 0 (i ∈I );

(iii) limn→∞ ‖xn−Ti(xn)‖= 0 (i ∈I ).

Proof. (i) The triangle inequality and the definition of xn,i imply that, for all n≥ 1 and for all i ∈I ,

‖xn,i− xn−1,i‖ ≤ (1−αn)‖Ti(yn,i)−Ti(yn−1,i)‖+ |αn−αn−1|‖zi−Ti(yn−1,i)‖ .

The boundedness of (yn,i)n∈N (i ∈ I ) and the nonexpansivity of Ti guarantee that there exists M1 ∈ R
such that, for all n ≥ 1 and for all i ∈I , ‖zi−Ti(yn−1,i)‖ ≤M1. The nonexpansivity of Ti thus ensures
that, for all n≥ 1 and for all i ∈I ,

‖xn,i− xn−1,i‖ ≤ (1−αn)‖yn,i− yn−1,i‖+M1 |αn−αn−1| . (3.8)

Let ȳn,i := Proxγn fi(xn−1) for all n≥ 1 and for all i ∈I . The nonexpansivity of Proxγn fi and the triangle
inequality imply that, for all n≥ 1 and for all i ∈I ,

‖yn,i− yn−1,i‖ ≤ ‖yn,i− ȳn,i‖+‖ȳn,i− yn−1,i‖ ≤ ‖xn− xn−1‖+‖ȳn,i− yn−1,i‖ . (3.9)

From [1, Proposition 12.26] and the definition of yn,i, for all x ∈ H, for all n ∈ N, and for all i ∈I ,〈
x− yn,i,

xn− yn,i

γn

〉
≤ fi(x)− fi(yn,i),

which implies that (xn−yn,i)/γn ∈ ∂ fi(yn,i). The same discussion as for showing (xn−yn,i)/γn ∈ ∂ fi(yn,i)

means that (xn−1− ȳn,i)/γn ∈ ∂ fi(ȳn,i). Accordingly, for all n≥ 1 and for all i ∈I ,〈
yn−1,i− ȳn,i,

xn−1− yn−1,i

γn−1
− xn−1− ȳn,i

γn

〉
≥ 0,

which implies that

1
γn−1γn

{
(γn− γn−1)〈yn−1,i− ȳn,i,xn−1〉− γn ‖yn−1,i− ȳn,i‖2 +(γn−1− γn)〈yn−1,i− ȳn,i, ȳn,i〉

}
≥ 0.

Hence, for all n ∈ N and for all i ∈I ,

‖yn−1,i− ȳn,i‖2 ≤ |γn− γn−1|
γn

|〈yn−1,i− ȳn,i,xn−1− ȳn,i〉| . (3.10)

Since (Ti(yn,i))n∈N (i ∈ I ) is bounded, (xn,i)n∈N (i ∈ I ) is also bounded. The definition of xn thus
implies that (xn)n∈N is bounded. Accordingly, there exists M2 ∈ R such that, for all n ≥ 1 and for all
i ∈I , ‖xn−1− ȳn,i‖ ≤M2. Hence, (3.10) ensures that, for all n ∈ N and for all i ∈I ,

‖yn−1,i− ȳn,i‖ ≤M2
|γn− γn−1|

γn
. (3.11)

Inequalities (3.8), (3.9), and (3.11), together with the definition of xn, guarantee that, for all n≥ 1,

‖xn+1− xn‖ ≤ (1−αn)‖xn− xn−1‖+M1 |αn−αn−1|+M2
|γn− γn−1|

γn
.
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Therefore, for all n≥ 1,

‖xn+1− xn‖
γn

≤ (1−αn)
‖xn− xn−1‖

γn−1
+M3

∣∣∣∣ 1
γn
− 1

γn−1

∣∣∣∣+M1
|αn−αn−1|

γn
+M2

|γn− γn−1|
γ2

n
,

where M3 := sup{‖xn− xn−1‖ : n ≥ 1} < ∞. From [2, Lemma 1.2] and Assumption 3.2, we have that
limn→∞ ‖xn+1− xn‖/γn = 0.

(ii) The convexity of ‖ · ‖2 and (A1) ensure that, for all x ∈ X , for all n ∈ N, and for all i ∈I ,

‖xn,i− x‖2 ≤ αn ‖zi− x‖2 +(1−αn)
{
‖yn,i− x‖2−‖yn,i−Ti(yn,i)‖2

}
. (3.12)

From [1, Proposition 12.26] and the definition of yn,i, we have that, for all x ∈ X , for all n ∈ N, and for
all i ∈I ,

〈x− yn,i,xn− yn,i〉 ≤ γn[ fi(x)− fi(yn,i)].

Accordingly,

1
2

{
‖x− yn,i‖2 +‖xn− yn,i‖2−‖x− xn‖2

}
≤ γn [ fi(x)− fi(yn,i)] ,

which implies that

‖yn,i− x‖2 ≤ ‖xn− x‖2−‖xn− yn,i‖2 +2γn [ fi(x)− fi(yn,i)] . (3.13)

Let x ∈ X be fixed arbitrarily. Then, (3.12) and (3.13) guarantee that, for all n ∈ N and for all i ∈I ,

‖xn,i− x‖2 ≤M4αn +‖xn− x‖2−‖xn− yn,i‖2 +2γn [ fi(x)− fi(yn,i)]− (1−αn)‖yn,i−Ti(yn,i)‖2 ,

where M4 := maxi∈I ‖zi− x‖< ∞. Accordingly, for all n ∈ N,

‖xn+1− x‖2 ≤ ‖xn− x‖2− 1
I ∑

i∈I
‖xn− yn,i‖2− 1−αn

I ∑
i∈I
‖yn,i−Ti(yn,i)‖2

+
2
I

γn ∑
i∈I

[ fi(x)− fi(yn,i)]+M4αn. (3.14)

Moreover, the boundedness of (yn,i)n∈N (i ∈I ) and (A2) imply that there exists M5 ∈ R such that, for
all n ∈ N and for all i ∈I , 2[ fi(x)− fi(yn,i)]≤M5. Hence, (3.14) ensures that, for all n ∈ N,

1
I ∑

i∈I
‖xn− yn,i‖2 +

1−αn

I ∑
i∈I
‖yn,i−Ti(yn,i)‖2 ≤ ‖xn− x‖2−‖xn+1− x‖2 +M4αn +M5γn.

Since Lemma 3.5(i) implies that limn→∞ ‖xn+1− xn‖= 0, we have that

limsup
n→∞

(‖xn− x‖2−‖xn+1− x‖2)≤ limsup
n→∞

(‖xn− x‖+‖xn+1− x‖)‖xn+1− xn‖

≤ 0.

Accordingly, Assumption 3.2 guarantees that

lim
n→∞

∑
i∈I
‖xn− yn,i‖2 = 0, lim

n→∞

1−αn

I ∑
i∈I
‖yn,i−Ti(yn,i)‖2 = 0,

which implies that limn→∞ ‖yn,i−Ti(yn,i)‖= 0 and limn→∞ ‖xn− yn,i‖= 0 (i ∈I ).
(iii) The same discussion as for the proof of Lemma 3.2(ii) leads to the assertion in Lemma 3.5(iii). �

Lemma 3.5 leads to the following result.

Lemma 3.6. Suppose that Assumption 3.2 holds. Then, the following hold:
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(i) limsupn→∞ f (xn)≤ f (x) (x ∈ X);
(ii) Any weak sequential cluster point of (xn)n∈N is in X?.

Proof. (i) The same discussion as for showing the existence of N2 in the proof of Lemma 3.2(iii) ensures
that there exists M6 ∈ R such that, for all x ∈ X and for all n ∈ N,

f (x)− ∑
i∈I

fi(yn,i)≤ f (x)− f (xn)+M6 ∑
i∈I
‖xn− yn,i‖.

Hence, (3.14) guarantees that, for all x ∈ X and for all n ∈ N,

2
I
( f (xn)− f (x))≤ (‖xn− x‖+‖xn+1− x‖)‖xn+1− xn‖

γn
+M4

αn

γn
+M6 ∑

i∈I
‖xn− yn,i‖ ,

which, together with (C3) and Lemma 3.5(i) and (ii), implies that limsupn→∞ f (xn)≤ f (x) (x ∈ X).
(ii) Since (xn)n∈N is bounded, there exists a weak sequential cluster point of (xn)n∈N. Let x? ∈H be an

arbitrary weak sequential cluster point of (xn)n∈N. Then, there exists (xnk)k∈N ⊂ (xn)n∈N which weakly
converges to x?. The same discussion as for showing x∗ ∈ X in the proof of Lemma 3.2(iv), together with
Lemma 3.5(iii), leads to x? ∈ X . Moreover, Lemma 3.6(i) and (A2) guarantee that, for all x ∈ X ,

f (x?)≤ liminf
k→∞

f (xnk)≤ limsup
k→∞

f (xnk)≤ limsup
n→∞

f (xn)≤ f (x),

which implies that x? ∈ X?. This completes the proof. �

4. CONCLUSION

This paper presented two parallel proximal point algorithms for solving the problem of minimizing
the sum of convex functions over the intersection of fixed point sets of nonexpansive mappings. One
of the two parallel algorithms is based on the Krasnosel’skiı̆-Mann fixed point algorithm and the other
one is based on the Halpern fixed point algorithm. We showed that there exists a subsequence of the
sequence generated by the Krasnosel’skiı̆-Mann type algorithm which weakly converges to a solution of
the problem under certain assumptions. We also showed that any weak sequential cluster point of the
sequence generated by the Halpern type algorithm belongs to the solution set of the problem.
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