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Abstract. First, we study diametrically maximal sets in the Euclidean space (those which are not prop-
erly contained in a set with the same diameter), establishing their main properties. Then, we use these
sets for exhibiting an explicit family of maximal premonotone operators. We also establish some relevant
properties of maximal premonotone operators, like their local boundedness, and finally we introduce the
notion of premonotone bifunctions, presenting a canonical relation between premonotone operators and
bifunctions, that extends the well known one, which holds in the monotone case.
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1. INTRODUCTION

We recall that, given a Hilbert space H, a point-to-set operator T : H ⇒ H is said to be
monotone whenever 〈u− v,x− y〉 ≥ 0 for all x,y ∈ H, all u ∈ T (x) and all v ∈ T (y). Monotone
operators have been proved to be an essential concept in several pure and applied areas. A
monotone operator is said to be maximal when its graph is not properly contained in the graph
of another monotone operator. Maximal monotone operators enjoy several important properties.
One of them, known as Minty’s Theorem, states that the sum of a maximal monotone operator
and the identity operator is onto, and its inverse is point-to-point (see [10]).

Several extensions of the class of monotone operators have been considered in the literature,
like submonotone operators (see [12]), hypo-monotone operators (see [8, 11]), etc. Another of
these extensions, which the one of interest in this paper, is the notion of premonotone operators,
which was introduced in [7], where it was shown that, under adequate assumptions, they enjoy
a surjectivity property akin to Minty’s Theorem for maximal monotone operators. They are
defined as follows.
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Given a function σ : Rn → [0,∞), a point-to-set operator T : Rn ⇒ Rn is said to be σ -
premonotone if 〈u− v,x− y〉 ≥ −min{σ(x),σ(y)}‖x− y‖ for all x,y ∈ Rn, all u ∈ T (x) and
all v ∈ T (y).

An adequate notion of maximal premonotone operators, which extend the concept of maximal
monotone operators, was developed in [7]. Several relevant results on premonotone operators
can be found in [1, 2, 9].

In Section 3, we will deepen the results on maximal premonotone operators given in [7],
establishing several of their properties, like, e.g., the local boundedness. We will also define the
notion of premonotone hull of a premonotone operator, extending again the similar notion for
the monotone case.

An obstacle confronted in [7] refers to the difficulty in exhibiting explicit instances of maxi-
mal premonotone operators in dimension larger than 1. In fact, the example of this kind given
in [7] consists of the sum of a monotone operator with a fixed ball. We overcome this obstacle
through the introduction of diametrically maximal sets, meaning those sets ∈Rn, which are not
properly contained in a set with the same diameter, defined as the maximal distance between
points in the set. We study this class of sets in Section 2. We present sets of this kind which
are not balls, prove that they have non-empty interior, and establish several other interesting
properties.

Diametrically maximal sets are then used in Section 4 for constructing an explicit class on
maximal premonotone operators in Rn; namely, the sums of the form T (x)=U(x)+C(x), where
U is a strongly monotone operator and C(x) is an inner Lipschitz semicontinuous operator such
that C(x) is a diametrically maximal set for all x ∈ Rn.

The theory of monotone operators T :Rn ⇒Rn has been extended to functions f :Rn×Rn→
R, to be called bifunctions in the sequel. The prototypical bifunction associated to an operator
T is given by

f (x,y) = sup
u∈T (x)

〈u,y− x〉. (1.1)

Bifunctions turned out to be the right notion for moving from variational inequalities, related
to operators, to abstract equilibrium problems (see [3]). A bifunction is said to be monotone
when f (x,y) + f (y,x) ≤ 0 for all x,y ∈ Rn. Note that, with this definition, f as in (1.1) in
monotone if and only if T is monotone.

When f (x, ·) is convex for all x ∈ Rn, we can associate to a bifunction f the operator T
defined as T (x) = ∂ f (x, ·)(x), i.e. the subdifferential of the bifunction in its second argument
evaluated at its first argument. Maximality of this operator, called the diagonal subdifferential,
was proved in [6]. Under adequate additional assumptions on the bifunction and the operator,
this relation, together with one given by (1.1), are mutual inverses. We will call it the canonical
relation between operators and bifunctions.

In Section 5, we give an appropriate definition of premonotone bifunction, extending the
notion of monotone bifunctions, establish several properties of this class of bifunctions, and
extend to premonotone operators and premonotone bifunctions the above mentioned canonical
relation.

We close this section with a remark. Most of the materials in this paper can be extended with-
out much difficulty to infinite dimensional spaces, at least to Hilbert ones. We have refrained to
do so in order to avoid a few technicalities which might unnecessarily complicate some proofs.



ON DIAMETRICALLY MAXIMAL SETS, MAXIMAL PREMONOTONE OPERATORS AND BIFUNCTIONS 255

We intend to continue this research project with a rather complete generalization of our cur-
rent results on diametrically maximal sets, maximal premonotone operators and premonotone
bifunctions to the infinite dimensional realm.

2. DIAMETRICALLY MAXIMAL SETS

Given a bounded set C ⊂ Rn, its diameter diam(C) is defined as diam(C) = sup{‖a−b‖ :
a,b ∈C}.

Definition 2.1. A bounded set C⊂Rn is said to be diametrically maximal (diam-max for short),
if for all set D⊂ Rn such that C ⊂ D and diam(C) = diam(D), it holds that C = D.

Diam-max sets are closely related to constant width sets, defined as those convex sets for
which the distance between any pair of parallel supporting hyperplanes is the same (see [4]).

It follows immediately from the definition that closed balls are diam-max sets. We will
devote most of this section to exhibit diam-max sets that are not balls. We continue with some
elementary properties of max-diam sets.

Proposition 2.1. Diametrically maximal sets are closed and convex.

Proof. If C is diam-max and there exists x∈ cl(C)\C, then the set C∪{x} has the same diameter
as C, contradicting the maximality of C. Hence C is closed.

Assume now that C is diam-max and closed. Take any x,y in the convex hull of C. It is known
that x,y are convex combinations of finite subsets of C, and then it follows easily that ‖x− y‖ ≤
diam(C). Thus, C and its convex hull have the same diameter. It follows from the maximality
of C that it coincides with its convex hull, and hence it is convex. �

Proposition 2.2. Take a ∈ Rn, α ∈ R, and a diam-max set C ⊂ Rn. Then the set αC + a is
diam-max.

Proof. Elementary. �

Proposition 2.3. Every bounded set C ⊂ Rn is contained in a diam-max set with the same
diameter.

Proof. It follows from a standard application of Zorn’s Lemma. �

Given a bounded set C, any max-diam set containing it and having the same diameter will be
said to be a diam-max extension of C.

It would be nice if every bounded set C had a unique diam-max extension (we’d call it the
diam-max hull of C), but this is not true, as the following example shows.

Example 2.1. Consider a right triangle T ⊂R2, with equal legs, so that T is also isosceles. Let
a,b be the extreme points of the hypothenuse and c the vertex at the right angle. It is immediate
that diam(T ) = ‖a−b‖. Consider the circle S centered at a+b

2 with diameter ‖a−b‖. It is
rather immediate that c belongs to S (in fact, it belongs to its boundary), so that T ⊂ S. Since
T and S have the same diameter, and circles are diam-max, S is a diam-max extension of T .
We will exhibit another one. Consider a point c′ ∈ R2 such that a,b,c′ are the vertices of an
equilateral triangle, say T ′. Clearly, T ⊂ T ′ and c′ /∈ S. It is also immediate that the diameter of
an equilateral triangle is the common length of its edges, in this case ‖a−b‖, so that diam(T ′)=
diam(T ). By Proposition 2.3, T ′ has some diam-max extension, say S′, which is obviously a
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diam-max extension of T because T and T ′ have the same diameter. Since c′ ∈ T ′ ⊂ S′ and
c′ /∈ S, it follows that S and S′ are two different diam-max extensions of S′.

Later on, we will explicitly construct a diam-max extension of an equilateral triangle. First,
since we are particularly interested in diam-max sets, which are not balls, we will give necessary
and sufficient conditions for a set to have a ball as a diam-max extension.

Given a set C⊂Rn, a pair (a,b)∈C×C is said to be antipodal if ‖a−b‖= diam(C). If (a,b)
is antipodal, the point a+b

2 is said to be a mid-diam point of C. Clearly, a set can have many
antipodal pairs and just one mid-diam pair; a circle in R2, for instance, has an infinite number
of antipodal pairs, but its only mid-diam point is its center. Regular polygons in R2 with an
even number m of edges have m

2 antipodal pairs and only one mid-diam point (again, its center),
while regular polygons in R2 with an odd number m of edges have m antipodal pairs and m
mid-diam points (which are the the vertices of a smaller regular polygon). Our characterization
result for sets admitting a ball as a diam-max extension is as follows.

Proposition 2.4. A bounded set C ⊂ Rn admits a ball as a diam-max extension if and only if it
has a unique mid-diam point, and C is contained in the closed ball B centered at the mid-diam
point with diameter equal to diam(C) (in this case, B is a diam-max extension of C).

Proof. We prove the “if” statement. By definition, diam(B) = diam(C). Since C⊂ B and closed
balls are diam-max sets, B is a diam-max extension of C.

Now we deal with the “only if” statement. Assume that C has a ball B as a diam-max exten-
sion. By definition, C ⊂ B and diam(B) = diam(C). Take any antipodal pair (a,b) of C, and
let c = a+b

2 . Since C ⊂ B, we have that a,b ∈ B. Note that ‖a−b‖= diam(C) = diam(B). An
elementary property of a ball ensures that if it contains two points a,b such that the distance
between them is the diameter of the ball, then the mid point between them must be the center of
the ball. So B is centered at a+b

2 . Since (a,b) is an arbitrary antipodal pair of C, it follows that
there exists a unique mid-diam point, and the ball B is the one specified in the statement of the
proposition. �

It follows from Proposition 2.4 that no diam-max extension of a set C with more than one mid-
diam point can be a ball. Maximal extensions of such sets (including, e.g., all regular polygons
in R2 with an odd number of edges) provide examples of diam-max sets which are not balls. On
the other hand, a regular polygon in R2 with an even number of edges, admits as a diam-max
extension the circle centered at its center (its unique mid-diam point) and passing through all
the vertices (this construction does not work for regular polygons with an odd number of edges,
because the diameter of such circle is larger than the diameter of the polygon). We continue
with two additional properties of diam-max sets.

Proposition 2.5. Let C be a diam-max set with diameter s, and c a mid-diam point of C. Then
the ball B(c,r) centered at c with radius r =

(
1−

√
3

2

)
s is contained in C.

Proof. Define C′ = C∪B(c,r). We claim that diam(C′) = s. Take any x,y ∈ C′. If x,y ∈ C,
then ‖x− y‖ ≤ s. If x,y ∈ B(c,r), then ‖x− y‖ ≤

(
2−
√

3
)

s ≤ s. Finally, assume that x ∈
C,y ∈ B(c,r). Let (a,b) be an antipodal pair in CC with c = a+b

2 . Then 2c = a+ b, and so
0 = 〈x−c,a−c〉+〈x−c,b−c〉, so that one of these two inner products is nonpositive. Without
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loss of generality, assume that it is the first one. It follows that

s2 ≥ ‖x−a‖2 ≥ ‖x− c‖2 +‖c−a‖2 = ‖x− c‖2 +
( s

2

)2
,

so that‖x− c‖ ≤
√

3
2 s = s− r. Hence, since y ∈ B(c,r), we get

‖x− y‖ ≤ ‖x− c‖+‖c− y‖ ≤ (s− r)+ r = s.

Thus, ‖x− y‖ ≤ s for all x,y ∈C′ and the claim holds, i.e., diam (C)= diam(C′). Since C ⊂C′

and C is diam-max, we get that C =C′. So, B(c,r)⊂C. �

Corollary 2.1. Max-diam sets have nonempty interiors.

Proof. It follows from Proposition 2.5. �

Proposition 2.6. Any point in the boundary of a max-diam set C is part of an antipodal pair.

Proof. Let s = diam(C) and take a∈ bd(C). It suffices to prove that ‖a−b‖= s for some b∈C.
Otherwise maxx∈C ‖a− x‖= t < s. Define

r = min{s− t,
s
2
},C′ =C∪B(a,r).

We claim that diam(C′) = s. Take any x,y ∈C′. If x,y ∈C, then ‖x− y‖ ≤ s. If x,y ∈ B(a,r),
then ‖x− y‖ ≤ 2r ≤ s. If x ∈C,y ∈ B(a,r), then

‖x− y‖ ≤ ‖x−a‖+‖a− y‖ ≤ t + r ≤ s.

Hence the claim holds, i.e., diam(C)= diam(C′). Since C ⊂C′ and C is diam-max, we get that
C =C′, and so B(a,r)⊂C, contradicting the assumption that a ∈ bd(C). �

We construct now a diam-max extension of an equilateral triangle T ⊂ R2. Let a1,a2,a3 be
its vertices and s the length of any of the edges. Let Bi (1 ≤ i ≤ 3) be the closed ball centered
at ai with radius s. Note that all three vertices of T lie in the boundary of any of the Bi’s. Let
S = ∩3

i=1Bi. We claim that S is a diam-max extension of T . Being the intersection of three
balls, S is convex, and it contains all vertices of T . Since T is convex, it follows that T ⊂ S.
Now we must prove that diam(S) = diam(T ). The diameter of any triangle is the length of its
largest edge, and hence diam(T ) = s. Take now any x ∈ S. Since x ∈ Bi for all i, we have that∥∥x−ai

∥∥≤ s for all i. It follows from convexity of T and ‖·‖ that ‖x− y‖ ≤ s for all y ∈ T , but
we need to prove that

‖x− y‖ ≤ s (2.1)
also for all y ∈ S\T .

Since the three balls Bi have simple analytical definitions, estimation of ‖x− y‖ for x,y ∈ S
is a matter of simple algebra. We omit the details, but it turns out that (2.1) holds, and hence
diam(S) = diam(T ) = s. Now it remains to prove that S is a diam-max set. Take any z /∈ S. So
there exists i such that z /∈ Bi and hence

∥∥z−ai
∥∥ > s, implying that diam(S∪{z}) > s. Thus,

there exists no set S′ containing S with diam(S) = diam(S′), which entails that S is a diam-max
set. This set is known as Reuleaux triangle, see [4].

This construction can be extended to all regular polygons in R2 with an odd number of
vertices a1, . . . ,am. If s is the diameter of the polygon (equal to the distance between any vertex
and a vertex lying farthest away from it), and we define Bi as the ball centered at ai with radius s,
then the set S = ∩m

i=1Bi is a diam-max extension of the polygon. The argument for proving this
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statement is basically the same as the one used for the equilateral triangle. The difficulty lies in
establishing that diam(S) = s, and the algebra is more involved than in the case of the triangle,
but it works. In the same spirit, a diam-max extension of a tetrahedron in R3 is obtained as
the intersection of the four balls centered at each one of the four vertices and passing through
the remaining three. We leave as an exercise the construction of a diam-max extension S of
a (nonequilateral) isosceles triangle in R2, such that the unequal edge is the smallest one, in
which case there exist two mid-diam points, and hence S cannot be a ball (if the unequal edge is
the largest one, its midpoint is the unique mid-diam point, and the circle centered at it passing
through the extreme points of this edge is a diam-max extension of the triangle, like in the case
of the right triangle in Example 1).

It is also easy to present diam-max extensions of balls in other norms, which happen to be
Euclidean balls of appropriate radiuses. Let B be the ball centered at x with radius r in the
elliptic norm given by ‖x‖2 = xtAx, with A ∈ Rn×n symmetric and positive definite. A diam-
max extension of B is the closed Euclidean ball with the same center and radius rλ−1, where
λ is the smallest eigenvalue of A. If B now is the ball centered at x with radius r in the p-
norm (1≤ p≤∞), a diam-max extension of B is the closed Euclidean ball with the same center
and radius given by rn1/2−1/p when 2 < p ≤ ∞ and by r when 1 ≤ p ≤ 2. These facts can be
established through elementary calculations. Note that in all these cases the unique mid-diam
point is the center x of the ball.

All given examples of diam-max sets are intersections of a finite number of balls with the
same radius; this could be a general property of diam-max sets, but it could be just a con-
sequence of the fact that all of them are diam-max extensions of sets with a rather regular
geometry. Diam-max sets will be used in Section 4 in order to exhibit a large class of examples
of maximal premonotone operators.

3. SOME PROPERTIES OF MAXIMAL PREMONOTONE OPERATORS

The notion of premonotone operators was introduced in [7], where it was shown that, under
adequate assumptions, they enjoy a surjectivity property akin to Minty’s Theorem for maximal
monotone operators. The definition has already been presented in Section 1; we repeat it here
for the sake of completeness.

Definition 3.1. Given a function σ : Rn→ R+, a point-to-set operator T : Rn ⇒ Rn is said to
be σ -premonotone if

〈u− v,x− y〉 ≥ −min{σ(x),σ(y)}‖x− y‖ (3.1)
for all x,y ∈ Rn, all u ∈ T (x) and all v ∈ T (y).

It was observed in [7] that T is σ -premonotone if and only if

〈u− v,x− y〉 ≥ −σ(y)‖x− y‖ (3.2)

for all x,y ∈ Rn, all u ∈ T (x) and all v ∈ T (y).
Monotone operators are σ -premonotone with σ(x) = 0 for all x ∈ Rn.
Mirroring the definition of the maximal monotonicity, an operator T : Rn ⇒ Rn is said to

be maximal σ -premonotone when it is σ -premonotone, and whenever T (x) ⊂ T ′(x) for a σ -
premonotone operator T ′ : Rn ⇒ Rn, it holds that T = T ′.

Note now that if T is σ -premonotone and σ ′(x) ≥ σ(x) for all x ∈ Rn, then T is also σ ′-
premonotone, but clearly it could be maximal σ -premonotone and not maximal σ ′-premonotone.
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This fact suggests the desirability of a notion of the maximal premonotonicity of an operator T ,
which does not depend on σ . This goal can be achieved in the following way. Given an operator
T : Rn ⇒ Rn, define σ̂T ,σT : Rn→ R∪{+∞} as

σ̂T (y) = sup
x∈Rn,x 6=y

{
sup

u∈T (x),v∈T (y)

〈v−u,x− y〉
‖x− y‖

}
, (3.3)

σT (x) = max{0, σ̂T (x)}. (3.4)

It has been proved in [7] that T is σ -premonotone for some σ if and only if σT (y)<+∞ for all
y ∈Rn, in which case T is also σT -premonotone and σT (y)≤ σ(y) for all y ∈Rn. If σT (y) = ∞

for some x ∈ Rn, then T is not σ -premonotone for any σ . In other words, σT , when finite
everywhere, is the smallest function σ such that T is σ -premonotome.

This result leads to the following definitions T : Rn ⇒ Rn is premonotone when σT is finite
everywhere, and it is maximal premonotone whenever it is maximal σT -premonotone, achieving
thus the σ -independent definitions of the premonotonicity and the maximal premonotonicity.

Next, we present some elementary properties of premonotone operators. We mention first
that, following an usual convention, we will identify an operator T : Rn ⇒ Rn with its graph,
i.e., with the set {(x,u) : x∈Rn,u∈ T (x)}⊂Rn×Rn. With this notation, the assertions u∈ T (x)
and (x,u) ∈ T are equivalent.

Given A⊂ Rn, we denote as cl(A) the closure of A, and as co(A) the convex hull of A. Now,
given T : Rn ⇒Rn, we consider the operators cl(T ), co(T ), defined as cl(T )(x) = cl(T (x)), and
co(T )(x) = co(T (x)). We consider also the operator T whose graph is the closure of the graph
of T . Finally, dom(T ) = {x ∈ Rn : T (x) 6= /0}.

Proposition 3.1. Take T : Rn ⇒ Rn. Then,
i) dom(co(T )) = dom(cl(T )) = dom(T )⊂ dom(T ).

ii) If x ∈ dom(T ), then T (x)⊂ co(T )(x),T (x)⊂ cl(T )(x)⊂ T (x).
iii) If x ∈ dom(T ) and one among {T (x), cl(T )(x), co(T )(x),T (x)} is bounded, then all of

them are bounded.
iv) If one among {T, cl(T ), co(T ),T} is σ -premonotone, then all of them are σ -premonotone.
v) If T is premonotone, then there exists a maximal premonotone operator T ′ such that

T ⊂ T ′,σT = σT ′ .

Proof. The proofs of items (i)-(iv) are elementary, using basic topological properties, continuity
of the inner product and the definition of premonotonicity. Item (v) was proved in Proposition
5 of [7], with a standard application of Zorn’s Lemma. �

Given a set A ∈Rn×Rn, a pair (x,u) ∈Rn is it monotonically related to A if 〈u−vx−y〉 ≥ 0
for all (y,v) ∈ A. When A is a monotone operator, the set of pairs monotonically related to A
is called the monotone hull of A. In the same vein, given a premonotone operator T , a pair
(x,u) ∈ Rn×Rn, was defined in [7] as being premonotonically related to T when

〈u− v,y− x〉 ≤min{σT (x),σT (y)}‖x− y‖ ∀(y,v) ∈ T,

and the premonotone hull of T , denoted as T h ⊂ Rn×Rn, consists of all the pairs (x,u) ∈ Rn,
which are premonotonically related to T , i.e.,

T h(x) = {u ∈ Rn : 〈u− v,y− x〉 ≤min{σT (x),σT (y)}‖x− y‖ ∀(y,v) ∈ T}. (3.5)
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At this point, it is important to emphasize that substituting σT (x) for min{σT (x),σT (y)} in
(3.5) makes a difference (contrary to what was wrongly stated in [7], after Definition 24). At a
variance with the definition of the premonotonicity in (3.1), (3.2), which is symmetric in x,y,
exchanging x for y in (4.10) defines a different set, namely, T h(y). One could consider also
another operator, say T c, defined as

T c(x) = {u ∈ Rn : 〈u− v,y− x〉 ≤ σT (y)‖x− y‖ ∀(y,v) ∈ T}. (3.6)

The following example shows that T h and T c may differ. Define T : R→R as T (x) = sin(x).
It is easy to check that σT (x) = 1 + |sin(x)|. Taking into account that sin(x) is periodical,
the condition in (4.10) is equivalent to |u− sin(y)| ≤ 1+ |sin(y)| for all y ∈ R, which leads to
T c(x) = [−1,1] for all x ∈ R, while the condition in (3.6) demands additionally |u− sin(y)| ≤
1+|sin(x)| for all y∈R, which implies 1+|u| ≤ 1+|sin(x)|, so that T h(x)= [−|sin(x)| , |sin(x)|].
It is easy to check that σT h(x) = σT (x) = 1+ |sin(x)|, and that T h is maximal premonotone. T c

is also maximal premonotone, but σT c(x) = 2 for all x ∈ R, so that σT c 6= σT .
We recall that a premonotone extension of T is an operator T ′ such that T ⊂ T ′, σT = σT ′ .

Hence, in the example above T c is not a premonotone extension of T . We observe that if T is a
monotone operator, in which case σT ≡ 0, the definitions of T c and T h coincide, and reduce to
the well known monotone hull.

From now on, we will restrict our attention to T h, some of whose properties, which extend
those which hold for the monotone hull, we prove next.

Proposition 3.2. Assume that T : Rn ⇒ Rn is premonotone. Then,

i) T ⊂ T h.
ii) (z,w) ∈ T h if and only if σT ′ = σT , with T ′ = T ∪{(z,w)}

iii) T is maximal premonotone if and only if T = T h.
iv) T h is the union of all premonotone extensions of T .
v) T h(x) is closed and convex for all x ∈ dom(T ).

vi) If T,U are premonotone and T ⊂U, then σT (x)≤ σU(x) for all x ∈ Rn.

Proof. i) Follows from the definitions of the premonotonicity and T h.
ii) We prove first the “only if” statement. Since T ⊂ T ′, we have that σT (x) ≤ σT ′(x) for

all x ∈ Rn, so that it suffices to check that σT (x)≥ σT ′(x). By (3.3),

σ̂T ′(y) = sup
x∈Rn,x 6=y

{
sup

u∈T ′(x),v∈T ′(y)

〈v−u,x− y〉
‖x− y‖

}
. (3.7)

If y 6= z, it suffices to look at the expression

〈v−u,x− y〉
‖x− y‖

, (3.8)

with (x,u) = (z,w), because any other pair (x,u) ∈ T ′ belongs also to T , in which case
the expression (3.8) is no larger that σT (y), by definition of σT . Since (z,w) ∈ T h, by
(3.6)

〈v−w,z− y〉
‖z− y‖

≤ σT (y).
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We conclude that σT ′(y)≤ σT (y). If y = z, by the same token, it suffices to look at (3.8)
with (y,v) = (z,w), in which case we get

〈w−u,x− z〉
‖x− z‖

. (3.9)

Looking again at (3.6), and noting the presence of min{σT (x),σT (y)} in its right hand
side, we realize that the expression in (3.9) is no larger than σT (z), so that σT ′(z) ≤
σT (z). We conclude that σT = σT ′ . We prove now the “if” statement. If σT = σT ′ , then,
for all (x,u) ∈ T ,

〈w−u,x− z〉
‖x− z‖

≤min{σT ′(z),σT ′(x)}= min{σT (z),σT (x)}, (3.10)

for all (x,u) ∈ T , using the definition of σT ′ in the inequality. In view of (3.10) and the
definition of T h, we conclude that (z,w) ∈ T h.

iii) Assume first that T is maximal premonotone. Take any (x,w) ∈ T h and let T ′ = T ∪
{(z,w)}. Clearly T ⊂ T ′ and by item (ii), σT = σT ′ . By maximality of T , T = T ′, so
that (z,w) ∈ T , implying that T h ⊂ T , and hence T h = T by item (i). Assume now
that T = T h, and take any T ′ such that T ⊂ T,σT = σT ′ . If (x,u) ∈ T ′, then the fact
that σT = σT ′ implies easily that (x,u) ∈ T h = T , so that (x,u) ∈ T and hence T ′ = T ,
entailing maximality of T .

iv) Take any premonotone extension T ′ of T and any (z,w) ∈ T ′. By item (iii), (z,w) ∈ T h,
so that T ′ ⊂ T h. Now take any (z,w) ∈ T h. Then, by item (iii) again, T ′ = T ∪{(z,w)}
is a premonotone extension of T . So any point in T h belongs to some premonotone
extension of T .

v) Follows easily from bilinearity and continuity of 〈·, ·〉.
vi) Follows from the definitions of σT and T h.

�

We continue with two additional properties of T h. We recall that the recession cone A∞ of a
convex set A⊂ Rn is defined as A∞ = {d ∈ Rn : x+ t ∈ A, ∀t ≥ 0,x ∈ A}, and the normal cone
NA(x) of A at a point x ∈ cl(co(A)) is defined as NA(x) = {d ∈ Rn : 〈d,y− x〉 ≤ 0 ∀y ∈ A}. It is
easy to check that the normal cones of A and of cl(co(A)) coincide.

Proposition 3.3. If T :Rn ⇒Rn is premonotone, then (T h(x))∞ =NH(T )(x) for all x∈ cl(H(T )),
with H(T ) = co(dom(H(T )).

Proof. Take (x,u) ∈ T h and d ∈ NH(T )(x). Then

〈u− v,y− x〉 ≤min{σT (x),σT (y)}‖x− y‖ (3.11)

for all (y,v) ∈ T and
〈d,y− x〉 ≤ 0 (3.12)

for all y ∈ dom(T ). Multiplying (3.12) by t ≥ 0 and adding (3.11), we obtain

〈u+ td− v,y− x〉 ≤min{σ(x),σ(y)}‖x− y‖
for all (y,v)∈ T and all t ≥ 0. It follows that u+td ∈ T h(x) for all t ≥ 0, and hence d ∈ (T h(x))∞.

Conversely, take d ∈ (T (x))∞, u ∈ T h(x). Then,

〈u+ td− v,y− x〉 ≤min{σT (x),σT (y)}‖x−u‖
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for all (y,v) ∈ T and all t > 0. So,

〈u− v,y− x〉
t

+ 〈d,y− x〉 ≤ min{σT (x),σT (y)}‖y− x‖
t

(3.13)

for all (y,v) ∈ T and all t > 0. Taking limits with t → ∞ in (3.13), we obtain 〈d,y− x〉 ≤ 0 for
all y ∈ dom(T ). Thus 〈d,y− x〉 ≤ 0 for all y ∈ cl(H(T )). Therefore, d ∈ NH(T )(x). �

For our next result, we will use the following lemma, proved in [5].

Lemma 3.1. Let D = co{x0,x1, · · · ,xn} be an n-dimensional simplex of Rn. Take a closed and
convex set V ⊂ int(D). Then, for all x ∈V and all c ∈ Rn, the linear programming problem

min
u

n

∑
i=0

ui s.t.
n

∑
i=0

ui(xi− x) = c, u≥ 0, (3.14)

is feasible and has a unique optimal solution, say u(c,x), which is continuous as a function of
c,x on Rn×V .

Proof. See Lemma 2.2 in [5] �

We establish next local boundedness of T h under some additional assumptions.

Proposition 3.4. Consider a premonotone T :Rn ⇒Rn. Let D(T ) = int(cl(co(dom(T ))). Then,
for all x̄∈D(T ) there exists a compact set K and a neighborhood V of x̄ such that /0 6= T h(x)⊂K
for all x ∈V .

Proof. Since D is open, for each x̄ ∈ D, there exists {t̄i}n
i=1 ⊂ (0,1) and {(xi,ui)}n

i=0 ⊂ T such
that the vectors x1−x0,x2−x0, · · · ,xn−x0 are linearly independent, x̄=∑

n
i=0 t̄ixi and ∑

n
i=0 t̄i = 1.

Taking ε > 0 such that ε < t̄i for all i ∈ {0,1, · · · ,n}, we define

V =

{
x =

n

∑
i=0

tixi :
n

∑
i=0

ti = 1, {ti}n
i=0 ⊂ [ε,1)

}
.

By construction, V is a nonempty, convex and compact neighborhood of x̄ contained in D. Given
c ∈ Rn and x ∈ D, we define

α(c,x) = sup
u
{〈c,u〉 : u ∈ T h(x)}, (3.15)

β (c,x) = sup
u
{〈c,u〉 : Atu≤ b}, (3.16)

where A ∈ Rn×(n+1) is the matrix with columns xi− x (0≤ i≤ n), and b ∈ Rn+1 is defined as

bi = min{σT (x),σT (xi)}
∥∥xi− x

∥∥−〈ui,x− xi〉.

By convention, we take α(c,x) =−∞ if T h(x) = /0. From (3.15), (3.16), we get

−∞≤ α(c,x)≤ β (c,x) (3.17)

Let Pe be the linear programming problem defined by the right hand side of (3.16). Its dual is
the problem De given by

β̃ (c,x) = min
y
〈y,b〉 s.t.

n

∑
i=0

yi(xi− x) = c,y≥ 0.
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Problem De satisfies the assumptions of Lemma 3.1. Hence, De is feasible, there is no duality
gap between Pe and De, and

β (c,x) = β̃ (c,x)≤ ρ(c,x) :=
n

∑
i=0

ui(c,x)〈(xi)∗,xi− x〉, (3.18)

with u(c,x) as in the statement of Lemma 3.1.
Let M = supx,c{ρ(c,x) : x ∈V, ‖c‖ ≤ 1},K = B(0,M), with ρ as defined in (3.18).
Since V is compact and the function u is continuous on Rn×V by Lemma 3.1, M is finite

and K is a compact convex set.
Then, for all c with ‖c‖ ≤ 1 and all x ∈V , we obtain, using (3.17) and ρ as in (3.18),

α(c,x)≤ β (c,x)≤ ρ(c,x)≤M. (3.19)

Define the quantities
A(x) = sup

u
{‖u‖ : u ∈ T h(x)},

B(x) = sup
u
{‖u‖ : 〈u,xi− x〉 ≤ bi, (0≤ i≤ n)}.

Then, we obtain

A(x) = sup
c,u
{〈c,u〉 : u ∈ T h(x), ‖c‖ ≤ 1}= sup

c
{α(c,x) : ‖c‖ ≤ 1},

B(x) = sup
c
{β (c,x) : ‖c‖ ≤ 1}.

In view of (3.19), we have A(x)≤ B(x)≤M for all x ∈V , implying

T h(x)⊂ {u : 〈u,xi− x〉 ≤ bi, i = 0,1, · · · ,n} ⊂ K. (3.20)

�

Corollary 3.1. For each x ∈ int(cl(co(dom(T ))), T h(x) is a nonempty, convex and compact set.

Proof. Follows immediately from Proposition 3.4. �

4. A FAMILY OF MAXIMAL PREMONOTONE OPERATORS

In [7], it was shown that, given a maximal monotone and continuous operator U : Rn→ Rn

and a closed ball B(0,r) ⊂ Rn, the operator T : Rn ⇒ Rn defined as T (x) = U(x)+B(0,r) is
maximal premonotone with σT (y) = 2r for all y ∈ Rn. No other examples of maximal pre-
monotone operators were available at that time, and the difficulty for producing them lied in the
computation of σT for operators other than those above.

We will next present a significantly larger class of maximal premonotone operators. We will
replace B(0,r) in the example above by a rather general diam-max C(x) ⊂ Rn, letting this set
change with x in an appropriate way.

We will say that a point-to-set operator C : Rn ⇒ Rn is inner Lipschitz semicontinuous with
constant β if for all x,y∈Rn and all u∈ T (x) there exists v∈ T (y) such that ‖u− v‖≤ β ‖x− y‖.
We recall also that an operator T : Rn ⇒ Rn is said to be strongly monotone with constant γ if,
for all x,y ∈ Rn, all u ∈ T (x) and all v ∈ T (y), it holds that 〈u− v,x− y〉 ≥ γ ‖x− y‖2. We will
next compute σT for an operator T of the form T (x) =U(x)+C(x), with a strongly monotone
and continuous U and an inner Lipschitz semicontinuous C.
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Proposition 4.1. Let U : Rn→ Rn be continuous and strongly monotone with constant γ , C :
Rn ⇒ Rn inner Lipschitz semicontinuous with constant β , and assume that C(x) is compact for
all x ∈ Rn and that γ ≥ β . Define T : Rn ⇒ Rn as T (x) = U(x)+C(x) for all x ∈ Rn. Then
σT (y) = diam(C(y)) for all y ∈ Rn.

Proof. We prove first that

σT (y)≤ diam(C(y)). (4.1)

Fix y ∈Rn and take any x ∈Rn,x 6= y, any u ∈ T (x) and any v ∈ T (y). Look at the definition of
T and write u =U(x)+u′,v =U(y)+ v′, with u′ ∈C(x),v′ ∈C(y). Then

〈v−u,x− y〉
‖x− y‖

=
〈v′−u′,x− y〉
‖x− y‖

− 〈U(x)−U(y),x− y〉
‖x− y‖

≤ ‖v
′−u′‖ ‖x− y‖
‖x− y‖

− γ
‖x− y‖2

‖x− y‖
=
∥∥v′−u′

∥∥− γ ‖x− y‖ ,

(4.2)

using Cauchy-Schwartz’s inequality and the strong monotonicity of U in the inequality. Use
now the inner Lipschitz semicontinuity of C for finding v′′ ∈C(y) such that ‖u′− v′′‖≤ β ‖x− y‖.
In view of (4.2), we have

〈v−u,x− y〉
‖x− y‖

≤
∥∥v′− v′′

∥∥+∥∥v′′−u′
∥∥− γ ‖x− y‖

≤
∥∥v′− v′′

∥∥+β ‖x− y‖− γ ‖x− y‖
≤ diam(C(y))− (γ−β )‖x− y‖
≤ diam(C(y)),

(4.3)

using the assumption that γ ≥ β in the last inequality. Taking supremum over x 6= y,u ∈ T (x)
and v ∈ T (y) in (4.3), and recalling the definition of σT , we obtain the inequality in (4.1).

Next, we prove the converse inequality, namely,

σT (y)≥ diam(C(y)). (4.4)

Fix y∈Rn and use compactness of C(y) for finding w,w′ ∈C(y) such that ‖w−w′‖= diam(C(y)).
Take any ε > 0, and consider the point x = y+ ε(w−w′). Invoke the inner Lipschitz semicon-
tinuity of C for finding u′ ∈C(x) such that∥∥u′−w′

∥∥≤ β ‖x− y‖= βε
∥∥w−w′

∥∥ . (4.5)

Take now u =U(x)+u′, v =U(y)+w, so that u ∈ T (x),v ∈ T (y). Define

z =
w−w′

‖w−w′‖
=

x− y
‖x− y‖

.



ON DIAMETRICALLY MAXIMAL SETS, MAXIMAL PREMONOTONE OPERATORS AND BIFUNCTIONS 265

Then,

σT (y)≥
〈v−u,x− y〉
‖x− y‖

= 〈v−u,z〉
= 〈w−u′,z〉−〈U(y+ ε(w−w′))−U(y),z〉
= 〈w−w′,z〉+ 〈w′−u′,z〉+ 〈U(y+ ε(w−w′))−U(y),z〉
≥
∥∥w−w′

∥∥−∥∥w′−u′
∥∥−∥∥U(y+ ε(w−w′))−U(y)

∥∥
≥ (1−βε)

∥∥w−w′
∥∥−∥∥U(y+ ε(w−w′))−U(y)

∥∥ ,
(4.6)

using the definition of T in the second equality, the definition of z in the first inequality and
(4.5), together with the fact that ‖z‖= 1, in the second inequality. Since the inequality in (4.6)
holds for all ε > 0, we take limit with ε → 0 in the rightmost expression of (4.6) and get, using
the continuity of U , that

σT (y)≥
∥∥w−w′

∥∥= diam(C(y)),

establishing (4.4) and completing the proof. �

Using the notion of diam-max sets, it is easy to give conditions on operators as considered in
Proposition 4.2, which ensure the maximal premonotonicity. We proceed to do this.

Proposition 4.2. An operator of the form T =U +C satisfying the assumptions of Proposition
4.1 is maximal premonotone if and only if C(x) is a diametrically maximal set for all x ∈ Rn.

Proof. We prove first the “only if” statement. Consider an operator T ′ : Rn ⇒ Rn such that
T (x) ⊂ T ′(x) for all x ∈ Rn and σT = σT ′ . Call C′(x) = T ′(x)−U(x) (recall that U(x) is a
singleton), so that C(x)⊂C′(x) for all x ∈ Rn. Suppose that there exits y ∈ Rn and w′ ∈C′(y)\
C(y). Since C(y) is diam-max, it follows that diam C′(y))> diam(C(y)), and in particular there
exists w ∈C(y)) such that ∥∥w′−w

∥∥> diam(C(y)). (4.7)
Now we take, as in the proof of Proposition 4.1, ε > 0, x = y+ε(w−w′), and u′ ∈C(x)⊂C′(x)
such that ‖u′−w‖ ≤ β ‖x− y‖ (note that we need only inner Lipschitz semicontinuity of C, and
not of C′, which in principle may fail to enjoy this property). Define now u = u′+U(x),v =
w+U(y), so that u ∈ T (x),v ∈ T ′(y). Hence

σ
′
T (y)≥

〈v−u,x− y〉
‖x− y‖

,

and the same calculation as in (4.6) leads to

σT ′(y)≥ (1−βε)
∥∥w−w′

∥∥−∥∥U(y+ ε(w−w′))−U(y)
∥∥

for all ε > 0, and henceforth

σT ′(y)≥
∥∥w−w′

∥∥> diam(C(y)) = σT (y),

using (4.7) and Proposition 4.1. We have contradicted the assumption that σT = σT ′ . It follows
that for all y ∈ Rn,C′(y) \C(y) = /0, so that C = C′ and hence T = T ′, establishing maximal
premonotonicity of T .

Now we prove the “if” statement. Suppose that T is maximal premonotone but there exists
y ∈ Rn such that C(y) is not a diam-max set, i.e., there exists w /∈C(y) such that diam(C(y)) =
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diam(C′(y)) with C′(y) = C(y)∪{w}. If we define now C′(x) = C(x) for all x 6= y, and then
T ′(x) =U(x)+C′(x), the same computations as in the proof of Proposition 4.1 lead to

σT ′(y) = diam(C′(y)) = diam(C(y)) = σT (y) (4.8)

for all y ∈ Rn (again, only inner Lipschitz semicontinuity of C, not of C′, is needed). Since
T ′(x) = T (x) for all x 6= y and T ′(y) = T (y)∪{w}, we have that T is strictly contained in T ′,
which, together with (4.8), contradicts the maximal premonotonicity of T . Thus, C(x) is a
diam-max set for all x ∈ Rn. This completes the proof. �

We observe that if the operator C is constant, i.e. C(x) = Ĉ for all x ∈ Rn, where Ĉ is a
compact set, then we can proceed through the proofs of Propositions 4.1 and 4.2 with β = 0,
in which case we can afford to have also γ = 0, i.e. U needs not be strongly monotone. We
consider this case in the following corollary.

Corollary 4.1. Consider a maximal monotone and continuous operator U : Rn → Rn and a
compact set Ĉ ⊂ Rn Define T : Rn ⇒ Rn as T (x) = U(x) + Ĉ. The T is premonotone with
σT (x) = diam(Ĉ) for all x ∈ Rn. T is maximal premonotone if and only if Ĉ is a diametrically
maximal set.

Proof. Follows from the observation above and Propositions 4.1, 4.2. �

If the set Ĉ is taken as a ball, which is certainly a diam-max set, we recover the maximal
premonotone operators considered in [7].

We remark that, since U is point-to-point, diam(C(x)) = diam(T (x)) for all x ∈ Rn. Also, in
view of Proposition 2.2, C(x) is a diam-max set if and only if T (x) is max-diam. So we can also
rephrase Propositions 4.1 and 4.2 in terms of of T (x) rather than C(x), as we do in the following
corollary.

Corollary 4.2. Consider a maximal monotone and continuous operator U : Rn→ Rn, which is
also strongly monotone with constant γ , and a compact valued operator C : Rn ⇒ Rn which is
inner Lipschitz semicontinuous with constant β ≤ γ . Define T :Rn ⇒Rn as T (x)=U(x)+C(x).
The T is premonotone with σT (x) = diam(T (x)) for all x ∈ Rn. T is maximal premonotone if
and only if T (x) is a diametrically maximal set for all x ∈ Rn.

Proof. Follows from the observation above and Propositions 4.1, 4.2. �

Corollary 4.2 suggests that we could obtain a class of maximal premonotone operators with-
out involving a splitting of the form T =U +C, imposing the requested conditions directly on
T . There are, however, obstacles in this path. We could indeed demand inner Lipschitz semi-
continuity of T , but it does not make sense to ask T to be strongly monotone, or even monotone,
because in such a case T is premonotone with σT ≡ 0, and the maximal premonotonicity re-
duces to the maximal monotonicity. If we go through the proof of Propositions 4.1 and 4.2,
assuming just that T is compact valued and inner Lipschitz semicontinuous, we end up with the
following estimate

diam(T (y))≤ σT (y)≤ diam(T (y))+β , (4.9)

which unfortunately leads to no precise maximal premonotonicity result. In order to get the
equality between σT (y) and diam(C(y)), we need, in the estimation of the inner product 〈v−
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u,x−y〉 with x far from y, the constant of strong monotonicity γ of U , in order to annihilate the
term β in (4.9), so that getting rid of U turns out to be tricky.

An interesting conjecture involving maximal promonotone operators is the following:

Conjecture 4.1. If T : Rn ⇒Rn is premonotone, then its premonotone hull T h contains a max-
imal monotone operator.

An equivalent formulation of Conjecture 4.2 is the following.

Conjecture 4.2. If T : Rn ⇒Rn is a maximal premonotone operator, then it contains a maximal
monotone operator.

The equivalence between the two formulations of the conjecture follows from items (iii) and
(iv) of Proposition 3.2.

We examine now this conjecture for operators satisfying the assumptions of Propositions
4.1 and 4.2. Assuming that T = U +C as in Propositions 4.1 and 4.2, note that we cannot
take V = U , because we are not requesting that 0 ∈ C(x) for all x, so that it is not true that
V ⊂ T . If there exists some x∗ ∈ ∩x∈RnC(x) (e.g., if C is constant), then the operator V given by
V (x) =U(x)+x∗ is contained in T and does the job. The conjecture also holds in the following
case.

Proposition 4.3. Take T : Rn ⇒Rn of the form T =U +C, satisfying the assumptions of Propo-
sitions 4.1, 4.2. Assume that C(x) is a closed ball for all x, say with center c(x) and radius r(x),
so that T is maximal premonotone. Define V (x) =U(x)+ c(x). Then V ⊂ T and V is maximal
monotone.

Proof. Since V is clearly contained in T , it suffices to check its maximal monotonicity. We
claim by assuming inner Lipschitz semicontinuity of C with constant β that

‖c(x)− c(y)‖+ |r(x)− r(y)| ≤ β ‖x− y‖ . (4.10)

for all x,y ∈ Rn. We establish (4.10). Without loss of generality, assume that r(x) ≥ r(y) and
c(x) 6= c(y). Define z = c(x)−c(y)

‖c(x)−c(y)‖ ,u = c(x)+ r(x)z, so that u lies in the line passing through
c(x) and c(y). Note that u /∈C(y) because r(x) ≥ r(y). Let v be the projection of u onto C(y).
Clearly v is the intersection of the above mentioned line with the boundary of C(y), namely,
c(y)+ r(y)z. By inner Lipschitz semicontinuity of C,

β ‖x− y‖ ≥ ‖u− v‖
= ‖c(x)− c(y)+(r(x)− r(y))z‖

=

(
1+

r(x)− r(y)
‖c(x)− c(y)‖

)
‖c(x)− c(y)‖

= ‖c(x)− c(y)‖+ |r(x)− r(y)|

using the fact that r(x)≥ r(y). Thus, (4.10) holds, which allows us to prove monotonicity of V ,
under the assumptions on U and C given in Propositions 4.1:

〈V (x)−V (y),x− y〉= 〈U(x)−U(y),x− y〉+ 〈c(x)− c(y),x− y〉

≥ γ ‖x− y‖2−‖c(x)− c(y)‖ ‖x− y‖

≥ (γ−β )‖x− y‖2 ≥ 0,
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using (4.10) in the second inequality. Hence, V is monotone. Regarding its maximality, observe
that (4.10) implies hte continuity of c(·), and consequently of V , because U is continuous by
assumption. Since point-to-point, continuous and monotone operators are know to be maximal,
we have that V is maximal monotone. �

We have not been able yet to establish the conjecture for cases in which the C(x)’s are diam-
max sets but not balls. It would suffice to prove that every inner Lipschitz semicontinuous
operator C with closed and convex values has a Lipschitz continuous selection, with the same
Lipschitz constant as C (meaning a Lipschitz continuous c : Rn→ Rn with c(x) ∈C(x) for all
x ∈ Rn). It is easy to check that such an operator has a continuous selection (take, e.g., c(x) as
the minimum norm element of C(x)), but finding a Lipschitz continuous one seems to be harder.

5. PREMONOTONE BIFUNCTIONS

The theory of monotone operators T :Rn ⇒Rn has been extended to functions f :Rn×Rn→
R, to be called bifunctions in the sequel. As mentioned in Section 1, the prototypical bifunction
associated to an operator T is given by f (x,y) = supu∈T (x)〈u,y− x〉.

In order to obtain significant results, the bifunctions are assumed to enjoy a couple of proper-
ties of the prototypical example. Also, it is useful to consider bifunctions with a domain smaller
that Rn. Given K ⊂ Rn, we will consider bifunctions f : K×Rn→ R satisfying

B1. For each x ∈ K: f (x,x) = 0,
B2. For each x ∈ K: f (x, ·) : K→ R is a convex function.
A bifunction f is said to be monotone when f (x,y)+ f (y,x)≤ 0 for all x,y ∈ K. Note that in

the prototypical example, the monotonicity of T is equivalent to the monotonicity of f . Next,
we will define, in a similar fashion, σ -premonotone bifunctions.

Definition 5.1. Given a function σ : K→ [0,+∞), a bifunction f : K×K→R is σ -premonotone
if, for each y ∈ K,

sup
x∈K\{y}

{
f (x,y)+ f (y,x)
‖x− y‖

}
≤ σ(y). (5.1)

Now we consider an additional condition on the bifunctions.
B3. There exists ρ : K→ [0,+∞): f (x,y)≤ ρ(y)‖x− y‖ for all x,y ∈ K.

Proposition 5.1. Let f : K×Rn→ R be a bifunction satisfying assumptions B1 and B2. If f is
σ -premonotone bifunction, then f satisfies B3.

Proof. Note that f (x,y)+ 〈v,y− x〉 ≤ f (x,y)+ f (y,x) ≤ σ(y)‖y− x‖ for all subgradient v ∈
∂ f (y, ·)(y). Then,

f (x,y)≤ (σ(y)+ inf{‖v‖ : v ∈ ∂ f (y, ·)(y)})‖y− x‖ .

So, f satisfies B3, with ρ(y) := σ(y)+ inf{‖v‖ ∈ ∂ f (y, ·)(y)}. �

Next, we present a relation between operators and bifunctions similar to the one in the above
mentioned prototypical example, that was already been announced in Section 1. This relation
between operators and bifunctions will be called the canonical relation. In order to formally
introduce it, we need to consider some assumptions on the operator T , which will shed some
light into the canonical relation between operators and bifunctions.



ON DIAMETRICALLY MAXIMAL SETS, MAXIMAL PREMONOTONE OPERATORS AND BIFUNCTIONS 269

A1. T is locally bounded on D(T )∩dom(T ).
A2. T (x) is closed and convex for all x ∈ dom(T ).
A3. There exists ρ : Rn → [0,+∞) such that 〈u,y− x〉 ≤ ρ(y)‖x− y‖ for all x ∈ D(T )∩

dom(T ) all u ∈ T (x) and all y ∈ Rn.
For each operator T : Rn ⇒Rn satisfying A3, define the bifunction fT : int(dom(T ))×Rn→

R as
fT (x,y) = sup

u∈T (x)
〈u,y− x〉 ∀x ∈ int(dom(T )) and ∀y ∈ Rn. (5.2)

For each bifunction f satisfying assumption B2, define the operator Tf : K ⇒ Rn as

Tf (x) = (∂ f (x, ·))(x) ∀x ∈ K (5.3)

Proposition 5.2. For all operator T : Rn ⇒Rn satisfying A3 and all bifunction f : K×Rn→R
satisfying B2, the bifunction fT and the operator Tf are well defined. Moreover fT satisfies B1,
B2, and if f satisfies B3 then Tf satisfies A1-A3.

Proof. We only need to prove that if f satisfies B2 and B3, then Tf satisfies A1, because the
proof of the remaining statements is elementary. Assume that Tf is not locally bounded. In such
case, there exists x ∈ int(K) and a sequence {xk} ⊂ K such that limk→∞ xk = x and a sequence
{uk} such that uk ∈ Tf (xk) for all k and limk→∞

∥∥uk
∥∥=+∞. Take δ > 0 such that the closed ball

B̄(x,δ )⊂ K. Define ūk := uk

‖uk‖ and let ū be a cluster point of the bounded sequence {ūk}. Take

y = x+δ ū. Note that y ∈ B̄(x,δ )⊂ K. In view of Assumption B3, 〈uk,y− xk〉 ≤ ρ(y)
∥∥y− xk

∥∥,
i.e.,

〈uk,x+δ ū− xk〉 ≤ ρ(x+δ ū)
∥∥∥x− xk +δ ū

∥∥∥ (5.4)

Dividing both sides of (5.4) by
∥∥uk
∥∥, we get

〈ūk,x+δ ū− xk〉 ≤
ρ(x+δ ū)

∥∥x− xk +δ ū
∥∥∥∥uk

∥∥ . (5.5)

Taking limits in (5.5) with k→ ∞ along a subsequence of {ūk} converging to ū, and using the
facts that limk→∞

∥∥uk
∥∥=+∞ and limk→+∞ xk = x, we get δ ≤ 0, in contradiction with the choice

of δ . �

Corollary 5.1. Consider T : Rn ⇒ Rn and f : K×Rn→ R.
i) If T is monotone, then fT is monotone and satisfies B1-B3.

ii) If T is σ -premonotone, then fT is σ -premonotone and satisfies B1-B3.
iii) If f is monotone and satisfies B2, then Tf is monotone and satisfies A1-A3.
iv) If f is σ -premonotone and satisfies B2, then Tf is σ -premonotone and satisfies A1-A3.

Proof. Follows from Proposition 5.2. �

We will denote by Γ the set of operators T : Rn ⇒ Rn, which satisfies A1–A3, and Θ the set
of bifunctions f : K×Rn→ R, which satisfies B1–B3, for some K ⊂ Rn.

Now, consider the map F acting on those T , which satisfies A3 defined as F(T ) = fT , and
the mapping G acting on the set of bifunctions, which satisfies B2 defined as G( f ) = Tf . We
will prove that under adequate assumptions G and F are inverses of each other, for which the
following lemma is needed.
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Lemma 5.1. For each operator T : Rn ⇒ Rn satisfying A3, G(F(T )) belongs to Γ. Moreover,
co(cl(T (x))) = G(F(T ))(x) for all x ∈ int(dom(T )).

Proof. Take K = int(dom(T )). Recall that F(T ) = fT : K×Rn → R is defined as fT (x,y) =
supu∈T (x)〈u,y−x〉. Note that G(F(T ))(x) is closed and convex for all x∈K, because G(F(T ))(x)
= ∂ fT (x, ·)(x). Since T (x) ⊂ ∂ fT (x, ·)(x) by definition of fT , we get that co(cl(T ))(x) ⊂
G(F(T ))(x) for all x∈K. Suppose that the converse statement is false, i.e., that there exist x∈K
and u ∈ G(F(T ))(x) such that u /∈ co(cl(T (x))). Invoking the separation theorem for convex
sets, we conclude that there exist d ∈ Rn with ‖d‖= 1 and δ ∈ R such that 〈v,d〉< δ < 〈u,d〉
for all v ∈ co(cl(T ))(x). Then, Taking y = x+d, we get that

fT (x,y) = sup
v∈T (x)

〈v,y− x〉= sup
v∈T (x)

〈v,d〉 ≤ δ < 〈u,d〉,

in contradiction with the fact that u ∈ ∂ fT (x, ·)(x). It follows that co(cl(T ))(x) = G(F(T ))(x)
for all x ∈ int(dom(T )). �

Next we prove that appropriate restrictions of F and G are mutual inverses.

Proposition 5.3. The restriction of the mapping F to Γ and the restriction of the mapping G
to F(Γ) are bijections and mutual inverses, meaning that (F ◦G)( f ) = f for all f ∈ F(Γ) and
(G◦F)(T ) = T for all T ∈ Γ.

Proof. By the definitions of Γ and Θ, we have that F(Γ)⊂Θ and G(Θ)⊂ Γ. Then, we get from
Lemma 5.1 that co(cl(T (x))) = (G◦F)(T ). By definition of Γ, T (x) = co(cl(T (x))) for all x ∈
dom(T ). So, (G ◦F)(T ) = T for all T ∈ Γ. Now, take f ∈ F(Γ), so that there exists T ∈ Γ

satisfying f = F(T ). Hence, (F ◦G)( f ) = F((G◦F)(T )) = F(T ) = f . �
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