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Abstract. In this paper, we propose a simultaneous projected subgradient-proximal type iterative algorithm to solve a split
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We obtain convergence results under some mild conditions on the bifunctions. Furthermore, we also give applications to the
domain decomposition for PDEs.
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1. INTRODUCTION

Let E1, E2 and E3 be Banach spaces. Let C1 and C2 be nonempty closed and convex subsets of E1

and E2, respectively. Let f1 : C1×C1→ R and f2 : C1×C2→ R be bifunctions. Let A1 : E1→ E3 and
A2 : E2 → E3 be bounded linear operators. The split equality equilibrium problem (SEEP) is to find
x∗ ∈C1 and y∗ ∈C2 such that

f1(x∗,x)≥ 0, ∀x ∈C1, f2(y∗,y)≥ 0 ∀y ∈C2, (1.1)

and

A1x∗ = A2y∗. (1.2)

We denote by S the solution set of SEEP (1.1)-(1.2).
Observe that if E2 = E3 and A2 is the identity mapping of E2, then SEEP (1.1)-(1.2) is reduced to the

following Split Equilibrium Problem (SEP) (see, [19, 25, 26]): find

x∗ ∈C1 such that f1(x∗,x)≥ 0, ∀x ∈C1, (1.3)

and

y∗ = Ax∗ ∈C2 such that f2(y∗,y)≥ 0, ∀x ∈C2. (1.4)
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If f2 = 0 and C2 = E2, then SEP (1.3) -(1.4) is reduced to the following Equilibrium Problem (EP)
(see [9, 23]): find x∗ ∈C such that

f (x∗,y)≥ 0, ∀y ∈C. (1.5)

Let us denote the set of solutions of EP (1.5) by EP(C, f ). EP (1.5) has been applied to various im-
portant problems such as physics, optimization and economics (see [27, 33]). If for i = 1,2, we let
fi(x,y) = 〈Bix,y−x〉, where Bi : Ei→ E∗i is an operator. Then SEEP (1.1)-(1.2) becomes the split equal-
ity variational inequality problems studied in [18]. Consequently, we have that SEEP (1.1)-(1.2) is also a
generalization of the split variational inequality problem considered in [14]. Another special case of SEP
(1.3) -(1.4) is the Split Feasibility Problem (SFP). The SFP was first considered in Euclidean spaces by
Censor and Elfving [12] for modelling inverse problems which have applications in phase retrievals and
medical image reconstruction. The SFP has been studied in more general frameworks including Hilbert
spaces and Banach spaces; see [13, 28, 29, 30] and the references therein. The SFP has also been ap-
plied in image restoration, computer tomography and radiation therapy treatment planning; see [11, 13]
and the references therein. Authors also considered some generalisations of the SFP such as the Split
Common Fixed Point Problem (SCFPP) [15], Split Equality Fixed Point Problem (SEFPP) [12, 16], etc.

Recently, Gebrie and Wangkeeree [19] proposed a projected subgradient-proximal algorithm for solv-
ing the following Fixed Point-Set Constrained Split Equilibrium Problems (FPSCSEPs) in Hilbert spaces:

find x∗ ∈C1 such that


x∗ ∈ F(T ),
f1(x∗,y)≥ 0, ∀y ∈C1,

u∗ = Ax∗ ∈ F(V ),

f2(u∗,u)≥ 0, ∀u ∈C2,

(1.6)

where T : C1 → C1 and V : C2 → C2 are nonexpansive mappings. They assumed that bifunctions f2 :
C2×C2→ R and f1 : C1×C1→ R satisfy the following Condition A and Condition B respectively.

Condition A
(A1) f2(u,u) = 0 for all u ∈C2.

(A2) f2 is monotone on C2, i.e., f2(u,v)+ f2(v,u)≤ 0, for all u,v ∈C2.

(A3) For each u,v,w ∈C2,

limsup
t↓0

f2(tw+(1− t)u,v)≤ f2(u,v).

(A4) f2(u, .) is convex and lower semicontinuous on C2 for each u ∈C2.

Condition B
(B1) f1(x,x) = 0 for all x ∈C1.

(B2) f1 is pseudomonotone on C1 with respect to x ∈ EP( f1,C), i.e., if x ∈ EP( f1,C1) then f1(x,y)≥ 0
implies f1(y,x)≤ 0 ∀y ∈C1.

(B3) f1 satisfies the following condition, which called the strict paramonotonicity property:

x ∈ EP( f1,C1), y ∈C1, f1(y,x) = 0⇒ y ∈ EP( f1,C1).

(B4) f1 is jointly weakly upper semicontinuous on C1×C1 in the sense that, if x,y ∈C1 and {xk},{yk} ⊂
C1 converge weakly to x and y, respectively, then f1(xk,yk)→ f1(x,y) as k→ ∞.

(B5) f1(x, .) is convex, lower semicontinuous and subdifferentiable on C1, for all x ∈C.
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(B6) If {xk} is a bounded sequence in C1 and εk→ 0, then the sequence {wk} with wk ∈ ∂εk f1(xk, .)(xk)

is bounded.
Motivated by the works of Chidume, Romanus and Nnyaba [17], Gebrie and Wangkeeree [19], Og-

buisi [26] and Shukla and Pant [31], we study SEEP (1.1)-(1.2) in the frame work of 2-uniformly convex
and uniformly smooth Banach spaces. Our contributions in this paper are that:

(1) We consider a projected subgradient proximal method for split equality equilibrium problem in
2-uniformly convex Banach spaces which is uniformly smooth while the results of Gebrie and
Wangkeeree [19] and Shukla and Pant [31] are restricted to Hilbert space.

(2) The monotonicity assumption imposed on the bifunctions in Chidume, Romanus and Nnyaba
[17], Ogbuisi [26] and Shukla and Pant [31] is relaxed by assuming that the bifunctions in this
paper are pseudomonotone. We also improve the results in Gebrie and Wangkeeree [19]. In
Gebrie and Wangkeeree [19], they assumed that one of the bifunctions is pseudomomotone and
the other bifunction is monotone. For example, take f2 : (0,∞)×(0,∞)→R, f2(x,y) := 1

1+x(y−
x), x,y ∈ (0,∞). It is easy to see that f2 is pseudomonotone but not monotone on (0,∞).

(3) The results of this paper generalize the results in Gebrie and Wangkeeree [19] and Ogbuisi [26]
and other variant results on the split equilibrium problem in the literature to the split equality
equilibrium problem in Banach spaces.

2. PRELIMINARIES

Let BE = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be strictly convex if for any x,y ∈ BE and
x 6= y implies ‖x+y‖

2 < 1. E is also said to be uniformly convex if for each ε ∈ (0,2], there exists δ > 0
such that for any x,y ∈ BE , ‖x− y‖ ≥ ε implies ‖x+y‖

2 ≤ 1− δ . The modulus of convexity of E is the
function δE : (0,2]→ [0,1] defined by

δE(ε) := inf
{

1−
∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣ : x,y ∈ BE ;ε = ‖x− y‖
}
.

E is uniformly convex if and only if δE(ε)> 0 for all ε ∈ (0,2] and p-uniformly convex if there exists a
Cp > 0 such that δE(ε) ≥Cpε p for any ε ∈ (0,2]. Clearly, every a p-uniformly convex Banach space is
uniformly convex. For example, see [32] for more details.

A Banach space E is said to be smooth if

lim
t→0

‖x+ ty‖−‖x‖
t

exists for all x,y ∈ BE . It is also said to be uniformly smooth if the limit is attained uniformly for x,y ∈
BE . It is well known that Hilbert and the Lebesgue Lp(1 < p ≤ 2) spaces are 2-uniformly convex and
uniformly smooth.

The normalised duality mapping JE : E→ 2E∗ is defined by

JE(x) := {x∗ ∈ E∗ : 〈x,x∗〉= ‖x‖2 = ‖x∗‖2},∀x ∈ E.

Let E be a reflexive, strictly convex, smooth Banach space and let J be the normalised duality mapping
from E into E∗. Then J−1

E is also single-valued, one-to-one, surjective, and is the duality mapping from
E∗ into E. The normalised duality mapping JE possesses the following properties [3]:

(1) If E is a smooth Banach space, then JE is single-valued.
(2) If E is a strictly convex Banach space, then JE is one-to-one and strictly monotone.
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(3) If E is a uniformly smooth Banach space, then JE is uniformly norm-to-norm continuous on each
bounded subset of E.

(4) If E is a smooth, strictly convex and reflexive Banach space, then JE is single-valued, one-to-one
and onto.

Let E be a smooth Banach space. Alber [2] introduced the following Lyapunov functional

φ(x,y) = ‖x‖2−2〈x,JE(y)〉+‖y‖2. (2.1)

It can be seen from the definition that φ satisfies the following conditions.

(‖x‖−‖y‖)2 ≤ φ(x,y)≤ (‖x‖+‖y‖)2.

Lemma 2.1. [2, 4] Let E be a real uniformly convex and smooth Banach space. Then, the following
identities hold:

1. φ(x,y) = φ(x,z)+φ(z,y)+2〈x− z,JE(z)− JE(y)〉.
2. φ(x,y)+φ(y,x) = 2〈x− y,JEx− JEy〉; ∀x,y ∈ E.

If E is a strictly convex and smooth Banach space, then for x,y ∈ E,φ(y,x) = 0 if and only if x = y
(see Remark 2.1 in [22]).

Lemma 2.2. [22] Let E be a uniformly convex and smooth Banach space and let {xn} and {yn} be two
sequences in E. If φ(xn,yn)→ 0, and either {xn} or {yn} is bounded, then ‖xn− yn‖→ 0.

Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth Banach space
E. Then for each x ∈ E (see Alber [2]), there exists a unique element x0 ∈C (denoted by ΠC(x)) such
that φ(x0,x) = min

y∈C
φ(y,x). The mapping ΠC : E → C, defined by ΠC(x) = x0, is called the generalized

projection operator from E onto C and x0 is called the generalized projection of x. In a Hilbert space,
ΠC = PC (the metric projection operator).

Lemma 2.3. [22] Let C be a nonempty closed and convex subset of a smooth Banach space E and x ∈ E.
Then, x0 = ΠC(x) if and only if 〈x0− y,JE(x)− JE(x0)〉 ≥ 0,∀y ∈C.

Lemma 2.4. [22] Let E be a reflexive, strictly convex and smooth Banach space, let C be a nonempty
closed and convex subset of E and let x ∈ E. Then φ(y,ΠC(x))+φ(ΠC(x),x)≤ φ(y,x),∀y ∈C.

Lemma 2.5. [24] Let E be a 2-uniformly convex and uniformly smooth Banach space. Then for every
x,y ∈ E, φ(x,y)≥ θ‖x− y‖2, where θ > 0 is the 2-uniformly convexity constant of E.

Lemma 2.6. [34] Let E be a real Banach space. Then the following are equivalent.

1. E is 2-uniformly smooth.
2. There exists a constant D > 0 such that

‖x+ y‖2 ≤ ‖x‖2 +2〈y,JE(x)〉+2D2‖y‖2, ∀x,y ∈ E,

where D is the 2-uniformly smooth constant of E. In Hilbert spaces, D = 1√
2
.

Lemma 2.7. [7] Let 1
p +

1
q = 1, p,q > 1. A Banach space E is q-uniformly smooth if and only if its dual

E∗ is p-uniformly convex.
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Let C be a nonempty closed and convex subset of a reflexive Banach space E. Let f : C×C→ R
be a bifunction where f (x, ·) is a convex function for each x ∈C. Then the ε-subdifferential (ε-diagonal
subdifferential) of f at x, denoted by ∂ε f (x, ·)(x) is given by

∂ε f (x, ·)(x) = {w ∈ E∗ : f (x,y)− f (x,x)+ ε ≥ 〈w,y− x〉,∀y ∈C}.

3. PROPOSED METHOD

Let E1, E2 and E3 be 2-uniformly convex Banach spaces which are uniformly smooth and let C1 and
C2 be nonempty closed and convex subsets of E1 and E2 respectively. We assume that f1 and f2 satisfy
Condition B above and D1,D2 the 2-uniformly smooth constants of E∗1 ,E

∗
2 respectively. Throughout this

paper, we also assume that S 6= /0.
We now describe the iterative method we proposed for solving SEEP (1.1)-(1.2).

Algorithm 1

1: Initialization: For each i= 1,2, pick x(i)0 ∈Ci and choose {ρ(i)
k }, {β

(i)
k }, {δ

(i)
k }, {ε

(i)
k } and {µk} such

that ρ
(i)
k > ρ(i) > 0, β

(i)
k ≥ 0, ε

(i)
k ≥ 0, 0 < a < δ

(i)
k < b < 1, 0 < λ ≤ µk ≤ γ < 1

(D2
1‖A1‖2+D2

2‖A2‖2)
,

∑
∞
k=0

β
(i)
k

ρ
(i)
k

= ∞, ∑
∞
k=0

β
(i)
k ε

(i)
k

ρ
(i)
k

< ∞ and ∑
∞
k=0(β

(i)
k )2 < ∞.

2: Find w(i)
k ∈ E∗i ,(i = 1,2) such that

wi
k ∈ ∂

ε
(i)
k

fi(x
(i)
k , ·)(x(i)k ).

Let η
(i)
k = max{ρ(i)

k ,‖w(i)
k ‖} and α

(i)
k =

β
(i)
k

η
(i)
k

.

3: Compute {
y(1)k = ΠC1J−1

E1
(JE1x(1)k −α

(1)
k w(1)

k ),

y(2)k = ΠC2J−1
E1

(JE2x(2)k −α
(2)
k w(2)

k ).
(3.1)

4: Compute {
t(1)k = J−1

E1
(δ

(1)
k JE1x(1)k +(1−δ

(1)
k )JE1y(1)k ),

t(2)k = J−1
E2

(δ
(2)
k JE2x(2)k +(1−δ

(2)
k )JE2y(2)k ).

(3.2)

5: Compute {
x(1)k+1 = ΠC1J−1

E1
(JE1t

(1)
k −µkA∗1JE3(A1t(1)k −A2t(2)k ),

x(2)k+1 = ΠC2J−1
E2

(JE2t
(2)
k +µkA∗2JE3(A1t(1)k −A2t(2)k ).

(3.3)

6: Set k:=k+1 and go to 2.

4. MAIN RESULTS

Lemma 4.1. Let {y(1)k }, {t
(1)
k }, {x

(1)
k }, {y

(2)
k }, {t

(2)
k } and {x(2)k } be sequences generated by the Algorithm

1. For (x∗,y∗) ∈ S, we have

φ(x∗, t(1)k ) ≤ φ(x∗,x(1)k )+2α
(1)
k (1−δ

(1)
k ) f1(x

(1)
k ,x∗)

−(1−δ
(1)
k )φ(y(1)k ,x(1)k )+ξ

(1)
k (4.1)
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and

φ(y∗, t(2)k ) ≤ φ(y∗,x(2)k )+2α
(2)
k (1−δ

(2)
k ) f2(x

(2)
k ,y∗)

−(1−δ
(2)
k )φ(y(2)k ,x(2)k )+ξ

(2)
k , (4.2)

where

ξ
(i)
k = 2(1−δ

(i)
k )

β
(i)
k ε

(i)
k

ρ
(i)
k

+2(1−δ
(i)
k )

(β
(i)
k )2

θi
.

for i = 1,2.

Proof. From y(1)k = ΠC1J−1
E1

(JE1x(1)k −α
(1)
k w(1)

k ), we have

〈JE1x(1)k −α
(1)
k w(1)

k − JE1y(1)k ,y(1)k − x∗〉 ≥ 0.

Thus

〈x∗− y(1)k ,JE1x(1)k − JE1y(1)k 〉 ≤ α
(1)
k 〈w

(1)
k ,x∗− y(1)k 〉

= α
(1)
k 〈w

(1)
k ,x∗− x(1)k 〉+α

(1)
k 〈w

(1)
k ,x(1)k − y(1)k 〉

≤ α
(1)
k 〈w

(1)
k ,x∗− x(1)k 〉+α

(1)
k ‖w

(1)
k ‖‖x

(1)
k − y(1)k ‖. (4.3)

Moreover, since x(1)k ∈C1, we have

〈JE1x(1)k −α
(1)
k w(1)

k − JE1y(1)k ,y(1)k − x(1)k 〉 ≥ 0. (4.4)

Therefore, it follows from Lemma 2.5, Lemma 2.1(2) and (4.4) that

2θ1‖x(1)k − y(1)k ‖
2 ≤ φ(x(1)k ,y(1)k )+φ(y(1)k ,x(1)k )

= 2〈JE1x(1)k − JE1y(1)k ,x(1)k − y(1)k 〉

≤ 2α
(1)
k 〈w

(1)
k ,x(1)k − y(1)k 〉

≤ 2α
(1)
k ‖w

(1)
k ‖‖x

(1)
k − y(1)k ‖. (4.5)

From (4.5), we obtain

‖x(1)k − y(1)k ‖ ≤
α
(1)
k

θ1
‖w(1)

k ‖. (4.6)

Thus,

α
(1)
k ‖w

(1)
k ‖‖x

(1)
k − y(1)k ‖ ≤

1
θ1

(α
(1)
k ‖w

(1)
k ‖)

2

=
1
θ1

(
β
(1)
k

η
(1)
k

‖w(1)
k ‖
)2

=
(β

(1)
k )2

θ1

( ‖w(1)
k ‖

max{ρ(1)
k ,‖w(1)

k ‖}

)2
≤

(β
(1)
k )2

θ1
. (4.7)

Since x(1)k ∈C1 and w(1)
k ∈ ∂

ε
(1)
k

f1(x
(1)
k , .)(x(1)k ), we have

f1(x
(1)
k ,x∗)+ ε

(1)
k = f1(x

(1)
k ,x∗)− f1(x

(1)
k ,x(1)k )+ ε

(1)
k

≥ 〈w(1)
k ,x∗− x(1)k 〉. (4.8)
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Using the definitions of α
(1)
k and η

(1)
k , we obtain

α
(1)
k =

β
(1)
k

η
(1)
k

=
β
(1)
k

max{ρ(1)
k ,‖w(1)

k ‖}
≤

β
(1)
k

ρ
(1)
k

. (4.9)

From (4.3)-(4.9), we have

〈x∗− y(1)k ,JE1x(1)k − JE1y(1)k 〉 ≤ α
(1)
k f1(x

(1)
k ,x∗)+

β
(1)
k ε

(1)
k

ρ
(1)
k

+
(β

(1)
k )2

θ1
. (4.10)

By Lemma 2.1(1), we have

2〈x∗− y(1)k ,JE1x(1)k − JE1y(1)k 〉= φ(x∗,y(1)k )+φ(y(1)k ,x(1)k )−φ(x∗,x(1)k ). (4.11)

Combining (4.10) and (4.11), we have

φ(x∗,y(1)k ) ≤ φ(x∗,x(1)k )−φ(y(1)k ,x(1)k )

+2α
(1)
k f1(x

(1)
k ,x∗)+

2β
(1)
k ε

(1)
k

ρ
(1)
k

+
2(β (1)

k )2

θ1
. (4.12)

Furthermore, by the definition of t(1)k , we have

φ(x∗, t(1)k ) = φ(x∗,J−1
E1

(δ
(1)
k JE1x(1)k +(1−δ

(1)
k )JE1y(1)k ))

≤ δ
(1)
k φ(x∗,x(1)k )+(1−δ

(1)
k )φ(x∗,y(1)k ). (4.13)

It then follows from (4.12) and (4.13) that

φ(x∗, t(1)k ) ≤ δ
(1)
k φ(x∗,x(1)k )+(1−δ

(1)
k )[φ(x∗,x(1)k )−φ(y(1)k ,x(1)k )

+2α
(1)
k f1(x

(1)
k ,x∗)+

2β
(1)
k ε

(1)
k

ρ
(1)
k

+
2(β (1)

k )2

θ1
], (4.14)

which means

φ(x∗, t(1)k ) ≤ φ(x∗,x(1)k )+2α
(1)
k f1(x

(1)
k ,x∗)− (1−δ

(1)
k )φ(y(1)k ,x(1)k )+ξ

1
k . (4.15)

Similarly, we have

φ(y∗, t(2)k ) ≤ φ(y∗,x(2)k )+2α
(2)
k f2(x

(2)
k ,y∗)− (1−δ

(2)
k )φ(y(2)k ,x(2)k )+ξ

2
k . (4.16)

�

Lemma 4.2. Let {y(1)k }, {y
(2)
k }, {t

(1)
k }, {t

(2)
k }, {x

(1)
k } and {x(2)k } be the sequences generated by the Algo-

rithm 1. Let (x∗,y∗) ∈ S. Then

φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1) ≤ φ(x∗,x(1)k )+φ(y∗,x(2)k )+2(1−δ
(1)
k )α

(1)
k f1(x

(1)
k ,x∗)

+2(1−δ
(2)
k )α

(2)
k f2(x

(2)
k ,y∗)+ξ

(1)
k +ξ

(1)
k −Kk, (4.17)

where

Kk =(1−δ
(1)
k )φ(y(1)k ,x(1)k )+(1−δ

(2)
k )φ(y(2)k ,x(2)k )+2µk[1−µk(D2

1‖A1‖2+D2
2‖A2‖2)]‖A1t(1)k −A2t(2)k ‖

2.
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Proof.

φ(x∗,x(1)k+1) = φ(x∗,ΠC1J−1
E1

(JE1t
(1)
k −µkA∗1JE3(A1t(1)k −A2t(2)k )))

≤ φ(x∗,J−1
E1

(JE1t
(1)
k −µkA∗1JE3(A1t(1)k −A2t(2)k )))

= ‖JE1t
(1)
k −µkA∗1JE3(A1t(1)k −A2t(2)k )‖2−2〈x∗,JE1t

(1)
k 〉

+2〈x∗,µkA∗1JE3(A1t(1)k −A2t(2)k )〉+‖x∗‖2

= ‖x∗‖2−2〈x∗,JE1t
(1)
k 〉+‖t

(1)
k ‖

2−2µk〈A1t(1)k ,JE3(A1t(1)k −A2t(2)k )〉

+2µk〈A1x∗,JE3(A1t(1)k −A2t(2)k )〉+2µ
2
k D2

1‖A1‖2‖A1t(1)k −A2t(2)k ‖
2

= φ(x∗, t(1)k )+2µk〈A1x∗−A1t(1)k ,JE3(A1t(1)k −A2t(2)k )〉

+2µ
2
k D2

1‖A1‖2‖A1t(1)k −A2t(2)k ‖
2. (4.18)

Similarly, we have

φ(y∗,x(2)k+1) ≤ φ(y∗, t(2)k )+2µk〈A2t(2)k −A2y∗,JE3(A1t(1)k −A2t(2)k )〉

+2µ
2
k D2

2‖A2‖2‖A1t(1)k −A2t(2)k ‖
2. (4.19)

Adding (4.18) and (4.19) and noting that A1x∗ = A2y∗, we obtain

φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1) ≤ φ(x∗, t(1)k )+φ(y∗, t(2)k )

+2µk〈A2t(2)k −A1t(1)k ,JE3(A1t(1)k −A2t(2)k )〉

+2µ
2
k (D

2
1‖A1‖2 +D2

2‖A2‖2)‖A1t(1)k −A2t(2)k ‖
2

= φ(x∗, t(1)k )+φ(y∗, t(2)k )−2µk‖A1t(1)k −A2t(2)k ‖
2

+2µ
2
k (D

2
1‖A1‖2 +D2

2‖A2‖2)‖A1t(1)k −A2t(2)k ‖
2

= φ(x∗, t(1)k )+φ(y∗, t(2)k )

−2µk[1−µk(D2
1‖A1‖2 +D2

2‖A2‖2)]‖A1t(1)k −A2t(2)k ‖
2. (4.20)

From Lemma 4.1 and (4.20), we get

φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1) (4.21)

≤ φ(x∗,x(1)k )+φ(y∗,x(2)k )+2α
(1)
k (1−δ

(1)
k ) f1(x

(1)
k ,x∗)

−(1−δ
(1)
k )φ(y(1)k ,x(1)k )+ξ

(1)
k

+2α
(2)
k (1−δ

(2)
k ) f2(x

(2)
k ,y∗)− (1−δ

(2)
k )φ(y(2)k ,x(2)k )

+ξ
(2)
k −2µk[1−µk(D2

1‖A1‖2 +D2
2‖A2‖2)]‖A1t(1)k −A2t(2)k ‖

2

= φ(x∗,x(1)k )+φ(y∗,x(2)k )+2α
(1)
k (1−δ

(1)
k ) f1(x

(1)
k ,x∗)

+2α
(2)
k (1−δ

(2)
k ) f2(x

(2)
k ,x∗)−Kk +ξ

(1)
k +ξ

(2)
k . (4.22)

�

Lemma 4.3. Let {y(1)k },{y
(2)
k },{x

(1)
k },{x

(2)
k },{t

(1)
k } and {t(2)k } be the sequences generated by the Algo-

rithm 1. Then, for (x∗,y∗) ∈ S,
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i. The limit of the sequence {φ(x∗,x(1)k )+ φ(y∗,x(2)k )} exists and therefore {x(1)k } and {x(2)k } are
bounded.

ii. limsup
k→∞

f1(x
(1)
k ,x) = 0 and limsup

k→∞

f2(x
(2)
k ,y) = 0 for all (x,y) ∈ S.

iii.

lim
k→∞

‖A1t(1)k −A2t(2)k ‖= 0,

lim
k→∞

‖y(1)k − x(1)k ‖= lim
k→∞

‖y(2)k − x(2)k ‖= 0,

lim
k→∞

‖t(1)k − x(1)k ‖= lim
k→∞

‖t(2)k − x(2)k ‖= 0.

Proof. i. Let (x∗,y∗) ∈ S. Since f1(x
(1)
k ,x∗)≤ 0, f2(x

(2)
k ,y∗)≤ 0, and Kk ≥ 0, from Lemma 4.2, we

have

φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1) ≤ φ(x∗,x(1)k )+φ(y∗,x(2)k )+ξ
(1)
k +ξ

(2)
k . (4.23)

Observing that, for i = 1,2,

ξ
(i)
k = 2(1−δ

(i)
k )

β
(i)
k ε

(i)
k

ρ
(i)
k

+2(1−δ
(i)
k )

(β
(i)
k )2

θi

≤ 2
β
(i)
k ε

(i)
k

ρ
(i)
k

+2
(β

(i)
k )2

θi
,

and using the initialization condition of the parameters, we can see that ∑
∞
k=0 ξ

(i)
k < ∞, i = 1,2.

Therefore, it follows (4.23) that limk→∞((φ(x∗,x
(1)
k )+φ(y∗,x(2)k )) exists and this implies that the

sequences {x(1)k } and {x(2)k } are bounded.
ii. From Lemma 4.2, we have

Kk +2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]+2(1−δ

(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]

≤ (φ(x∗,x(1)k )+φ(y∗,x(2)k ))− (φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1))+ξ
(1)
k +ξ

(2)
k

≤ (φ(x∗,x(1)k )+φ(y∗,x(2)k ))− (φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1))

+2
β
(1)
k ε

(1)
k

ρ
(1)
k

+2
(β

(1)
k )2

θ1
+2

β
(2)
k ε

(2)
k

ρ
(2)
k

+2
(β

(2)
k )2

θ2
. (4.24)

Summing up the above inequalities for every N, we obtain

0 ≤
N

∑
k=0

(
Kk +2(1−δ

(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]+2(1−δ

(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]

)
≤

N

∑
k=0

[
(φ(x∗,x(1)k )+φ(y∗,x(2)k ))− (φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1))

+2
β
(1)
k ε

(1)
k

ρ
(1)
k

+2
(β

(1)
k )2

θ1
+2

β
(2)
k ε

(2)
k

ρ
(2)
k

+2
(β

(2)
k )2

θ2

]
, (4.25)
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which gives

0 ≤
N

∑
k=0

Kk +
N

∑
k=0

2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]

+
N

∑
k=0

2(1−δ
(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]

≤ (φ(x∗,x(1)0 )+φ(y∗,x(2)0 ))− (φ(x∗,x(1)N+1)+φ(y∗,x(2)N+1))

+2
N

∑
k=0

β
(1)
k ε

(1)
k

ρ
(1)
k

+2
N

∑
k=0

(β
(1)
k )2

θ1
+2

N

∑
k=0

β
(2)
k ε

(2)
k

ρ
(2)
k

+2
N

∑
k=0

(β
(2)
k )2

θ2
. (4.26)

Letting N→ ∞, we have

0 ≤
∞

∑
k=0

Kk +
∞

∑
k=0

2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]

+
∞

∑
k=0

2(1−δ
(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]< ∞. (4.27)

Hence,
∞

∑
k=0

Kk < ∞, (4.28)

∞

∑
k=0

2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]< ∞ (4.29)

and
∞

∑
k=0

2(1−δ
(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]< ∞. (4.30)

Since the sequence {x(1)k } is bounded, by the Condition B (B6), the sequence {w(1)
k } is also

bounded. Thus there exists a real number w(1) ≥ ρ(1) such that ‖w(1)
k ‖ ≤ w(1). Therefore,

α
(1)
k =

β
(1)
k

η
(1)
k

=
β
(1)
k

max{ρ(1)
k ,‖w(1)

k ‖}
=

β
(1)
k

ρ
(1)
k max{1, ‖w

(1)
k ‖

ρ
(1)
k

}
≥

β
(1)
k ρ(1)

ρ
(1)
k w(1)

. (4.31)

Note that

0 < 2(1−b)
∞

∑
k=0

α
(1)
k [− f1(x

(1)
k ,x∗)]

≤
∞

∑
k=0

2(1−δ
(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]< ∞. (4.32)

From (4.31) and (4.32), we have

0 < 2(1−b)
∞

∑
k=0

β
(1)
k ρ(1)

ρ
(1)
k w(1)

[− f1(x
(1)
k ,x∗)]

≤ 2(1−b)
∞

∑
k=0

α
(1)
k [− f1(x

(1)
k ,x∗)]< ∞. (4.33)
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That is

0 ≤ 2ρ(1)(1−b)
w(1)

∞

∑
k=0

β
(1)
k

ρ
(1)
k

[− f1(x
(1)
k ,x∗)]< ∞. (4.34)

Similarly, we have

0≤ 2ρ(2)(1−b)
w(2)

∞

∑
k=0

β
(2)
k

ρ
(2)
k

[− f2(x
(2)
k ,x∗)]< ∞. (4.35)

Since ∑
∞
k=0

β
(i)
k

ρ
(i)
k

= ∞, i = 1,2, − f1(x∗,x
(1)
k )≤ 0 and − f2(y∗,x

(2)
k )≤ 0, we conclude that

limsup
k→∞

f1(x
(1)
k ,x) = 0 and limsup

k→∞

f2(x
(2)
k ,y) = 0, ∀(x,y) ∈ S.

iii. From (4.28), the conditions

µk ∈ (λ ,γ)⊂ (0,
1

D1‖A1‖2 +D2‖A2‖2 )

and 0 < a < δ i
k < b < 1, i = 1,2, we have

lim
k→∞

‖A1t(1)k −A2t(2)k ‖= 0.

Also limk→∞ φ(y(1)k ,x(1)k ) = 0, which implies limk→∞ ‖x
(1)
k − y(1)k ‖= 0.

Similarly, limk→∞ φ(y(2)k ,x(2)k ) = 0, and consequently limk→∞ ‖x
(2)
k − y(2)k ‖ = 0. Since E1 is uni-

formly smooth, we have that the duality mapping JE1 is uniformly norm to norm continuous.
From limk→∞ ‖x

(1)
k − y(1)k ‖= 0, we have

‖JE(1)t
(1)
k − JE1x(1)k ‖ = ‖δ (1)

k JE1x(1)k +(1−δ
(1)
k )JE1y(1)k − JE1x(1)k ‖

= (1−δ
(1)
k )‖JE1y(1)k − JE1x(1)k ‖→ 0,k→ ∞.

Moreover, since E1 is 2-uniformly convex, we have that E∗1 is 2-uniformly smooth which implies
it is uniformly smooth and thus J−1

E1
is uniformly norm to norm continuous.

Therefore,

‖t(1)k − x(1)k ‖= ‖J
−1
E1

JE1t
(1)
k − J−1

E1
JE1x(1)k ‖→ 0,k→ ∞.

By the same line of argument, we have ‖t(2)k − x(2)k ‖→ 0 as k→ ∞.

�

Theorem 4.1. Assume that f1 and f2 satisfy condition B and let {y(1)k },{y
(2)
k },{t

(1)
k }, {t

(2)
k } {x

(1)
k } and

x(2)k be the sequences generated by the Algorithm 1. Then the sequences {(y(1)k ,y(2)k )}, {(t(1)k , t(2)k )} and

{(x(1)k ,x(2)k )} converge strongly to (p,q) ∈ S.

Proof. Let (x∗,y∗) ∈ S. From Lemma 4.3(i), we see that the sequence {x(1)k } and {x(2)k } are bounded.
Therefore, there exists a subsequence {x(1)k j

} of {x(1)k } such that x(1)k j
⇀ p, where p ∈C1 and

limsup
j→∞

f1(x
(1)
k j
,x∗) = lim

i→∞
f1(x

(1)
ki
,x∗).
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Also, there exists a subsequence {x(2)k j
} of {x(2)k } such that x(2)k j

⇀ q, where q ∈C2 and

limsup
j→∞

f2(x
(2)
k j
,x∗) = lim

i→∞
f2(x

(2)
ki
,x∗).

By the weakly upper semicontinuity of f1(·,x∗) and Lemma 4.3(ii), we have

f1(p,x∗)≥ limsup
j→∞

f1(x
(1)
k j
,x∗) = lim

i→∞
f1(x

(1)
ki
,x∗) = limsup

k→∞

f1(x
(1)
k ,x∗) = 0. (4.36)

Since x∗ ∈ EP( f1,C1) and p ∈ C1, we have f1(x∗, p) ≥ 0. From the pseudomonotonicity of f1, we
have f (p,x∗) ≤ 0. This together with (4.35) gives f1(x∗, p) = 0. Hence, by Condition B3, we have
p ∈ EP( f1,C1). Similarly, we obtain q ∈ EP( f2,C2). By the fact that limk→∞ ‖x

(i)
k − t(i)k ‖ = 0, we have

that t(1)k j
⇀ p and t(2)k j

⇀ q. Moreover, since A1 and A2 are bounded linear operators, we have A1t(1)k j
⇀A1 p.

and A1t(2)k j
⇀ A2q. Also, by weakly semi-continuity of norms, it follows that

‖A1 p−A2q‖ ≤ liminf
k→∞

‖A1t(1)k −A2t(2)k ‖= 0. (4.37)

Hence, we have that (p,q)∈ S and (p,q) is a weak cluster point of the sequence {(x(1)k ,x(2)k )}. By Lemma
4.3, {φ(p,x(1)k ) + φ(q,x(2)k )} converges. Hence, we conclude that {(x(1)k ,x(2)k )} strongly converges to
(p,q). �

We now give a convergence result which does not require the prior knowledge of the operator norm.

Lemma 4.4. Let {y(1)k }, {y
(2)
k }, {t

(1)
k }, {t

(2)
k }, {x

(1)
k } and {x(2)k } be the sequences generated by the Algo-

rithm 1 but with the step size µk chosen as follows:

µk ∈
(

ε,
2‖A1t(1)k −A2t(2)k ‖2

D2
1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2 +D2

2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2
− ε

)
,k ∈Ω,

otherwise µk = µ(µ being any positive real number), where Ω= {k : A1t(1)k −A2t(2)k 6= 0}. Let (x∗,y∗)∈ S.
Then

φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1) ≤ φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1 +2(1−δ
(1)
k )α

(1)
k f1(x

(1)
k ,x∗)

+2(1−δ
(2)
k )α

(2)
k f2(x

(2)
k ,x∗)+ξ

(1)
k +ξ

(1)
k −Pk, (4.38)

where

Pk = (1−δ
(1)
k )φ(y(1)k ,x(1)k )+(1−δ

(2)
k )φ(y(2)k ,x(2)k )

+ε(D2
1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2 +D2

2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2).

Proof. First we show that µk is well defined. Since (x∗,y∗) ∈ S, we have A1x∗ = By∗.
Now

〈A∗1JE3(A1t(1)k −A2t(2)k ), t(1)k − x∗〉= 〈JE3(A1t(1)k −A2t(2)k ),A1t(1)k −A1x∗〉 (4.39)

and

〈A∗2JE3(A1t(1)k −A2t(2)k ),y∗− t(2)k 〉= 〈JE3(A1t(1)k −A2t(2)k ),A1y∗−A1t(2)k 〉. (4.40)
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Thus, adding (4.39) and (4.40), we obtain, ∀k ∈Ω,

‖A1t(1)k −A2t(2)k ‖
2 = 〈A∗1JE3(A1t(1)k −A2t(1)k ), t(1)k − x∗〉

+〈A∗2JE3(A1t(1)k −A2t(1)k ),y∗− t(2)k 〉

≤ ‖A∗1JE3(A1t(1)k −A2t(1)k )‖‖t(1)k − x∗‖

+‖A∗2JE3(A1t(1)k −A2t(1)k )‖‖y∗− t(2)k ‖. (4.41)

Therefore, for k ∈Ω, ‖A1t(1)k −A2t(2)k ‖> 0. We have

‖A∗1JE3(A1t(1)k −A2t(1)k )‖ 6= 0

or

‖A∗2JE3(A1t(1)k −A2t(1)k )‖ 6= 0.

Hence µk is well defined. Now,

φ(x∗,x(1)k+1) = φ(x∗,ΠC1J−1
E1

(JE1t
(1)
k −µkA∗1JE3(A1t(1)k −A2t(2)k )))

≤ φ(x∗,J−1
E1

(JE1t
(1)
k −µkA∗1JE3(A1t(1)k −A2t(2)k )))

= ‖JE1t
(1)
k −µkA∗1JE3(A1t(1)k −A2t(2)k )‖2−2〈x∗,JE1t

(1)
k 〉

+2〈x∗,µkA∗1JE3(A1t(1)k −A2t(2)k )〉+‖x∗‖2

= ‖x∗‖2−2〈x∗,JE1t
(1)
k 〉+‖t

(1)
k ‖

2−2µk〈A1t(1)k ,JE3(A1t(1)k −A2t(2)k )〉

+2µk〈A1x∗,JE3(A1t(1)k −A2t(2)k )〉+2µ
2
k D2

1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2

= φ(x∗, t(1)k )+2µk〈A1x∗−A1t(1)k ,JE3(A1t(1)k −A2t(2)k )〉

+2µ
2
k D2

1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2. (4.42)

Similarly, we have

φ(y∗,x(2)k+1) ≤ φ(y∗, t(2)k )+2µk〈A2t(2)k −A2y∗,JE3(A1t(1)k −A2t(2)k )〉

+2µ
2
k D2

2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2. (4.43)

Adding (4.42) and (4.43) and noting that A1x∗ = A2y∗, we obtain

φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1) ≤ φ(x∗, t(1)k )+φ(y∗, t(2)k )+2µk〈A2t(2)k −A1t(1)k ,JE3(A1t(1)k −A2t(2)k )〉

+2µ
2
k D2

1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2 +2µ
2
k D2

2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2

= φ(x∗, t(1)k )+φ(y∗, t(2)k )−2µk[‖A1t(1)k −A2t(2)k ‖
2

+µk(D2
1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2

+D2
2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2)]

= φ(x∗, t(1)k )+φ(y∗, t(2)k )−2ε(D2
1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2

+D2
2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2). (4.44)
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From Lemma 4.1 and (4.44), we get

φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1) (4.45)

≤ φ(x∗,x(1)k )+φ(y∗,x(2)k )+2α
(1)
k (1−δ

(1)
k ) f1(x

(1)
k ,x∗)

−(1−δ
(1)
k )φ(y(1)k ,x(1)k )+ξ

(1)
k

+2α
(2)
k (1−δ

(2)
k ) f2(x

(2)
k ,y∗)− (1−δ

(2)
k )φ(y(2)k ,x(2)k )

+ξ
(2)
k −2ε(D2

1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2 +D2
2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2)

= φ(x∗,x(1)k )+φ(y∗,x(2)k )+2α
(1)
k (1−δ

(1)
k ) f1(x

(1)
k ,x∗)

+2α
(2)
k (1−δ

(2)
k ) f2(x

(2)
k ,y∗)−Pk +ξ

(1)
k +ξ

(2)
k . (4.46)

�

Lemma 4.5. Let {y(1)k },{y
(2)
k },{x

(1)
k },{x

(2)
k },{t

(1)
k } and {t(2)k } be the sequences generated by the Algo-

rithm 1 and µk be as in Lemma 4.4. Then, for (x∗,y∗) ∈ S:

i. The limit of the sequence {φ(x∗,x(1)k )+ φ(y∗,x(2)k )} exists and therefore {x(1)k } and {x(2)k } are
bounded.

ii. limsup
k→∞

f1(x
(1)
k ,x) = 0 and limsup

k→∞

f2(x
(2)
k ,y) = 0 for all (x,y) ∈ S.

iii.

lim
k→∞

‖A1t(1)k −A2t(2)k ‖= 0,

lim
k→∞

‖y(1)k − x(1)k ‖= lim
k→∞

‖y(2)k − x(2)k ‖= 0,

lim
k→∞

‖t(1)k − x(1)k ‖= lim
k→∞

‖t(2)k − x(2)k ‖= 0.

Proof. i. The proof is similar to the proof of Lemma 4.3 with Kk replaced with Pk and Lemma 4.2
replaced by Lemma 4.4. Thus we omit the proof.

ii. From Lemma 4.4, we have

Pk +2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]+2(1−δ

(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]

≤ (φ(x∗,x(1)k )+φ(y∗,x(2)k ))− (φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1))+ξ
(1)
k +ξ

(2)
k

≤ (φ(x∗,x(1)k )+φ(y∗,x(2)k ))− (φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1))

+2
β
(1)
k ε

(1)
k

ρ
(1)
k

+2
(β

(1)
k )2

θ1
+2

β
(2)
k ε

(2)
k

ρ
(2)
k

+2
(β

(2)
k )2

θ2
. (4.47)

Summing up the above inequalities for every N, we obtain

0 ≤
N

∑
k=0

(
Pk +2(1−δ

(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]+2(1−δ

(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]

)
≤

N

∑
k=0

[
(φ(x∗,x(1)k )+φ(y∗,x(2)k ))− (φ(x∗,x(1)k+1)+φ(y∗,x(2)k+1))

+2
β
(1)
k ε

(1)
k

ρ
(1)
k

+2
(β

(1)
k )2

θ1
+2

β
(2)
k ε

(2)
k

ρ
(2)
k

+2
(β

(2)
k )2

θ2

]
, (4.48)
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which gives

0 ≤
N

∑
k=0

Pk +
N

∑
k=0

2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]

+
N

∑
k=0

2(1−δ
(1)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]

≤ (φ(x∗,x(1)0 )+φ(y∗,x(2)0 ))− (φ(x∗,x(1)N+1)+φ(y∗,x(2)N+1))

+2
N

∑
k=0

β
(1)
k ε

(1)
k

ρ
(1)
k

+2
N

∑
k=0

(β
(1)
k )2

θ1
+2

N

∑
k=0

β
(2)
k ε

(2)
k

ρ
(2)
k

+2
N

∑
k=0

(β
(2)
k )2

θ2
. (4.49)

Letting N→ ∞, we have

0 ≤
∞

∑
k=0

Pk +
∞

∑
k=0

2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]

+
∞

∑
k=0

2(1−δ
(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]< ∞. (4.50)

Hence,
∞

∑
k=0

Pk < ∞, (4.51)

∞

∑
k=0

2(1−δ
(1)
k )α

(1)
k [− f1(x

(1)
k ,x∗)]< ∞ (4.52)

and
∞

∑
k=0

2(1−δ
(2)
k )α

(2)
k [− f2(x

(2)
k ,y∗)]< ∞. (4.53)

Since the sequence {x(1)k } is bounded, then by the Condition B (B6) the sequence {w(1)
k } is also

bounded. Thus there exists a real number w(1) ≥ ρ(1) such that ‖w(1)
k ‖ ≤ w(1). Therefore, the

conclusion follows as in Lemma 4.3 (ii) ((4.31)-(4.35)).
iii. From (4.51) and 0 < a≤ δ i

k ≤ b < 1, i = 1,2, we have

lim
k→∞

(D2
1‖A∗1JE3(A1t(1)k −A2t(2)k )‖2 +D2

2‖A∗2JE3(A1t(1)k −A2t(2)k )‖2) = 0. (4.54)

Also limk→∞ φ(y(1)k ,x(1)k ) = 0, which implies limk→∞ ‖x
(1)
k − y(1)k ‖= 0.

Similarly, limk→∞ φ(y(2)k ,x(2)k ) = 0, and consequently limk→∞ ‖x
(2)
k − y(2)k ‖ = 0. Now since E1 is

uniformly smooth, we have that the duality mapping JE1 is uniformly norm to norm continuous.
From limk→∞ ‖x

(1)
k − y(1)k ‖= 0, we have

‖JE(1)t
(1)
k − JE1x(1)k ‖ = ‖δ (1)

k JE1x(1)k +(1−δ
(1)
k )JE1y(1)k − JE1x(1)k ‖

= (1−δ
(1)
k )‖JE1y(1)k − JE1x(1)k ‖.

As k→ ∞, one has
‖JE(1)t

(1)
k − JE1x(1)k ‖→ 0.

Moreover, since E1 is 2-uniformly convex, we have that E∗1 is 2-uniformly smooth which implies
it is uniformly smooth and thus J−1

E1
is uniformly norm to norm continuous.
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Therefore,

‖t(1)k − x(1)k ‖= ‖J
−1
E1

JE1t
(1)
k − J−1

E1
JE1x(1)k ‖→ 0,k→ ∞.

By the same line of argument, we have

‖t(2)k − x(2)k ‖→ 0,k→ ∞.

From (4.54), we have

lim
k→∞

‖A∗1JE3(A1t(1)k −A2t(2)k )‖2 = 0 (4.55)

and

lim
k→∞

‖A∗2JE3(A1t(1)k −A2t(2)k )‖2 = 0. (4.56)

Thus, from (4.41), (4.55) and (4.56), we have

‖A1t(1)k −A2t(2)k ‖
2 ≤ ‖A∗1JE3(A1t(1)k −A2t(1)k )‖‖t(1)k − x∗‖

+‖A∗2JE3(A1t(1)k −A2t(1)k )‖‖y∗− t(2)k ‖→ 0. (4.57)

�

Theorem 4.2. Assume that f1 and f2 satisfy condition B and let {y(1)k },{y
(2)
k },{t

(1)
k }, {t

(2)
k } {x

(1)
k } and

{x(2)k } be the sequences generated by the Algorithm 1 and µk be as in Lemma 4.4. Then the sequences

{(y(1)k ,y(2)k )}, {(t(1)k , t(2)k )} and {(x(1)k ,x(2)k )} converge strongly to (p,q) ∈ S.

Proof. The proof is similar to the proof of Theorem 4.1 with Lemma 4.3 replaced with Lemma 4.5 and
therefore it is omitted. �

5. APPLICATIONS TO THE DOMAIN DECOMPOSITION FOR PDES

Let E1, E2 and E3 be Banach spaces. Let h1 : E1→R∪{+∞} and h2 : E2→R∪{+∞} be two convex,
lower semicontinuous and subdifferentiable functionals functionals. Let A1 : E1→ E3 and A2 : E2→ E3

be bounded linear operators. Let f1 : E1×E1→ R and f2 : E2×E2→ R be defined respectively as

f1(x,y) := h1(y)−h1(x)

and
f2(x,y) := h2(y)−h2(x).

The SEEP (1.1)-(1.2) is reduced to the following split equality convex minimization problems: Find
x∗ ∈ E1, y∗ ∈ E2 such that

h1(x∗)≤ h1(x), ∀x ∈ E1; h2(y∗)≤ h2(y), ∀y ∈ E2, (5.1)

and
A1x∗ = A2y∗. (5.2)

Equivalently, we have the following optimization problem with weak coupling in the constraint

min
(x,y)∈E1×E2

{h1(x)+h2(y);A1x = A2y}. (5.3)

Let us now convert the following problem arising from the domain decomposition for PDEs, (see [6])
to split equality convex minimization problems (5.1)-(5.2).
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Let Ω ⊂ Rn be a bounded domain with C2 boundary. Supposed that the set Ω is decomposed into
two nonoverlapping Lipschitz subdomains Ω1 and Ω2 with a common interface Γ. Let h ∈ L2(Ω) be a
function and consider the following Neumann boundary value problem on Ω

{
−∆ω = h on Ω,
∂ω

∂n = 0 on ∂Ω,
(5.4)

where ∂ω

∂n = ∇ω ·→n and
→
n is the unit outward normal to ∂Ω. We make the assumption that

∫
Ω

h = 0,
which is a necessary and sufficient condition for the existence of a solution. The weak solutions of the
above Neumann problem satisfy the following minimization problem

min
{1

2

∫
Ω

|∇ω|2−
∫

Ω

hω;ω ∈ H1(Ω)
}
, (5.5)

see, for example, [5, 10]. Furthermore, denoting by ω̂ a particular solution, the solution set of (5.5) is of
the form

{ω̂ + k,k ∈ R}.

If Ω is of class C2, we have from the regularity theory of weak solutions that ω̂ ∈H2(Ω), see, for instance,
[1, 20]. Observe that, if ω ∈ H1(Ω), then the restrictions u = ω|Ω1 and v = ω|Ω2 belongs respectively to
H1(Ω1) and H1(Ω2). Moreover u|Γ = v|Γ. Conversely, if u ∈ H1(Ω1),v ∈ H1(Ω2) and u|Γ = v|Γ, then
the function ω defined by

ω =

{
u on Ω1,

v on Ω2,
(5.6)

belongs to H1(Ω). As a consequence, problem (5.5) can be reformulated as

min{h1(u)+h2(u);(u,v) ∈ H1(Ω1)×H1(Ω2) and u|Γ = v|Γ}, (5.7)

where

h1(u) =
1
2

∫
Ω1

|∇u|2−
∫

Ω1

hu

and

h2(v) =
1
2

∫
Ω2

|∇v|2−
∫

Ω2

hv.

We can apply our Algorithm 1 to solve Problem (5.7) as follows: Let E1 = H1(Ω1),E2 = H1(Ω2) and
E3 = L2(Γ). Let the operators A1 : E1 → E3 and A2 : E2 → E3 be the trace operators on Γ, which are
well-defined by the Lipschitz character of the boundaries of Ω1 and Ω2 (see ([8], Theorem 11.46) and
([21], Theorem 2])). Consequently, we propose the following method for solving Problem (5.7) (we take
ε
(i)
k = 0 for the sake of simplicity) .
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Algorithm 2

1: Initialization: For each i = 1,2, pick x(i)0 ∈ H1(Ωi) and choose {ρ(i)
k }, {β

(i)
k }, {δ

(i)
k }, {ε

(i)
k } and

{µk} such that ρ
(i)
k > ρ(i) > 0, β

(i)
k ≥ 0, 0 < a < δ

(i)
k < b < 1, 0 < λ ≤ µk ≤ γ < 2

‖A1‖2
H1(Ω1)

+‖A2‖2
H1(Ω2)

,

∑
∞
k=0

β
(i)
k

ρ
(i)
k

= ∞, and ∑
∞
k=0(β

(i)
k )2 < ∞.

2: Find w(i)
k ∈ H1(Ωi),(i = 1,2) such that

hi(y)≥ hi(x
(i)
k )+ 〈wi

k,y− xi
k〉, ∀y ∈ H1(Ωi).

Let η
(i)
k = max{ρ(i)

k ,‖w(i)
k ‖H1(Ω1)} and α

(i)
k =

β
(i)
k

η
(i)
k

.

3: Compute {
y(1)k = x(1)k −α

(1)
k w(1)

k ,

y(2)k = x(2)k −α
(2)
k w(2)

k .
(5.8)

4: Compute {
t(1)k = δ

(1)
k x(1)k +(1−δ

(1)
k )y(1)k ,

t(2)k = δ
(2)
k x(2)k +(1−δ

(2)
k )y(2)k .

(5.9)

5: Compute {
x(1)k+1 = t(1)k −µkA∗1(A1t(1)k −A2t(2)k ),

x(2)k+1 = t(2)k +µkA∗2(A1t(1)k −A2t(2)k ).
(5.10)

6: Set k:=k+1 and go to 2.

Theorem 5.1. Let Ω ⊂ RN be a bounded domain which can be decomposed in two nonoverlapping
Lipschitz subdomains Ω1 and Ω2 with a common interface Γ. We assume that Ω is of class C2. Let
h ∈ L2(Ω) be such that

∫
Ω

h = 0 and let the functions h1 : H1(Ω1)→ R∪{+∞} and h2 : H1(Ω2)→
R∪{+∞} be as defined above. Let {y(1)k },{y

(2)
k },{t

(1)
k }, {t

(2)
k } {x

(1)
k } and x(2)k be the sequences generated

by the Algorithm 2. Then the sequences {(y(1)k ,y(2)k )}, {(t(1)k , t(2)k )} and {(x(1)k ,x(2)k )} converge strongly to
(û, v̂) ∈ H1(Ω1)×H1(Ω2), where (û, v̂) is such that the map

ω̂ =

{
û on Ω1,

v̂ on Ω2,
(5.11)

is a solution of the Neumann problem (5.4).

Acknowledgments
The first author was supported by the National Research Foundation (NRF) of South Africa (Grant Num-
bers: 111992). Opinions expressed and conclusions arrived are those of the authors and are not neces-
sarily to be attributed to the NRF. The research of the second author was supported by the Alexander von
Humboldt-Foundation. The authors are grateful to the reviewers for useful suggestions which improved
the contents of this paper.

REFERENCES

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations
satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727.



PROJECTED SUBGRADIENT-PROXIMAL METHOD 223

[2] Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A.G. Kartsatos
(Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in: Lecture Notes Pure Appl.
Math., vol. 178, Dekker, New York, 1996, pp. 15-50.

[3] Y.I. Alber, S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, PanAmer.
Math. J. 4 (1994), 39-54.

[4] K. Aoyama, F. Kohsaka, Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings,
Fixed Point Theory Appl. 2014 (2-14), Article ID 95.

[5] H. Attouch, G. Buttazzo, G. Michaille, Variational analysis in Sobolev and BV spaces, Applications to PDEs and op-
timization, in: MPS/SIAM Series on Optimization, vol. 6, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2006.

[6] H. Attouch, A. Cabot, P. Frankel, J. Peypouquet, Alternating proximal algorithms for linearly constrained variational
inequalities: Application to domain decomposition for PDEs, Nonlinear Anal. 74 (2011), 7455-7473

[7] K. Avetisyan, O. Djordjevic, M. Pavlovic, Littlewood-Paley inequalities in uniformly convex and uniformly smooth Ba-
nach spaces, J. Math. Anal. Appl. 336 (2007), 31-43.
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