J. Nonlinear Var. Anal. 5 (2021), No. 3, pp. 477-491 Available online at http://jnva.biemdas.com https://doi.org/10.23952/jnva.5.2021.3.10

DIRICHLET-MORREY TYPE SPACES AND VOLTERRA INTEGRAL OPERATORS

LIAN HU, RONG YANG, SONGXIAO LI*

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China

Abstract. A family of Dirichlet-Morrey type space $\mathcal{D}_{p-1}^{p,\lambda}$ is introduced in this paper. For any positive Borel measure μ , the boundedness and compactness of the identity operator I_d from $\mathcal{D}_{p-1}^{p,\lambda}$ to tent spaces $\mathcal{J}_s^p(\mu)$ are studied. As an application, the boundedness of the Volttera integral operators T_g and I_g , and the multiplication operator M_g from $\mathcal{D}_{p-1}^{p,\lambda}$ to the general function space $F(p,p-1-\lambda,s)$ are studied. The essential norm of T_g and T_g are also investigated.

Keywords. Dirichlet-Morrey type space; Carleson measure; Volterra integral operator.

1. Introduction

Let $H(\mathbb{D})$ denote the space of all analytic functions in the open unit disc \mathbb{D} . The Hardy space H^p $(0 is the set of all <math>f \in H(\mathbb{D})$ with (see [1])

$$||f||_{H^p}^p = \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta < \infty.$$

Let H^{∞} denote the space of all bounded analytic functions with the supremum norm $||f||_{H^{\infty}} = \sup_{z \in \mathbb{D}} |f(z)|$.

Let $-1 < \alpha < \infty$ and $0 . The Dirichlet type space <math>\mathcal{D}^p_{\alpha}$ is the set of all $f \in H(\mathbb{D})$ satisfying

$$||f||_{\mathscr{D}^p_{\alpha}} = |f(0)| + \left(\int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{\alpha} dA(z)\right)^{\frac{1}{p}} < \infty,$$

where dA is the normalized area measure in \mathbb{D} . The spaces \mathscr{D}_{p-1}^p are closely related with Hardy spaces H^p . In fact, $\mathscr{D}_1^2 = H^2$. If $0 (see [2]), then <math>\mathscr{D}_{p-1}^p \subseteq H^p$. If $2 \le p < \infty$ (see [3]), then $H^p \subseteq \mathscr{D}_{p-1}^p$. If $\alpha = 0$ and p = 2, then \mathscr{D}_{α}^p is the classical Dirichlet space \mathscr{D} . When $\alpha > p-1$, \mathscr{D}_{α}^p is the weighted Bergman space $A_{\alpha-p}^p$.

Received March 1, 2021; Accepted March 30, 2021.

^{*}Corresponding author.

E-mail addresses: hl152808@163.com (L. Hu), yangrong071428@163.com (R. Yang), jyulsx@163.com (S. Li)

Let $0 , <math>-2 < q < \infty$, and $0 \le s < \infty$. The general function space F(p,q,s), which first introduced by Zhao in [4], consists of all $f \in H(\mathbb{D})$ such that

$$||f||_{F(p,q,s)} = |f(0)| + \sup_{a \in \mathbb{D}} \left(\int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^q (1 - |\sigma_a(z)|^2)^s dA(z) \right)^{1/p} < \infty,$$

where $\sigma_a = \frac{a-z}{1-\bar{a}z}$ is a Möbius mapping interchanging 0 with a. Clearly, F(p,q,0) is the Dirichlet type space \mathcal{D}_q^p . F(2,0,s) coincides with Q_s space (see [5]). F(2,0,1) is the BMOA space. F(p,p-2,0) is just the Besov space B_p . If s>1, then F(p,p-2,s) is the Bloch space \mathcal{B}_p , which is the set of all $f\in H(\mathbb{D})$ such that

$$||f||_{\mathscr{B}} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1-|z|^2) < \infty.$$

From [4], the norm of $f \in \mathcal{B}$ has many equivalent forms. The little Bloch space, denoted by \mathcal{B}_0 , is the set of those $f \in H(\mathbb{D})$ satisfying $\lim_{|z| \to 1} |f'(z)| (1 - |z|^2) = 0$. It is well known that \mathcal{B} is a Banach space under the norm $\|\cdot\|_{\mathcal{B}}$, and \mathcal{B}_0 is a closed subspace of \mathcal{B} .

Let $g \in H(\mathbb{D})$. The Volterra integral operator T_g , which was first introduced by Pommerenke in [6], is defined as

$$T_g f(z) = \int_0^z f(\zeta) g'(\zeta) d\zeta, \ z \in \mathbb{D}, f \in H(\mathbb{D}).$$

Its related operator I_g is defined by

$$I_g f(z) = \int_0^z f'(\zeta) g(\zeta) d\zeta, \ z \in \mathbb{D}, f \in H(\mathbb{D}).$$

It is clear that $M_g f(z) = T_g f(z) + I_g f(z) + g(0) f(0)$, where $M_g f(z) = g(z) f(z)$ is called the multiplication operator. The Volterra integral operator T_g was studied by many authors recently. For more results on operator T_g , we refer to [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and the references therein

For any $I \subset \partial \mathbb{D}$, the boundary of \mathbb{D} , let |I| be the normalized arc length of I. Let

$$S(I) = \{ z = re^{i\theta} \in \mathbb{D} : 1 - |I| \le r < 1, e^{i\theta} \in I \}$$

be the Carleson box based on *I*. Let $0 , <math>0 \le s < \infty$, and μ a positive Borel measure on \mathbb{D} . The tent space $\mathscr{T}_s^p(\mu)$ consists of all μ -measure functions f satisfying

$$||f||_{\mathscr{T}_s^p}^p = \sup_{I \subset \partial \mathbb{D}} \frac{1}{|I|^s} \int_{S(I)} |f(z)|^p d\mu(z) < \infty.$$

Suppose that, $0 \le \lambda \le 1$, the analytic Morrey space, denoted by $\mathscr{L}^{2,\lambda}(\mathbb{D})$, is the space of all $f \in H^2(\mathbb{D})$ such that

$$\|f\|_{\mathscr{L}^{2,\lambda}}^2 = \sup_{I \subset \mathbb{A}^{\mathbb{D}}} \frac{1}{|I|^{\lambda}} \int_I |f(\xi) - f_I|^2 \frac{|d\xi|}{2\pi} < \infty,$$

where

$$f_I = \frac{1}{|I|} \int_I f(\xi) \frac{|d\xi|}{2\pi}.$$

Clearly, $\mathcal{L}^{2,1}(\mathbb{D})$ coincides with the *BMOA* space. $\mathcal{L}^{2,0}(\mathbb{D})$ is just the Hardy space H^2 . Moreover, $BMOA \subset \mathcal{L}^{2,\lambda} \subset H^2$ for $0 < \lambda < 1$. The space $\mathcal{L}^{2,\lambda}(\mathbb{D})$ was investigated in [10, 20, 21].

Recently, Galanopoulos, Merchán and Siskakis [8] defined the Dirichlet-Morrey space $\mathscr{D}_p^{2,\lambda}$, which consists of all functions $f \in \mathscr{D}_p^2$ such that

$$||f||_{\mathscr{D}^{2,\lambda}_p} = |f(0)| + \sup_{a \in \mathbb{D}} (1 - |a|^2)^{\frac{p(1-\lambda)}{2}} ||f \circ \sigma_a - f(a)||_{\mathscr{D}^2_p} < \infty,$$

where $0 \le p, \lambda \le 1$. It is easy to check that $\mathscr{D}_1^{2,\lambda} = \mathscr{L}^{2,\lambda}, \mathscr{D}_p^{2,1} = Q_p, \mathscr{D}_p^{2,0} = \mathscr{D}_p^2$, and

$$Q_p \subset \mathcal{D}_p^{2,\lambda} \subset D_p^2, \ 0 < \lambda < 1.$$

They studied the boundedness and compactness of the Volterra operator T_g on the space $\mathcal{D}_p^{2,\lambda}$ (see [8]). For example, if T_g is bounded on $\mathcal{D}_p^{2,\lambda}$, then $g \in Q_p$, while if $g \in W_p$, then T_g is bounded on $\mathcal{D}_p^{2,\lambda}$.

Let $0 , and <math>0 < \lambda < 1$. In this paper, we define a new class space $\mathscr{D}_{p-1}^{p,\lambda}$, called the Dirichlet-Morrey type space. Let $f \in \mathscr{D}_{p-1}^p$. We say that the function f belongs to $\mathscr{D}_{p-1}^{p,\lambda}$ if

$$||f||_{\mathscr{D}^{p,\lambda}_{p-1}} = |f(0)| + \sup_{a \in \mathbb{D}} (1 - |a|^2)^{\frac{1-\lambda}{p}} ||f \circ \sigma_a - f(a)||_{\mathscr{D}^p_{p-1}} < \infty.$$

It is obvious that $\mathscr{D}_{p-1}^{p,\lambda}$ is a Banach space under the above norm when $p \geq 1$. Clearly, $\mathscr{D}_{p-1}^{p,\lambda} = \mathscr{L}^{2,\lambda}$ when p=2. By a simple calculation, we have $\mathscr{D}_{p-1}^{p,0} = \mathscr{D}_{p-1}^p$, $\mathscr{D}_{p-1}^{p,1} = F(p,p-2,1)$, and

$$F(p, p-2, 1) \subset \mathcal{D}_{p-1}^{p, \lambda} \subset \mathcal{D}_{p-1}^{p}, 0 < \lambda < 1.$$

In this paper, we first study some basic properties of the Dirichlet-Morrey type space $\mathcal{D}_{p-1}^{p,\lambda}$ in Section 2. The boundedness and compactness of the identity operator I_d from $\mathcal{D}_{p-1}^{p,\lambda}$ to the tent space $\mathcal{T}_s^p(\mu)$ are studied in Section 3. Using the embedding theorem, we study the boundedness of operators T_g , I_g and M_g from $\mathcal{D}_{p-1}^{p,\lambda}$ to the space $F(p, p-1-\lambda, s)$ in Section 4. Finally, in Section 5, we investigate the essential norm and compactness of T_g and T_g .

In this paper, we write $F \approx G$ between two functions if $F \leq G \leq F$, where $G \leq F$ means that there exists a nonnegative constant C such that $G \leq CF$.

2. Some Auxiliary Properties

We begin this section with the definition of the Carleson measure. Let μ be a positive Borel measure on \mathbb{D} , and $0 < \alpha < \infty$. μ is called an α -Carleson measure (see [13]) if

$$\|\mu\|_{CM_{\alpha}} = \sup_{I \subset \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^{\alpha}} < \infty.$$

 μ is the classical Carleson measure when $\alpha = 1$. μ is called a vanishing α -Carleson measure if

$$\lim_{|I|\to 0}\frac{\mu(S(I))}{|I|^{\alpha}}=0.$$

The following result gives an equivalent characterization of α -Carleson measure (see [13]).

Lemma 2.1. Let $0 < \alpha, t < \infty$, and let μ be a positive Borel measure on \mathbb{D} . Then μ is an α -Carleson measure if and only if

$$\sup_{b\in\mathbb{D}}\int_{\mathbb{D}}\frac{(1-|b|^2)^t}{|1-\bar{b}z|^{\alpha+t}}d\mu(z)<\infty.$$

Moreover,

$$\sup_{I\subset\partial\mathbb{D}}\frac{\mu(S(I))}{|I|^{\alpha}}\approx\sup_{b\in\mathbb{D}}\int_{\mathbb{D}}\frac{(1-|b|^2)^t}{|1-\bar{b}z|^{\alpha+t}}d\mu(z).$$

The following result gives an equivalent characterization for the Dirichlet-Morrey type space $\mathcal{D}_{p-1}^{p,\lambda}$.

Proposition 2.1. Let $0 < \lambda < 1$, $0 , and <math>f \in H(\mathbb{D})$. Then $f \in \mathcal{D}_{p-1}^{p,\lambda}$ if and only if

$$\sup_{I \subset \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{S(I)} |f'(z)|^p (1 - |z|^2)^{p-1} dA(z) < \infty.$$
 (2.1)

Moreover,

$$||f||_{\mathscr{D}^{p,\lambda}_{p-1}} pprox \sup_{I \subset \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{S(I)} |f'(z)|^p (1-|z|^2)^{p-1} dA(z).$$

Proof. First, assume that $f \in \mathscr{D}_{p-1}^{p,\lambda}$. For any interval $I \in \partial \mathbb{D}$, let ξ be the midpoint of interval I, and $b = (1-|I|)\xi$. Then $|I| = 1-|b| \approx 1-|b|^2 \approx |1-\bar{b}z|$ for $z \in S(I)$. Using the change of variables, we deduce that

$$\infty > \|f\|_{\mathscr{D}_{p-1}^{p,\lambda}}^{p} \approx \sup_{b \in \mathbb{D}} (1 - |b|^{2})^{1-\lambda} \|f \circ \sigma_{b} - f(b)\|_{\mathscr{D}_{p-1}^{p}}^{p} \\
= \sup_{b \in \mathbb{D}} (1 - |b|^{2})^{1-\lambda} \int_{\mathbb{D}} |(f \circ \sigma_{b})'(z)|^{p} (1 - |z|^{2})^{p-1} dA(z) \\
= \sup_{b \in \mathbb{D}} (1 - |b|^{2})^{1-\lambda} \int_{\mathbb{D}} |f'(\sigma_{b}(z))|^{p} \frac{(1 - |z|^{2})^{p-1} (1 - |b|^{2})^{p}}{|1 - \bar{b}z|^{2p}} dA(z) \\
= \sup_{b \in \mathbb{D}} (1 - |b|^{2})^{2-\lambda} \int_{\mathbb{D}} |f'(w)|^{p} \frac{(1 - |w|^{2})^{p-1}}{|1 - \bar{b}w|^{2}} dA(w) \\
\succeq \sup_{I \subset \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{S(I)} |f'(w)|^{p} (1 - |w|^{2})^{p-1} dA(w).$$

Hence inequality (2.1) holds.

Conversely, suppose that inequality (2.1) holds. Then

$$\sup_{I\subset\partial\mathbb{D}}\frac{1}{|I|^{\lambda}}\int_{S(I)}|f'(z)|^p(1-|z|^2)^{p-1}dA(z)=\sup_{I\subset\partial\mathbb{D}}\frac{\mu_f(S(I))}{|I|^{\lambda}}<\infty,$$

where $d\mu_f(z) = |f'(z)|^p (1-|z|^2)^{p-1} dA(z)$. So we see that μ_f is a λ -Carleson measure. Then Lemma 4.1 implies that

$$\begin{split} &\sup_{b\in\mathbb{D}} (1-|b|^2)^{1-\lambda} \|f \circ \sigma_b - f(b)\|_{\mathscr{D}_{p-1}^{p,\lambda}}^p \\ &= \sup_{b\in\mathbb{D}} \int_{\mathbb{D}} (1-|b|^2)^{1-\lambda} |f'(z)|^p (1-|z|^2)^{p-1} \frac{(1-|b|^2)}{|1-\bar{b}z|^2} dA(z) \\ &= \sup_{b\in\mathbb{D}} \int_{\mathbb{D}} \frac{(1-|b|^2)^{2-\lambda}}{|1-\bar{b}z|^2} d\mu_f(z) < \infty. \end{split}$$

So $f \in \mathcal{D}_{p-1}^{p,\lambda}$. This completes the proof.

Proposition 2.2. Let $0 < \lambda < 1$, $0 and <math>f \in \mathcal{D}_{p-1}^{p,\lambda}$. Then

$$|f(w)| \leq \frac{||f||_{\mathscr{D}_{p-1}^{p,\lambda}}}{(1-|w|^2)^{\frac{1-\lambda}{p}}}, w \in \mathbb{D}.$$

Proof. Assume $f \in \mathcal{D}_{p-1}^{p,\lambda}$. For any $a \in \mathbb{D}$, using [22, Lemma 4.12], we have

$$|f'(a)|^{p}(1-|a|^{2})^{p} \leq p \int_{\mathbb{D}} |(f \circ \sigma_{a})'(z)|^{p}(1-|z|^{2})^{p-1} dA(z)$$

$$= \frac{p}{(1-|a|^{2})^{1-\lambda}} (1-|a|^{2})^{1-\lambda} ||f \circ \sigma_{a} - f(a)||_{\mathscr{D}_{p-1}^{p}}^{p}$$

$$\leq \frac{p||f||_{\mathscr{D}_{p-1}^{p,\lambda}}^{p}}{(1-|a|^{2})^{1-\lambda}}.$$

Therefore,

$$|f'(a)| \le \frac{p^{1/p}}{(1-|a|^2)^{\frac{1-\lambda}{p}+1}} ||f||_{\mathscr{D}^{p,\lambda}_{p-1}}.$$

Integrating both sides of the last inequality from 0 to a, we get the desired result immediately.

Lemma 2.2. [13, Corollary 2.5] *Let* $a, b \in \mathbb{D}$ *and* r > -1, s, t > 0 *such that* 0 < s + t - r - 2 < s. *Then*

$$\int_{\mathbb{D}} \frac{(1-|z|^2)^r}{|1-\bar{a}z|^s|1-\bar{b}z|^t} dA(z) \leq \frac{1}{(1-|a|^2)^{s+t-r-2}}.$$

Proposition 2.3. Let $0 , and <math>0 < \lambda < 1$. Then the function

$$f_b(z) = \frac{1}{(1 - \bar{b}z)^{\frac{1-\lambda}{p}}}, b \in \mathbb{D},$$

belongs to $\mathcal{D}_{p-1}^{p,\lambda}$.

Proof. From Lemma 2.2, we get

$$||f_{b}||_{\mathscr{D}_{p-1}^{p,\lambda}}^{p} \approx \sup_{a \in \mathbb{D}} (1 - |a|^{2})^{1-\lambda} ||f_{b} \circ \sigma_{a} - f(a)||_{\mathscr{D}_{p-1}^{p,\lambda}}^{p}$$

$$= \sup_{a \in \mathbb{D}} (1 - |a|^{2})^{1-\lambda} \int_{\mathbb{D}} |f'_{b}(z)|^{p} (1 - |z|^{2})^{p-1} \frac{(1 - |a|^{2})}{|1 - \bar{a}z|^{2}} dA(z)$$

$$\leq \sup_{a \in \mathbb{D}} (1 - |a|^{2})^{2-\lambda} \int_{\mathbb{D}} \frac{(1 - |z|^{2})^{p-1}}{|1 - \bar{a}z|^{2}|1 - \bar{b}z|^{1-\lambda+p}} dA(z)$$

$$< \infty.$$

This finishes the proof.

3. Embedding
$$\mathscr{D}_{p-1}^{p,\lambda}$$
 Into $\mathscr{T}_s^p(\mu)$

In this section, we discuss the boundedness and compactness of the identity operator I_d : $\mathscr{D}_{p-1}^{p,\lambda} \to \mathscr{T}_s^p(\mu)$.

Theorem 3.1. Let $0 , <math>0 < \lambda < 1$, and $\lambda < s < \infty$. Let μ be a positive Borel measure on \mathbb{D} . Then the identity operator $I_d: \mathcal{D}_{p-1}^{p,\lambda} \to \mathcal{T}_s^p(\mu)$ is bounded if and only if μ is a $s+1-\lambda$ -Carleson measure.

Proof. Assume first that $I_d: \mathscr{D}_{p-1}^{p,\lambda} \to \mathscr{T}_s^p(\mu)$ is bounded. For any $b \in \mathbb{D}$, set

$$f_b(z) = \frac{1 - |b|^2}{(1 - \bar{b}z)^{1 + \frac{1 - \lambda}{p}}}, \ z \in \mathbb{D}.$$

Proposition 2.3 yields that $f_b \in \mathcal{D}_{p-1}^{p,\lambda}$. For any interval $I \subset \partial \mathbb{D}$, let ξ be the midpoint of I. Set $b = (1 - |I|)\xi$. Then

$$|I| = 1 - |b| \approx 1 - |b|^2 \approx |1 - \bar{b}z|$$

for $z \in S(I)$. Moreover $|f_b(z)| \approx \frac{1}{|I|^{\frac{1-\lambda}{p}}}, z \in S(I)$. Hence,

$$\frac{\mu(S(I))}{|I|^{s+1-\lambda}} \approx \frac{1}{|I|^s} \int_{S(I)} |f_b(z)|^p d\mu(z) \leq ||f_b||_{\mathscr{D}^{p,\lambda}_{p-1}}^p < \infty,$$

which implies that μ is a $s+1-\lambda$ -Carleson measure.

Conversely, suppose that μ is a $s+1-\lambda$ -Carleson measure. Let $f \in \mathcal{D}_{p-1}^{p,\lambda}$. For any $I \subset \partial \mathbb{D}$, let ξ be the midpoint of I. Set $a = (1-|I|)\xi$. Then

$$\frac{1}{|I|^s} \int_{S(I)} |f(z)|^p d\mu(z) \leq \frac{1}{|I|^s} \int_{S(I)} |f(a)|^p d\mu(z) + \frac{1}{|I|^s} \int_{S(I)} |f(z) - f(a)|^p d\mu(z)$$

$$:= E + F.$$

Proposition 2.2 yields that

$$E \preceq \|f\|_{\mathscr{D}^{p,\lambda}_{p-1}}^{p} \frac{\mu(S(I))}{|I|^{s+1-\lambda}} \preceq \|f\|_{\mathscr{D}^{p,\lambda}_{p-1}}^{p}.$$

By the assumption that μ is a $s+1-\lambda$ -Carleson measure, we see that $I_d: A^p_{s-1-\lambda} \to L^p(\mu)$ is bounded (see [23] or [22]). Hence, by the fact that $\mathcal{D}^{p,\lambda}_{p-1} \subset \mathcal{D}^p_{p-1} \subset A^p_{s-1-\lambda}$, we have

$$F = \frac{1}{|I|^{s}} \int_{S(I)} |f(z) - f(a)|^{p} d\mu(z)$$

$$\approx (1 - |a|^{2})^{1-\lambda} \int_{S(I)} |f(z) - f(a)|^{p} \frac{(1 - |a|^{2})^{s+1-\lambda}}{|1 - \bar{a}z|^{2s+2-2\lambda}} d\mu(z)$$

$$\leq (1 - |a|^{2})^{1-\lambda} \int_{\mathbb{D}} |f(z) - f(a)|^{p} \frac{(1 - |a|^{2})^{s+1-\lambda}}{|1 - \bar{a}z|^{2s+2-2\lambda}} d\mu(z)$$

$$\leq (1 - |a|^{2})^{1-\lambda} \int_{\mathbb{D}} |f(z) - f(a)|^{p} \frac{(1 - |z|^{2})^{s-1-\lambda} (1 - |a|^{2})^{s+1-\lambda}}{|1 - \bar{a}z|^{2s+2-2\lambda}} dA(z)$$

$$= (1 - |a|^{2})^{1-\lambda} \int_{\mathbb{D}} |f \circ \sigma_{a}(w) - f(a)|^{p} (1 - |w|^{2})^{s-1-\lambda} dA(w)$$

$$\leq (1 - |a|^{2})^{1-\lambda} \int_{\mathbb{D}} |(f \circ \sigma_{a})'(w)|^{p} (1 - |w|^{2})^{p+s-1-\lambda} dA(w)$$

$$\leq (1 - |a|^{2})^{1-\lambda} \int_{\mathbb{D}} |(f \circ \sigma_{a})'(w)|^{p} (1 - |w|^{2})^{p-1} dA(w)$$

$$\leq (1 - |a|^{2})^{1-\lambda} \int_{\mathbb{D}} |(f \circ \sigma_{a})'(w)|^{p} (1 - |w|^{2})^{p-1} dA(w)$$

$$\leq ||f||_{\mathscr{P}_{p-1}^{p,\lambda}}^{p,\lambda}.$$

So the identity operator $I_d: \mathcal{D}_{p-1}^{p,\lambda} \to \mathcal{T}_s^p(\mu)$ is bounded. This completes the proof.

We say that the identity operator $I_d: \mathscr{D}^{p,\lambda}_{p-1} \to \mathscr{T}^p_s(\mu)$ is compact if

$$\lim_{k\to\infty}\frac{1}{|I|^s}\int_{S(I)}|f_k(z)|^pd\mu(z)=0,$$

where $I \subset \partial \mathbb{D}$, $\{f_k\}$ is a bounded sequence in $\mathcal{D}_{p-1}^{p,\lambda}$, and $f_k \to 0$ uniformly on compact subsets of \mathbb{D} as $k \to \infty$.

Theorem 3.2. Let μ be a positive Borel measure on \mathbb{D} . Let $0 , <math>0 < \lambda < 1$, and $\lambda < s < \infty$ such that point evaluation functional is bounded on $\mathcal{T}_s^p(\mu)$. Then the identity operator $I_d: \mathcal{D}_{p-1}^{p,\lambda} \to \mathcal{T}_s^p(\mu)$ is compact if and only if the measure μ is a vanishing $s+1-\lambda$ -Carleson measure.

Proof. Assume first that $I_d: \mathcal{D}^{p,\lambda}_{p-1} \to \mathcal{T}^p_s(\mu)$ is compact. Let $\{I_k\}$ be a sequence of interval of $\partial \mathbb{D}$ with $\lim_{k \to \infty} |I_k| = 0$. Let ξ_n be the midpoint of I_k and $b_k = (1 - |I_k|)\xi_n$. Then, for any $z \in S(I_k)$, $1 - |b_k|^2 \approx |1 - \bar{b}_k z| \approx |I_k|$. Set

$$f_k(z) = \frac{1 - |b_k|^2}{(1 - \bar{b}_k z)^{1 + \frac{1 - \lambda}{p}}}, z \in \mathbb{D}.$$

Proposition 2.3 yields that the sequence $\{f_k\}$ is bounded in $\mathcal{D}_{p-1}^{p,\lambda}$. Moreover, $f_k \to 0$ uniformly on compact subsets of \mathbb{D} as $k \to \infty$. Then

$$\frac{\mu(S(I_k))}{|I_k|^{s+1-\lambda}} \approx \frac{1}{|I_k|^s} \int_{S(I_k)} |f_k(z)|^p d\mu(z) \leq ||f_k||_{\mathscr{T}_s^p}^p \to 0,$$

as $k \to \infty$. Therefore, μ is a vanishing $s+1-\lambda$ -Carleson measure.

Conversely, suppose that μ is a vanishing $s+1-\lambda$ -Carleson measure. Then μ is a $s+1-\lambda$ -Carleson measure. So the identity operator $I_d: \mathscr{D}^{p,\lambda}_{p-1} \to \mathscr{T}^p_s(\mu)$ is bounded. Let $\mu_r(z) = 0$ for $r \leq |z| < 1$ and $\mu_r(z) = \mu(z)$ for |z| < r. Then as $r \to 1$, we have

$$\|\mu-\mu_r\|_{CM_{s+1-\lambda}}\to 0.$$

Let $\{f_k\}$ be a bounded sequence in $\mathscr{D}_{p-1}^{p,\lambda}$ with $\sup_{k\in\mathbb{N}}\|f_k\|_{\mathscr{D}_{p-1}^{p,\lambda}} \leq 1$ and $f_k\to 0$ uniformly on compact subsets of \mathbb{D} as $k\to\infty$. We obtain

$$\frac{1}{|I|^{s}} \int_{S(I)} |f_{k}(z)|^{p} d\mu(z)
\leq \frac{1}{|I|^{s}} \int_{S(I)} |f_{k}(z)|^{p} d\mu_{r}(z) + \frac{1}{|I|^{s}} \int_{S(I)} |f_{k}(z)|^{p} d(\mu - \mu_{r})(z)
\leq \frac{1}{|I|^{s}} \int_{S(I)} |f_{k}(z)|^{p} d\mu_{r}(z) + \|\mu - \mu_{r}\|_{CM_{s+1-\lambda}} \|f_{k}\|_{\mathscr{D}_{p-1}^{p,\lambda}}^{p}
\leq \frac{1}{|I|^{s}} \int_{S(I)} |f_{k}(z)|^{p} d\mu_{r}(z) + \|\mu - \mu_{r}\|_{CM_{s+1-\lambda}}.$$

As $k \to \infty$ and $r \to 1$, we obtain $\lim_{k \to \infty} ||f_k||_{\mathscr{T}^p_s} = 0$. So the identity operator $I_d : \mathscr{D}^{p,\lambda}_{p-1} \to \mathscr{T}^p_s(\mu)$ is compact. This completes the proof.

4. THE BOUNDEDNESS OF INTEGRAL OPERATORS

In this section, we study the boundedness of the operators T_g , I_g , and M_g from the space $\mathcal{D}_{p-1}^{p,\lambda}$ to $F(p, p-1-\lambda, s)$.

Lemma 4.1. Let $0 , <math>0 < \lambda < 1$, $\lambda < s < \infty$, and $f \in F(p, p-1-\lambda, s)$. Then

$$|f(z)| \leq \frac{||f||_{F(p,p-1-\lambda,s)}}{(1-|z|^2)^{\frac{1-\lambda}{p}}}, z \in \mathbb{D}.$$

Proof. Suppose that $f \in F(p, p-1-\lambda, s)$. For each $a \in \mathbb{D}$, using Lemma 4.12 in [22], we get

$$\infty > \int_{\mathbb{D}} |f'(z)|^{p} (1 - |z|^{2})^{p-1-\lambda} (1 - |\sigma_{a}(z)|^{2})^{s} dA(z)
= \int_{\mathbb{D}} |f'(\sigma_{a}(z))|^{p} (1 - |\sigma_{a}(z)|^{2})^{p-1-\lambda} (1 - |z|^{2})^{s} |\sigma'_{a}(z)|^{2} dA(z)
= \int_{\mathbb{D}} |(f \circ \sigma_{a})'(z)|^{p} \frac{(1 - |z|^{2})^{p-1-\lambda+s} (1 - |a|^{2})^{1-\lambda}}{|1 - \bar{a}z|^{2-\lambda}} dA(z)
\succeq \int_{\mathbb{D}} |(f \circ \sigma_{a})'(z)|^{p} (1 - |a|^{2})^{1-\lambda} (1 - |z|^{2})^{p-1-\lambda+s} dA(z)
\succeq |f'(a)|^{p} (1 - |a|^{2})^{p+1-\lambda}.$$

So

$$|f'(a)| \leq \frac{||f||_{F(p,p-1-\lambda,s)}}{(1-|a|^2)^{1+\frac{1-\lambda}{p}}}, a \in \mathbb{D}.$$

Since $f(z) - f(0) = \int_0^z f'(w) dw$, by integrating both sides of the last inequality, we obtain the desired result immediately.

Theorem 4.1. Let $0 , <math>0 < \lambda < 1$, $\lambda < s < \infty$, and $g \in H(\mathbb{D})$. Then $T_g : \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded if and only if $g \in \mathcal{B}$. Moreover,

$$||T_g||_{\mathscr{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)}\approx ||g||_{\mathscr{B}}.$$
(4.1)

Proof. Assume first that $g \in \mathcal{B}$. From [4, Theorem 1.3], we get

$$\infty > \|g\|_{\mathscr{B}}^{p} \approx \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |g'(z)|^{p} (1 - |z|^{2})^{p-2} (1 - |\sigma_{a}(z)|^{2})^{s+1-\lambda} dA(z)
\approx \sup_{I \subset \partial \mathbb{D}} \frac{1}{|I|^{s+1-\lambda}} \int_{S(I)} |g'(z)|^{p} (1 - |z|^{2})^{s+p-1-\lambda} dA(z)
\approx \sup_{I \subset \partial \mathbb{D}} \frac{\mu_{g}(S(I))}{|I|^{s+1-\lambda}} = \|\mu_{g}\|_{CM_{s+1-\lambda}},$$

where $d\mu_g(z)=|g'(z)|^p(1-|z|^2)^{s+p-1-\lambda}dA(z)$. So μ_g is a $s+1-\lambda$ -Carleson measure. Theorem 3.1 yields that $I_d: \mathscr{D}_{p-1}^{p,\lambda} \to \mathscr{T}_s^p(\mu)$ is bounded. Let $f \in \mathscr{D}_{p-1}^{p,\lambda}$. We deduce that

$$\begin{split} \|T_{g}f\|_{F(p,p-1-\lambda,s)}^{p} &\approx \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f(z)|^{p} |g'(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{s} dA(z) \\ &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f(z)|^{p} |g'(z)|^{p} (1-|z|^{2})^{s+p-1-\lambda} \frac{(1-|a|^{2})^{s}}{|1-\bar{a}z|^{2s}} dA(z) \\ &\approx \sup_{I \subset \partial \mathbb{D}} \frac{1}{|I|^{s}} \int_{S(I)} |f(z)|^{p} d\mu_{g}(z) \\ &\preceq \|\mu_{g}\|_{CM_{s+1-\lambda}} \|f\|_{\mathscr{D}_{p-1}^{p,\lambda}}^{p} < \infty. \end{split}$$

So $T_g: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded.

Conversely, suppose that $T_g: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded. For r>0 and any $b\in \mathbb{D}$, let $\mathbb{D}(b,r)$ denote the Bergman metric disc centered at b with radius r, that is, $\mathbb{D}(b,r)=\{z\in \mathbb{D}: \beta(b,z)< r\}$. From [22], we obtain

$$\frac{(1-|b|^2)^2}{|1-\bar{b}z|^4} \approx \frac{1}{(1-|b|^2)^2} \approx \frac{1}{(1-|z|^2)^2}, \ z \in \mathbb{D}(b,r).$$

Let f_b be defined as in Theorem 3.1. Using [22, Proposition 4.13], we see that

$$\infty > \|T_{g}f_{b}\|_{F(p,p-1-\lambda,s)}^{p} \succeq \int_{\mathbb{D}} |f_{b}(z)|^{p} |g'(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{b}(z)|^{2})^{s} dA(z)
\succeq \int_{\mathbb{D}(b,r)} |g'(z)|^{p} \frac{(1-|b|^{2})^{p+s} (1-|z|^{2})^{p-1-\lambda+s}}{|1-\bar{b}z|^{p+1-\lambda+2s}} dA(z)
\approx \int_{\mathbb{D}(b,r)} |g'(z)|^{p} (1-|z|^{2})^{p-2} dA(z)
\succeq |g'(b)|^{p} (1-|b|^{2})^{p}.$$

Using this and the arbitrariness of b, we have that $g \in \mathcal{B}$. From the above proof, we see that (4.1) holds. This completes the proof.

Theorem 4.2. Let $0 , <math>0 < \lambda < 1$, $\lambda < s < \infty$, and $g \in H(\mathbb{D})$. Then $I_g : \mathcal{D}_{p-1}^{p,\lambda} \to F(p, p-1-\lambda, s)$ is bounded if and only if $g \in H^{\infty}$.

Proof. Suppose first that $g \in H^{\infty}$. Since $(I_g f(z))' = f'(z)g(z)$, for each $f \in \mathcal{D}_{p-1}^{p,\lambda}$, we have

$$\begin{split} \|I_{g}f\|_{F(p,p-1-\lambda,s)}^{p} &\approx \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^{p} |g(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{s} dA(z) \\ & \preceq \|g\|_{H^{\infty}}^{p} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{s} dA(z) \\ & \preceq \|g\|_{H^{\infty}}^{p} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{\lambda} dA(z) \\ &\approx \|g\|_{H^{\infty}}^{p} \sup_{I \subset \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{S(I)} |f'(z)|^{p} (1-|z|^{2})^{p-1} dA(z) \\ & \preceq \|g\|_{H^{\infty}}^{p} \|f\|_{\mathscr{D}_{p-1}^{p,\lambda}}^{p}. \end{split}$$

So $I_g: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded.

Conversely, assume that $I_g: \mathscr{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded. Set

$$f_b(z) = \frac{1 - |b|^2}{\bar{b}(1 - \bar{b}z)^{1 + \frac{1 - \lambda}{p}}}, \ 0 \neq b \in \mathbb{D}.$$

It is obvious that

$$||I_g f_b||_{F(p,p-1-\lambda,s)} \le ||I_g||_{\mathscr{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)} ||f_b||_{\mathscr{D}_{p-1}^{p,\lambda}} < \infty$$

due to Proposition 2.3. For each $b \in \mathbb{D}$ and r > 0, we have

$$\begin{aligned} \|I_{g}f_{b}\|_{F(p,p-1-\lambda,s)}^{p} &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |(I_{g}f_{b})'(z)|^{p} (1 - |z|^{2})^{p-1-\lambda} (1 - |\sigma_{a}(z)|^{2})^{s} dA(z) \\ &\succeq \int_{\mathbb{D}(b,r)} |f_{b}'(z)|^{p} |g(z)|^{p} (1 - |z|^{2})^{p-1-\lambda} (1 - |\sigma_{b}(z)|^{2})^{s} dA(z) \\ &\succeq \int_{\mathbb{D}(b,r)} |g(z)|^{p} \frac{(1 - |z|^{2})^{p-1-\lambda+s} (1 - |b|^{2})^{p+s}}{|1 - \bar{b}z|^{2p+1-\lambda+2s}} dA(z) \\ &\succeq \frac{1}{(1 - |b|^{2})^{p+1}} \int_{\mathbb{D}(b,r)} |g(z)|^{p} (1 - |z|^{2})^{p-1} dA(z) \\ &\succeq |g(b)|^{p}. \end{aligned}$$

The last inequality is due to [22, Proposition 4.13]. By the arbitrariness of b, we see that $g \in H^{\infty}$. This completes the proof.

Theorem 4.3. Let $0 , <math>0 < \lambda < 1$, $\lambda < s < \infty$, and $g \in H(\mathbb{D})$. Then $M_g : \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded if and only if $g \in H^{\infty}$.

Proof. Suppose first that $g \in H^{\infty}$. Employing Theorem 4.1, Theorem 4.2, and the fact that $H^{\infty} \subset \mathcal{B}$, we obtain that both T_g and I_g are bounded from $\mathcal{D}_{p-1}^{p,\lambda}$ to $F(p,p-1-\lambda,s)$. Therefore, $M_g: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded.

Conversely, suppose that $M_g: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded. For $a \in \mathbb{D}$, set

$$f_a(z) = \frac{1}{(1 - \bar{a}z)^{\frac{1-\lambda}{p}}}, z \in \mathbb{D}.$$

By Proposition 2.3, f_a is bounded in $\mathcal{D}_{p-1}^{p,\lambda}$. Using the assumption, we get that $M_g f_a \in F(p, p-1-\lambda, s)$. By Lemma 4.1, we obtain

$$|g(z)f_a(z)| = |M_g f_a(z)| \leq \frac{||M_g f_a||_{F(p,p-1-\lambda,s)}}{(1-|z|^2)^{\frac{1-\lambda}{p}}} \leq \frac{||M_g||_{\mathscr{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)}}{(1-|z|^2)^{\frac{1-\lambda}{p}}}.$$

In view of the arbitrariness of a, we get

$$|g(z)| \leq ||M_g||_{\mathscr{D}^{p,\lambda}_{p-1} \to F(p,p-1-\lambda,s)},$$

which means that $g \in H^{\infty}$. This completes the proof.

5. ESSENTIAL NORM OF INTEGRAL OPERATORS

In this section, we estimate the essential norm of the operators T_g and I_g from the space $\mathcal{D}_{p-1}^{p,\lambda}$ to $F(p,p-1-\lambda,s)$. Recall that the essential norm of a bounded linear operator $L:W\to Q$ is defined as

$$\|L\|_{e,W \to Q} = \inf_{S} \{ \|L - S\|_{W \to Q} : S \text{ is compact from } W \text{ to } Q \}.$$

Here $(W, \|\cdot\|_W)$, $(Q, \|\cdot\|_Q)$ are two Banach spaces. It is known that $L: W \to Q$ is compact if and only if $\|L\|_{e,W\to Q} = 0$.

Let *B* and *Y* be Banach spaces such that $B \subset Y$. Given $f \in Y$, the distance of *f* to *B* denoted by $\operatorname{dist}_Y(f,B)$, is defined as $\operatorname{dist}_Y(f,B) = \inf_{g \in B} \|f - g\|_Y$. Set $g_r(z) = g(rz)$, $0 < r < 1, z \in \mathbb{D}$.

The following lemma gives the distance from the Bloch space \mathcal{B} to the little Bloch space \mathcal{B}_0 . See [24].

Lemma 5.1. *If* $g \in \mathcal{B}$, then

$$\operatorname{dist}_{\mathscr{B}}(g,\mathscr{B}_0) \approx \limsup_{|z| \to 1^-} (1 - |z|^2) |g'(z)| \approx \limsup_{r \to 1^-} \|g - g_r\|_{\mathscr{B}}.$$

Lemma 5.2. Let $g \in \mathcal{B}$, $1 \le p < \infty$, $0 < r, \lambda < 1$ and $\lambda < s < \infty$. Then $T_{g_r} : \mathcal{D}_{p-1}^{p,\lambda} \to F(p, p-1-\lambda, s)$ is compact.

Proof. Let $\{f_k\}$ be a bounded sequence in $\mathscr{D}_{p-1}^{p,\lambda}$, and converge to zero uniformly on compact subsets of \mathbb{D} . Using the fact that $\mathscr{D}_{p-1}^{p,\lambda} = F(p,p-1-\lambda,\lambda)$, we obtain that

$$\begin{split} \|T_{g_{r}}f_{k}\|_{F(p,p-1-\lambda,s)}^{p} &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f_{k}(z)|^{p} |g'_{r}(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{s} dA(z) \\ & \leq \frac{\|g\|_{\mathscr{B}}^{p}}{(1-r^{2})^{p}} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f_{k}(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{s} dA(z) \\ & \leq \frac{\|g\|_{\mathscr{B}}^{p}}{(1-r^{2})^{p}} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'_{k}(z)|^{p} (1-|z|^{2})^{2p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{s} dA(z) \\ & \leq \frac{\|g\|_{\mathscr{B}}^{p}}{(1-r^{2})^{p}} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'_{k}(z)|^{p} (1-|z|^{2})^{p-1-\lambda} (1-|\sigma_{a}(z)|^{2})^{\lambda} dA(z) \\ & \leq \frac{\|g\|_{\mathscr{B}}^{p}}{(1-r^{2})^{p}} \|f_{k}\|_{\mathscr{D}_{p-1}^{p,\lambda}}^{p}. \end{split}$$

Employing the Dominated Convergence Theorem, we obtain that

$$\lim_{k \to \infty} ||T_{g_r} f_k||_{F(p, p-1-\lambda, s)}^p \leq \lim_{k \to \infty} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f_k(z)|^p (1 - |z|^2)^{p-1-\lambda} (1 - |\sigma_a(z)|^2)^s dA(z)
\leq \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \lim_{k \to \infty} |f_k(z)|^p (1 - |z|^2)^{p-1-\lambda} (1 - |\sigma_a(z)|^2)^s dA(z)
= 0.$$

Hence $T_{g_r}: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is compact. This finishes the proof.

Theorem 5.1. Let $g \in H(\mathbb{D})$, $1 \le p < \infty$, $0 < \lambda < 1$ and $\lambda < s < \infty$. If $T_g : \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded, then

$$||T_g||_{e,\mathscr{D}_{p-1}^{p,\lambda}\to F(p,p-1-\lambda,s)} \approx \operatorname{dist}_{\mathscr{B}}(g,\mathscr{B}_0) \approx \limsup_{|z|\to 1^-} (1-|z|^2)|g'(z)|.$$

Proof. Let $a_k \in \mathbb{D}$ such that $|a_k| \to 1$ as $k \to \infty$. Set

$$f_k(z) = \frac{1 - |a_k|^2}{(1 - \bar{a}_k z)^{1 + \frac{1 - \lambda}{p}}}, z \in \mathbb{D}.$$

Then $\{f_k\}$ is a bounded sequence in $\mathcal{D}_{p-1}^{p,\lambda}$, and $f_k \to 0$ uniformly on compact subsets of \mathbb{D} as $k \to \infty$. For every compact operator $S: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$, by [25, Lemma 2.10], we

see that $\lim_{k\to\infty} ||Sf_k||_{F(p,p-1-\lambda,s)} = 0$. From [22, Proposition 4.13], we have

$$\begin{split} & \|T_g - S\|_{\mathscr{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)} \\ & \succeq \limsup_{k \to \infty} \|(T_g - S)(f_k)\|_{F(p,p-1-\lambda,s)} \\ & \succeq \limsup_{k \to \infty} (\|T_g f_k\|_{F(p,p-1-\lambda,s)} - \|S f_k\|_{F(p,p-1-\lambda,s)}) \\ & = \limsup_{k \to \infty} \|T_g f_k\|_{F(p,p-1-\lambda,s)} \\ & \succeq \limsup_{k \to \infty} \left(\int_{\mathbb{D}} |f_k(z)|^p |g'(z)|^p (1-|z|^2)^{p-1-\lambda} (1-|\sigma_{a_k}(z)|^2)^s dA(z) \right)^{1/p} \\ & \succeq \limsup_{k \to \infty} \left(\int_{\mathbb{D}(a_k,r)} |g'(z)|^p (1-|z|^2)^{p-2} dA(z) \right)^{1/p} \\ & \succeq \limsup_{k \to \infty} \left(\int_{\mathbb{D}(a_k,r)} |g'(z)|^p (1-|z|^2)^{p-2} dA(z) \right)^{1/p} \\ & \succeq \limsup_{k \to \infty} |g'(a_k)| (1-|a_k|^2). \end{split}$$

By the arbitrariness of a_k , we obtain

$$||T_g||_{e,D^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)}\succeq \limsup_{|z|\to 1^-} (1-|z|^2)|g'(z)|.$$

Conversely, Lemma 5.2 yields that $T_{g_r}: \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is compact when 0 < r < 1. It follows that

$$\begin{aligned} \|T_g\|_{e,\mathcal{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)} &\leq \|T_g - T_{g_r}\|_{\mathcal{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)} \\ &= \|T_{g-g_r}\|_{\mathcal{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)} \\ &\leq \|g - g_r\|_{\mathscr{B}}. \end{aligned}$$

Employing Lemma 5.1, we get

$$||T_g||_{e,\mathscr{D}_{p-1}^{p,\lambda}\to F(p,p-1-\lambda,s)} \leq \limsup_{r\to 1} ||g-g_r||_{\mathscr{B}} \approx \limsup_{|z|\to 1^-} (1-|z|^2)|g'(z)|.$$

This completes the proof.

It is easy to get the following result.

Corollary 5.1. Let $g \in H(\mathbb{D})$, $1 \le p < \infty$, $0 < \lambda < 1$ and $\lambda < s < \infty$. Then $T_g : \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is compact if and only if $g \in \mathcal{B}_0$.

Theorem 5.2. Let $g \in H(\mathbb{D})$, $1 \leq p < \infty$, $0 < \lambda < 1$ and $\lambda < s < \infty$. If $I_g : \mathcal{D}_{p-1}^{p,\lambda} \to F(p,p-1-\lambda,s)$ is bounded, then

$$||I_g||_{e,\mathscr{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)}\approx ||g||_{H^\infty}.$$

Proof. We define S and $\{a_k\}$ as in the proof of Theorem 5.1. Set

$$F_k(z) = \frac{1 - |a_k|^2}{\bar{a}_k (1 - \bar{a}_k z)^{1 + \frac{1 - \lambda}{p}}}, \ z \in \mathbb{D}, \ a_k \neq 0.$$

Then by Proposition 2.2, we get that $||F_k||_{\mathscr{D}^{p,\lambda}_{p-1}} \leq 1$. Since $S: \mathscr{D}^{p,\lambda}_{p-1} \to F(p,p-1-\lambda,s)$ is compact. It follows from [25, Lemma 2.10] that $\lim_{k\to\infty} ||SF_k||_{F(p,p-1-\lambda,s)} = 0$. Hence

$$\begin{split} \|I_g - S\|_{\mathscr{D}^{p,\lambda}_{p-1} \to F(p,p-1-\lambda,s)} &\succeq \limsup_{k \to \infty} \|(I_g - S)(F_k)\|_{F(p,p-1-\lambda,s)} \\ &\succeq \limsup_{k \to \infty} (\|I_g F_k\|_{F(p,p-1-\lambda,s)} - \|SF_k\|_{F(p,p-1-\lambda,s)}) \\ &= \limsup_{k \to \infty} \|I_g F_k\|_{F(p,p-1-\lambda,s)}. \end{split}$$

From the proof of Theorem 4.2, we get that $||I_gF_k||_{F(p,p-1-\lambda,s)} \succeq |g(a_k)|$. Then

$$||I_g||_{e,\mathscr{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)}\succeq ||g||_{H^\infty}.$$

Conversely, by Theorem 4.2, we have

$$\begin{split} \|I_g\|_{e,\mathcal{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)} &= \inf_{S} \|I_g - S\|_{\mathcal{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)} \\ & \leq \|I_g\|_{\mathcal{D}^{p,\lambda}_{p-1}\to F(p,p-1-\lambda,s)} \leq \|g\|_{H^\infty}. \end{split}$$

This completes the proof.

Corollary 5.2. Let $g \in H(\mathbb{D})$, $1 \leq p < \infty$, $0 < \lambda < 1$, and $\lambda < s < \infty$. Then $I_g : \mathcal{D}_{p-1}^{p,\lambda} \to F(p, p-1-\lambda, s)$ is compact if and only if g = 0.

Acknowledgments

This paper was supported by National Natural Science Foundation of China (No. 11720101003).

REFERENCES

- [1] P. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- [2] T. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 756-765.
- [3] J. Littlewood, R. Paley, Theorems on Fourier series and power series, II, Proc. London Math. Soc. 42 (1936), 52-89.
- [4] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. 105 (1996), 56.
- [5] J. Xiao, The Q_p Carleson measure problem, Adv. Math. 217 (2008), 2075-2088.
- [6] C. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1997), 591-602.
- [7] A. Aleman, A. Siskakis, An integral operator on H^p, Complex Var. Theory Appl. 28 (1995), 149-158.
- [8] P. Galanopoulos, N. Merchán, A. Siskakis, A family of Dirichlet-Morrey spaces, Complex Var. Elliptic Equ. 64 (2019), 1686-1702.
- [9] D. Girela, J. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal. 241 (2006), 334-358.
- [10] P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math. 57 (2014), 1961-1974.
- [11] S. Li, J. Liu, C. Yuan, Embedding theorem for Dirichlet type spaces, Canad. Math. Bull. 63 (2020), 106-117.
- [12] Q. Lin, J. Liu, Y. Wu, Volterra type operators on $S^p(\mathbb{D})$ spaces, J. Math. Anal. Appl. 461 (2018), 1100-1114.
- [13] J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integral Equations Operator Theory 78 (2014), 483-514.
- [14] R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl. 18 (2015), 1589-1599.
- [15] R. Qian and S. Li, Carleson measure and Volterra type operators on weighted BMOA spaces, Georgian Math. J. 27 (2020), 413-424.

- [16] R. Qian, X. Zhu, Embedding of Q_p spaces into tent spaces and Volterra integral operator, AIMS Math. 6 (2020), 698-711.
- [17] C. Shen, Z, Lou, S. Li, Embedding of *BMOA*_{log} into tent spaces and Volterra integral operators, Comput. Methods Funct. Theory 20 (2020), 217–234.
- [18] C. Shen, Z, Lou, S. Li, Volterra integral operators from D^p_{p-2+s} into $F(p\lambda, p\lambda + s\lambda 2, q)$, Math. Inequal. Appl. 23 (2020), 1087-1103.
- [19] Y. Shi, S. Li, Essential norm of integral operators on Morrey type spaces, Math. Inequal. Appl. 19 (2016), 385-393.
- [20] J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal. 125 (2015), 423-432.
- [21] Z. Wu, C. Xie, Q spaces and Morrey spaces, J. Funct. Anal. 201 (2003), 282-297.
- [22] K. Zhu, Operator Theory in Function Spaces, 2nd edn, American Mathematical Society, Providence, 2007.
- [23] W. Hastings, Carleson measure for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241.
- [24] M. Tjani, Distance of a Bloch function to the little Bloch space, Bull. Austral. Math. Soc. 74 (2006), 101-119.
- [25] M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Michigan State University, Department of Mathematics, 1996.