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1. INTRODUCTION

Let X be a nonempty set and let f : X → X be an operator. A solution of the fixed point equation

x = f (x), x ∈ X , (1.1)

is called a fixed point of f . We denote by Fix( f ) the fixed point set of f , i.e., Fix( f ) := {x∈X | f (x) = x}
and by Graph( f ) := {(x, f (x)) : x ∈ X} the graph of operator f . The symbol I( f ) denotes the set of all
invariant subsets of f , i.e., I( f ) := {Y ⊂ X : f (Y )⊂ Y}.

If (X ,d) is a metric space, then, by definition, f is a weakly Picard operator if

f n(x)→ x∗(x) ∈ Fix( f ) as n→ ∞, for all x ∈ X .

A weakly Picard operator having a unique fixed point is a Picard operator.
For example, if (X ,d) is a complete metric space and f : X → X is a contraction mapping, i.e, there

exists α ∈]0,1[ such that

d( f (x), f (y))≤ αd(x,y), for every x,y ∈ X ,

then f is a Picard operator. If the above condition is imposed only for pairs (x,y) ∈ Graph( f ), then the
mapping is called a graphic contraction. A continuous graphic contraction (or, more generally, a graphic
contraction with a closed graph) on a complete metric space is a weakly Picard operator.

The purpose of this paper is to present some local fixed point results in complete metric spaces for
graphic contractions.

E-mail address: petrusel@math.ubbcluj.ro.
Received April 14, 2018; Accepted March 11, 2019.

c©2019 Journal of Nonlinear and Variational Analysis

141



142 ADRIAN PETRUŞEL

2. MAIN RESULTS

Let (X ,d) be a complete metric space and let f : X→ X be a weakly Picard operator. Then, we denote
by f ∞(x) ∈ Fix( f ) the limit of the sequence ( f n(x))n∈N of successive approximations for f starting from
x ∈ X .

A weakly Picard operator f : X → X for which there exists a function ψ : R+ → R+ increasing,
continuous in 0 and satisfying ψ(0) = 0, such that

d(x, f ∞(x))≤ ψ(d(x, f (x)), for all x ∈ X ,

is called a weakly ψ-Picard operator. For example, a graphic contraction with constant α ∈]0,1[ is a
weakly ψ-Picard operator with ψ(t) := 1

1−α
t.

Moreover, a Picard operator, with its unique fixed point denoted by x∗ ∈ X , for which there exists a
function ψ : R+→ R+ increasing, continuous in 0 and satisfying ψ(0) = 0, such that

d(x,x∗)≤ ψ(d(x, f (x)), for all x ∈ X ,

is called a ψ-Picard operator. For example, an α-contraction is a ψ-Picard operator with ψ(t) := 1
1−α

t.
For more results on the weakly Picard operator theory, we refer the reader to [1, 12, 13, 14] and the

references therein

Definition 2.1. Let (X ,d) be a metric space and let f : X → X be an operator. Then, f is called:
(i) an α-contraction if α ∈]0,1[ and

d( f (x), f (y))≤ αd(x,y), for every x,y ∈ X .

(ii) a graphic α-contraction if α ∈]0,1[ and

d( f (x), f 2(x))≤ αd(x, f (x)), for every x ∈ X .

Any α-contraction is a graphic α-contraction, but the inverse may not be true.

Example 2.1. Let X := [0,1]∪ [2,3] and let f : X → X be defined by

f (x) :=

{
1
2 x, x ∈ [0,1],
1
2 x+ 3

2 , x ∈ [2,3].

Then, f is a 1
2 -contraction on [0,1] and on [2,3] and Fix( f ) = {0,3}. Moreover, f is a continuous graphic

1
2 -contraction, but it is not a contraction.

In 1972, Rus proved in [11] (see also [14]) that a graphic contraction on a complete metric space has
at least one fixed point provided that its graph is closed.

Another fixed point result for graphic contractions in the framework of a Banach space was given by
Subrahmanyam in [16]. In his paper, Subrahmanyam introduced the concept of the Banach operator of
type α to designate a graphic α-contraction in the sense of Definition 2.1. His result (see Corollary 2 in
[16]) says that if S is a closed subset of a Banach space and f : S→ S is a continuous Banach operator of
type α , then it has a fixed point.

By the following example, we notice the importance of the continuity condition on f (or, more gener-
ally, of the closed graph condition), see also [2] and the references therein.
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Example 2.2. Let X := [0,1] and let f : X → X be defined by

f (x) :=

{
1
2 , x = 0,
1
2 x, x ∈]0,1].

Then, f is a graphic 1
2 -contraction on [0,1] with Fix( f ) = /0. Moreover, for every x ∈ X , ( f n(x))n∈N

converges to 0 as n→ ∞. Notice that f is discontinuous and Graph( f ) is not a closed set.

An interesting fixed point result (in complete metric spaces) for operators f : X → X satisfying the
graphic contraction condition on the orbit of f at a given point x ∈ X was proved by Hicks and Rhoades
in [3]. For a recent existence and uniqueness theorem for graphic contractions in complete metric spaces,
readers are referred to [2].

A new research direction in fixed point theory was initiated by Ran and Reurings in [10] via the
following result.

Theorem 2.1. Let X be a nonempty set endowed with a partial order relation ”�” and let d : X ×X →
R+ be a complete metric on X. Let f : X → X be an operator which is continuous with respect to d and
increasing with respect to ”�”. Suppose that there exist a constant α ∈]0,1[ and an element x0 ∈ X such
that:

(i) d( f (x), f (y))≤ αd(x,y), for all x,y ∈ X with x� y.
(ii) x0 � f (x0).

Then Fix( f ) 6= /0 and the sequence of successive approximations ( f n(x))n∈N starting from any point
x ∈ X, which is comparable to x0, converges to a fixed point of f .

For some extensions of the above result, see [5, 6, 7] and the references therein.
Now, we are in a position to prove a Ran-Reurings type local fixed point theorem for graphic contrac-

tions. First, we need some additional notations.
If (X ,d) is a metric space, x0 ∈ X and r > 0, then we denote

B(x0,r) := {x ∈ X : d(x0,x)< r}, B̃(x0,r) := {x ∈ X : d(x0,x)≤ r}.

We have the following local fixed point theorem, which generalizes Theorem 2.1, as well as some
local results from [4].

Theorem 2.2. Let X be a nonempty set endowed with a partial order relation ”�” and let d : X ×X →
R+ be a complete metric on X. Let x0 ∈ X, r > 0 and f : B(x0,r)→ X be an operator which has closed
graph with respect to d and is increasing with respect to ”�”. We suppose:

(i) there exists α ∈]0,1[ such that

d( f (x), f 2(x))≤ αd(x, f (x)), for all x ∈ B(x0,r) with x� x0;

(ii) f (x0)� x0;
(iii) d(x0, f (x0))< (1−α)r.

Then Fix( f ) 6= /0 and the sequence of successive approximations ( f n(x0))n∈N converges to a fixed point
of f . Moreover, if x∗ := lim

n→∞
f n(x0), then the following priori estimation holds

d( f n(x0),x∗)≤
αn

1−α
d(x0, f (x0)), for each n ∈ N.
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Proof. Let 0 < s < r be such that d(x0, f (x0)) ≤ (1−α)s < (1−α)r. By (ii) and the monotonicity
assumption on f , we get that

x0 � f (x0)� f 2(x0)� ·· · � f n(x0)� ·· · .

We can show now that f n(x0)∈ B̃(x0,s), for every n∈N. More precisely, we will prove by mathematical
induction that

d(x0, f n(x0))≤ (1−α
n)s, for every n ∈ N,n≥ 2.

Indeed, we have
d(x0, f 2(x0))≤ d(x0, f (x0))+d( f (x0), f 2(x0))

≤ d(x0, f (x0))+αd(x0, f (x0))

≤ (1−α)s+α(1−α)s

= (1−α
2)s.

By mathematical induction, we obtain

d(x0, f n(x0))≤ d(x0, f n−1(x0))+d( f n−1(x0), f n(x0))

≤ (1−α
n−1)s+αd( f n−2(x0), f n−1(x0))

≤ ·· ·

≤ (1−α
n−1)s+α

n−1d(x0, f (x0))

≤ (1−α
n−1)s+α

n−1(1−α)s

= (1−α
n)s.

Hence f n(x0)) ∈ B̃(x0,s), for every n ∈ N.
Moreover, by the assumptions (i), (ii) and the monotonicity of f , we easily obtain that

d( f n(x0), f n+1(x0))≤ α
nd(x0, f (x0)), for each n ∈ N.

Thus, the sequence ( f n(x0))n∈N is Cauchy in B̃(x0,s) and it converges to an element x∗ ∈ B̃(x0,s). Since
f has closed graph with respect to d, we immediately obtain that x∗ ∈ Fix( f ). Moreover, we also have

d( f n(x0), f n+p(x0))≤ α
n 1−α p

1−α
d(x0, f (x0)), for each n ∈ N and p ∈ N∗.

Letting p→ ∞, we obtain

d( f n(x0),x∗)≤
αn

1−α
d(x0, f (x0)), for each n ∈ N.

�

A dual result is as following.

Theorem 2.3. Let X be a nonempty set endowed with a partial order relation ”�” and let d : X ×X →
R+ be a complete metric on X. Let x0 ∈ X, r > 0 and f : B(x0,r)→ X be an operator which has closed
graph with respect to d and is increasing with respect to ”�”. We suppose:

(i) there exists α ∈]0,1[ such that

d( f (x), f 2(x))≤ αd(x, f (x)), for all x ∈ B(x0,r) with x� x0;

(ii) x0 � f (x0);
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(iii) d(x0, f (x0))< (1−α)r.
Then Fix( f ) 6= /0 and the sequence of successive approximations ( f n(x0))n∈N converges to a fixed point
of f . Moreover, if x∗ := lim

n→∞
f n(x0), then the following priori estimation holds

d( f n(x0),x∗)≤
αn

1−α
d(x0, f (x0)), for each n ∈ N.

In the same context, we denote

X�x0
:= {x ∈ X : x� x0 or x� x0}.

Another fixed point result for increasing operators is the following theorem.

Theorem 2.4. Let X be a nonempty set endowed with a partial order relation ”�” and let d : X ×X →
R+ be a complete metric on X. Let x0 ∈ X, r > 0 and f : B(x0,r)→ X be an operator which has closed
graph with respect to d and is increasing with respect to ”�”. We suppose:

(i) there exists α ∈]0,1[ such that

d( f (x), f 2(x))≤ αd(x, f (x)), for all x ∈ B(x0,r)∩X�x0
;

(ii) x0 � f (x0) or f (x0)� x0;
(iii) d(x0, f (x0))< (1−α)r.

Then Fix( f ) 6= /0 and the sequence of successive approximations ( f n(x0))n∈N converges to a fixed point
of f . Moreover, if x∗ := lim

n→∞
f n(x0), then the following priori estimation holds

d( f n(x0),x∗)≤
αn

1−α
d(x0, f (x0)), for each n ∈ N.

Proof. Let 0 < s < r be such that d(x0, f (x0)) ≤ (1− α)s < (1− α)r. Suppose that x0 � f (x0) or
f (x0)� x0. Then, by the monotonicity assumption on f , we obtain that

x0 � f (x0)� f 2(x0)� ·· · � f n(x0)� ·· ·

or
x0 � f (x0)� f 2(x0)� ·· · � f n(x0)� ·· ·

Then, as before, we can prove that f n(x0) ∈ B̃(x0,s), for every n ∈ N. Indeed, we have

d(x0, f 2(x0))≤ d(x0, f (x0))+d( f (x0), f 2(x0))

≤ d(x0, f (x0))+αd(x0, f (x0))

≤ (1−α)s+α(1−α)s

= (1−α
2)s.

By mathematical induction, we obtain

d(x0, f n(x0))≤ d(x0, f n−1(x0))+d( f n−1(x0), f n(x0))

≤ (1−α
n−1)s+αd( f n−2(x0), f n−1(x0))

≤ ·· ·

≤ (1−α
n−1)s+α

n−1d(x0, f (x0))

≤ (1−α
n−1)s+α

n−1(1−α)s

= (1−α
n)s.
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Hence f n(x0)) ∈ B̃(x0,s), for every n ∈ N.
Moreover, using the assumptions (i), (ii) and the above relations, we obtain that

d( f n(x0), f n+1(x0))≤ α
nd(x0, f (x0)), for each n ∈ N.

Thus, the sequence ( f n(x0))n∈N is Cauchy in B̃(x0,s). Hence, the sequence ( f n(x0))n∈N converges to an
element x∗ ∈ B̃(x0,s). Since f has closed graph with respect to d we immediately obtain that x∗ ∈ Fix( f ).
The rest of the proof is similar to our previous theorems. �

Theorem 2.5. Let X be a nonempty set endowed with a partial order relation ”�” and let d : X ×X →
R+ be a complete metric on X. Let x0 ∈ X, r > 0 and f : B(x0,r)→ X be an operator which has closed
graph with respect to d. We suppose:

(i) there exists α ∈]0,1[ such that

d( f (x), f 2(x))≤ αd(x, f (x)), for all x ∈ B(x0,r)∩X�x0
;

(ii) x0 � f (x0) or f (x0)� x0;
(iii) d(x0, f (x0))< (1−α)r;
(iv) X�x0

∈ I( f ).
Then Fix( f ) 6= /0 and the sequence of successive approximations ( f n(x0))n∈N converges to a fixed point
of f . Moreover, if x∗ := lim

n→∞
f n(x0), then the following priori estimation holds

d( f n(x0),x∗)≤
αn

1−α
d(x0, f (x0)), for each n ∈ N.

Proof. Let 0 < s < r be such that d(x0, f (x0)) ≤ (1− α)s < (1− α)r. Suppose that x0 � f (x0) or
f (x0) � x0. Then, by (iv), we obtain that f n(x0)) ∈ X�x0

, for every n ∈ N∗. Next, we will prove that
f n(x0) ∈ B̃(x0,s), for every n ∈ N. More precisely, we will prove by mathematical induction that

d(x0, f n(x0))≤ (1−α
n)s, for every n ∈ N,n≥ 2.

Indeed, we have
d(x0, f 2(x0))≤ d(x0, f (x0))+d( f (x0), f 2(x0))

≤ d(x0, f (x0))+αd(x0, f (x0))

≤ (1−α)s+α(1−α)s

= (1−α
2)s.

By mathematical induction, we obtain

d(x0, f n(x0))≤ d(x0, f n−1(x0))+d( f n−1(x0), f n(x0))

≤ (1−α
n−1)s+αd( f n−2(x0), f n−1(x0))

≤ ·· ·

≤ (1−α
n−1)s+α

n−1d(x0, f (x0))

≤ (1−α
n−1)s+α

n−1(1−α)s

= (1−α
n)s.

Hence f n(x0)) ∈ B̃(x0,s), for every n ∈ N.
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Moreover, using the assumptions (i), (ii) and the above relations, we obtain that

d( f n(x0), f n+1(x0))≤ α
nd(x0, f (x0)), for each n ∈ N.

Thus, ( f n(x0))n∈N is Cauchy in B̃(x0,s). Hence, ( f n(x0))n∈N converges to an element x∗ ∈ B̃(x0,s).
Since f has closed graph with respect to d, we immediately obtain that x∗ ∈ Fix( f ). The rest of the proof
follows in a similar way to our previous results. �

Remark 2.1. It is easy to see that the assumption (i) in Theorem 2.4 or Theorem 2.5 implies the assump-
tion (i) in Theorem 2.2 or Theorem 2.3. Notice that the reverse implication does not hold.

It is an open question to obtain the convergence (to a fixed point of f ) of the sequence ( f n(x))n∈N

of successive approximations of f starting from an arbitrary point x ∈ X with x � x0 or x � x0 or, more
generally, from any x ∈ X . It this last case, the operator f is a weakly Picard operator. Another question
is when a local graphic contraction is a weakly ψ-Picard operator.

A partial answer is given in the next result. For this theorem, we need the concept of ordered metric
space.

Definition 2.2. Let X be a nonempty set. A triple (X ,d,�) is called an ordered metric space if:
(a) (X ,d) is a metric space;
(b) (X ,�) is a partially ordered set;
(c) if (un)n∈N and (vn)n∈N are sequences in X such that un � vn for every n ∈N and un→ u, vn→ v

as n→ ∞, then u� v.

Theorem 2.6. Let (X ,d,�) be an ordered metric space, where d : X×X → R+ is a complete metric on
X. Let x0 ∈ X and let f : X → X be an operator which has closed graph with respect to d. We suppose:

(i) there exists α ∈]0,1[ such that

d( f (x), f 2(x))≤ αd(x, f (x)), for all x ∈ X�x0
;

(ii) X�x0
∈ I( f ).

Then Fix( f ) 6= /0 and, for every x ∈ X�x0
, the sequence ( f n(x))n∈N of successive approximations of f

converges to a fixed point of f . Moreover, if, for x∈ X�x0
, we denote x∗(x) := lim

n→∞
f n(x), then the following

priori estimation holds

d( f n(x),x∗(x))≤ αn

1−α
d(x, f (x)), for every n ∈ N and each x ∈ X�x0

.

Proof. Notice first that, since (X ,d,�) is an ordered metric space, X�x0
is closed in (X ,d). Hence,

f : X�x0
→ X�x0

is a graphic contraction with closed graph. Thus, the conclusion follows by the above
mentioned fixed point theorem of Rus, see [11] or the graphic contraction principle in [14]. �

For related results and applications of the graphic contraction theory, see [8, 9, 15] and the references
therein.

Remark 2.2. It is an open question to extend the above results to the multi-valued case.



148 ADRIAN PETRUŞEL
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[8] A. Petruşel, I.A. Rus, M.-A. Şerban, Nonexpansive operators as graphic contractions, J. Nonlinear Convex Anal. 17

(2016), 1409-1415.
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