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MATHEMATICAL JUSTIFICATION OF A GENERALIZED EQUILIBRIUM
PROBLEM
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Abstract. Generalizing the quasivariational inequality, Joly and Mosco [A propos de l’existence et de
la régularité des solutions de certaines inéquations quasi-variationnelles, J. Funct. Anal. 34 (1979),
107-137] introduced an abstract formulation of this concept. The aim of this short note is to outline the
abstract problem and to point out its relevance by exhibiting some examples which show interesting uses
in deriving existence results for quasiequilibrium problems.
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1. INTRODUCTION

Ky Fan [1] established his famous minimax inequality result, which concerns the existence
of solutions for an inequality of minimax type that nowadays is called in literature equilibrium
problem:

find x ∈C such that f (x,y)≥ 0 for all y ∈C,

where C ⊆ X is a nonempty set of a topological vector space and f : C×C→R is a bifunction.
Such a model has gained a lot interest in the last decades because it has been used in different
contexts as economics, engineering, physics, chemistry and so on [2].

A more general setting where the constraint set depends on the current analyzed point was
studied for the first time in the context of impulse control problem and it was subsequently
used by several authors for describing a lot of problems that arise in different fields: equi-
librium problems in mechanics, Nash equilibrium problems, equilibria in economics, network
equilibrium problems and so on. This more general setting, commonly called quasiequilibrium
problem, reads

find x ∈ K(x) such that f (x,y)≥ 0 for all y ∈ K(x), (1.1)

where the constraint K : C ⇒C is a set-valued map.
Joly and Mosco [3] studied a class of variational problems involving an extended valued

bifunction ϕ : C×C→ (−∞,+∞], which captures the nature of the constraint. This problem
asks to

find x ∈C such that f (x,y)+ϕ(x,y)≥ ϕ(x,x) for all y ∈C, (1.2)
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where the domain of ϕ(x, ·)

Dϕ(x) = {y ∈C : ϕ(x,y)<+∞}

is assumed to be nonempty for every x ∈ C. Problem (1.1) with K nonempty-valued can be
obtained as particular case of (1.2) if ϕ(x,y) = δ (y,K(x)), where δ is the function defined by

δ (x,A) =
{

0, if x ∈ A,
+∞, if x /∈ A,

for all x ∈ X and A ⊆ X . Furthermore, if f ≡ 0 and ϕ(x,y) = δ (y,K(x)), then problem (1.2)
consists of finding the fixed points of the set-valued map K.

An equivalent formulation of (1.2) consists of finding x ∈C such that{
x ∈ Dϕ(x)
f (x,y)+ϕ(x,y)−ϕ(x,x)≥ 0, ∀y ∈ Dϕ(x).

(1.3)

System (1.3) is not a quasiequilibrium problem since the bifunction f (x,y)+ϕ(x,y)−ϕ(x,x)
is not well-defined on C×C but only on the graph of Dϕ where it assumes the value −∞ when
x /∈ Dϕ(x).

Anyway, each variational problem (1.2) may be reformulated as a quasiequilibrium problem
where the bifunction and the feasibility set-valued map are chosen appropriately. Let Ĉ =C×R,
x̂ = (x,a) and ŷ = (y,b), and define the set-valued map K : Ĉ ⇒ Ĉ as

K(x̂) = {(y,b) ∈ Ĉ : b≥ ϕ(x,y)}

and the bifunction f̂ : Ĉ×Ĉ→ R as f̂ (x̂, ŷ) = f (x,y)−a+b.
Consider the following quasiequilibrium problem

find x̂ ∈ K(x̂) such that f̂ (x̂, ŷ)≥ 0 for all ŷ ∈ K(x̂). (1.4)

Theorem 1.1. If x ∈C solves (1.2), then (x,ϕ(x,x)) solves (1.4). Vice versa, if (x,a) ∈ Ĉ solves
(1.4), then x solves (1.2).

Proof. If x ∈C solves (1.2), then ϕ(x,x) ∈ R and hence x̂ = (x,ϕ(x,x)) ∈ K(x̂). Moreover, for
each ŷ ∈ K(x̂), i.e., y ∈ Dϕ(x) and b≥ ϕ(x,y), we have

f̂ (x̂, ŷ) = f (x,y)−ϕ(x,x)+b≥ f (x,y)−ϕ(x,x)+ϕ(x,y)≥ 0.

For the converse, if x̂ = (x,a)∈K(x̂) solves (1.4), then x∈Dϕ(x). For each y∈Dϕ(x), choosing
b = ϕ(x,y), we get

f (x,y)−ϕ(x,x)+ϕ(x,y)≥ f (x,y)−a+b≥ 0.

This completes the proof. �

It is worth mentioning that f (x,x) = 0 for all x ∈ Dϕ(x), which is a fairly common assump-
tion, guarantees that x 7→ (x,ϕ(x,x)) is a one-to-one correspondence between the solutions
of (1.2) and the solutions of (1.4). Indeed, if (x,a) solves (1.4), then a ≥ ϕ(x,x). Taking
ŷ = (x,ϕ(x,x)) ∈ K(x̂), we have

0≤ f̂ (x̂, ŷ) = f (x,x)−a+ϕ(x,x) =−a+ϕ(x,x).

Therefore, it follows that a = ϕ(x,x).
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The reformulation (1.4) was proposed in [3]. We point out its major drawback, which consists
in the fact that the domain of new problem (1.4) is not compact even if C is. For this reason, it
could be not convenient to establish the solvability of (1.2) passing through (1.4). Anyway, we
can rewrite (1.2) as a quasiequilibrium problem without modifying C, the domain. Indeed, to
solve (1.2) is equivalent to solve the following problem

find x ∈C such that f (x,y)+ ϕ̂(x,y)+δ (y,Dϕ(x))≥ ϕ̂(x,x)+δ (x,Dϕ(x)) for all y ∈C,

where

ϕ̂(x,y) =
{

ϕ(x,y), if y ∈ Dϕ(x),
ψ(x,y), otherwise,

and ψ is an arbitrary finite bifunction. Clearly, we get the quasiequilibrium problem

find x ∈ Dϕ(x) such that f (x,y)+ ϕ̂(x,y)− ϕ̂(x,x)≥ 0 for all y ∈ Dϕ(x).

Since ((1.2)) can be equivalently reformulated as quasiequilibrium problem (1.1), the question
is: why do we need to study problem (1.2)? In the next section, we focus on the question of the
solvability of quasiequilibrium problems and we provide convincing evidence that the study of
problem (1.2) would be worthwhile.

2. MAIN INSIGHTS

We start recalling one of the most classical and cited results for the existence of solutions of
quasiequilibrium problem (1.1).

Theorem 2.1 (Theorem 6.4.21 in [4]). Let C be a compact convex subset of a Hilbert space.
Assume that

(a1) K is upper semicontinuous with nonempty closed convex values,
(a2) f (x,x)≥ 0, for all x ∈C,
(a3) f (x, ·) is convex, for all x ∈C,
(a4) f (·,y) is upper semicontinuous, for all y ∈C,
(a5) the set {

x ∈C : inf
y∈K(x)

f (x,y)≥ 0
}

is closed.
Then problem (1.1) has a solution.

Assumption (a5) is a consistency hypothesis between f and K, and it is guaranteed by the
upper semicontinuity of f and the lower semicontinuity of K.

The next example shows that it may be helpful to use the more general format (1.2) in study-
ing the existence of solutions of a quasiequilibrium problem.

Example 2.1. Let us consider the quasiequilibrium problem (1.1) with C = [−5,5], K : C ⇒C
defined by

K(x) =
{

y ∈C : x2/5−24/5≤ y≤ x2/25−26/25
}
,

and f : C×C→ R defined by f (x,y) = 2y2− xy− x2 +h(x,y), where

h(x,y) =
{
−1, if (x,y) = (4,1),
0, otherwise.
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Notice that f (4, ·) is not continuous at y = 1 and f (·,1) is not upper semicontinuous at x = 4.
Therefore, the assumptions (a3) and (a4) of Theorem 2.1 fail.

Now, we transform the problem considered into (1.2):

find x ∈C such that 2y2− xy− x2 +h(x,y)+δ (y,K(x))≥ δ (x,K(x)) for all y ∈C.

There are few existence results for problem (1.2). One of the most cited paper is [5] where the
author provides a characterization of the nonemptiness of the solution set when the problem is
defined in a reflexive Banach space and the objective bifunction is monotone.

For the sake of simplicity, we specialize a result in [5] to the case when C is compact and the
space is Euclidean.

Theorem 2.2. Let C be a compact convex subset of Rn. Assume that
(b1) f (x,x) = 0 for all x ∈C,
(b2) f is monotone,
(b3) f (x, ·)+ϕ(z, ·) is lower semicontinuous and strictly quasi-convex for each x,z ∈C,
(b4) ϕ(x, ·) is lower semicontinuous with Dϕ(x) convex for each x ∈C,
(b5) the function t ∈ [0,1] 7→ f (ty+(1− t)x,y) is upper semicontinuous at t = 0 for each

x,y ∈C,
(b6) for each (xk,zk)→ (x,z) and

f (y,zk)+ϕ(xk,zk)≤ ϕ(xk,y), ∀y ∈C

one has
f (y,z)+ϕ(x,z)≤ ϕ(x,y), ∀y ∈C.

Then problem (1.2) has a solution.

We recall that a bifunction f is said to be monotone if

f (x,y)+ f (y,x)≤ 0, ∀x,y ∈C

and a function φ : C → (−∞,+∞] is strictly quasiconvex if, given any x1,x2 ∈ domφ with
φ(x1) 6= φ(x2),

φ(tx1 +(1− t)x2)< max{φ(x1),φ(x2)}, ∀t ∈ (0,1).

Unfortunately, the bifunction f (x,y) = 2y2− xy− x2 +h(x,y) is not monotone, even not quasi-
monotone, since f (−1,1) = f (1,−1) = 2 and Theorem 2.2 seems not useful for our problem.
Nevertheless, by decomposing f into a sum of

g1(x,y) = xy− x2

and
g2(x,y) = 2y2−2xy+h(x,y),

and taking into account that g2(x,x) = 0, we can reformulate the problem as follows

find x ∈C such that g1(x,y)+ϕ(x,y)≥ ϕ(x,x) for all y ∈C, (2.1)

where
ϕ(x,y) = g2(x,y)+δ (y,K(x)).

Now, it is easy to verify that the reformulated problem (2.1) satisfies all the six assumptions
of Theorem 2.2 and the unique solution of the problem is x =−1.
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Notice that, in the previous example, x =−2 is a fixed point of K and

g2(−2,−2)+δ (−2,K(−2)) = 0 >−1 = inf
y∈C

[g2(−2,y)+δ (y,K(−2))] .

It is a pity, because if
ϕ(x,x) = inf

y∈C
ϕ(x,y), ∀x ∈ Dϕ(x), (2.2)

then each solution x ∈C of the quasiequilibrium problem

find x ∈ Dϕ(x) such that f (x,y)≥ 0 for all y ∈ Dϕ(x) (2.3)

is a solution of (1.2) since

f (x,y)+ϕ(x,y)≥ f (x,y)+ inf
y∈C

ϕ(x,y)≥ inf
y∈C

ϕ(x,y) = ϕ(x,x).

Therefore, with the additional assumption (2.2), which is verified in the case when ϕ(x,y) =
δ (y,K(x)), we could obtain existence results for (1.2) as corollaries to the existence results for
quasiequilibrium problems applied to problem (2.3).

We furnish an example of how this simple fact may be used for proving the existence of
solutions.

Consider a quasiequilibrium problem in which the bifunction can be decomposed as sum of
g1,g2 : C×C→ R:

find x ∈ K(x) such that g1(x,y)+g2(x,y)≥ 0 for all y ∈ K(x). (2.4)

Assume that K is continuous with nonempty closed convex values, g1 + g2 is upper semi-
continuous and nonnegative on the diagonal of C×C, g1(x, ·) is convex for each x ∈ C but
g1(x, ·)+g2(x, ·) is not. All the assumptions of Theorem 2.1 but (a3) are satisfied and the theo-
rem is not applicable to this situation. By means of δ , let us reformulate (2.4) as an equivalent
generalized quasivariational problem in the following way: find x ∈C such that

[g1(x,y)+g2(x,x)]+ [g2(x,y)+δ (y,K(x))]≥ [g2(x,x)+δ (x,K(x))] , ∀y ∈C. (2.5)

Problem (2.5) can be viewed as a generalized variational problem (1.2) with

f (x,y) = g1(x,y)+g2(x,x)

and
ϕ(x,y) = g2(x,y)+δ (y,K(x)).

Notice that Dϕ coincides with K and condition (2.2) becomes

g2(x,x) = inf
y∈K(x)

g2(x,y), ∀x ∈ K(x). (2.6)

If condition (2.6) holds, we can apply Theorem 2.1 to the following quasiequilibrium problem

find x ∈ K(x) such that g1(x,y)+g2(x,x)≥ 0 for all y ∈ K(x),

where the objective bifunction is convex with respect to the second variable. In other words, we
have been able to remove the bad part of objective bifunction, at the price of adding a further
condition (2.2). We illustrate this fact with an example.
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Example 2.2. Let C = [−2,2]. Let g1,g2 : C×C→ R be defined as follows

g1(x,y) = 2y4− x4, g2(x,y) = min{1−
√

x2 + y2,0},
and let K : C ⇒ C be given by K(x) = [−1+ |x|/2,1− |x|/2]. The feasible set-valued map is
continuous, and g1 and g2 are continuous with g1(x, ·) being convex. Unfortunately, g1(x, ·)+
g2(x, ·) is not convex when |x|> 1 and Theorem 2.1 does not work. The fixed point set of K is
[−2/3,2/3]. An easy calculation shows that g2(x,y) = 0 for all x ∈ [−2/3,2/3] and y ∈ K(x)
since x2+y2 ≤ 1. Hence, (2.6) is satisfied and the quasiequilibrium problem has a solution. The
unique solution is x = 0.

A more general approach is to relate (1.2) with the inequality problem

find x ∈ Dϕ(x) such that f (x,y)≥ α for all y ∈ Dϕ(x),

where α is a suitable constant depending on ϕ . This is possible provided that function (x,y) 7→
ϕ(x,x)−ϕ(x,y) is upper bounded on the set {(x,y) ∈C×C : x,y ∈ Dϕ(x)}. Indeed, in such a
case, letting

α = sup{ϕ(x,x)−ϕ(x,y) : x,y ∈ Dϕ(x)},
if x is a fixed point of Dϕ such that f (x,y)≥α , for all y∈Dϕ(x), then x solves (1.2). Notice that
α ≥ 0 and that α = 0 is equivalent to condition (2.2). Following this, we get a generalization of
Theorem 2.1.

Theorem 2.3. Let C be a compact convex subset of a Hilbert space and

α = sup{ϕ(x,x)−ϕ(x,y) : x,y ∈ Dϕ(x)}<+∞.

Moreover, assume that
(c1) Dϕ is upper semicontinuous with nonempty closed convex values,
(c2) f (x,x)≥ α , for all x ∈C,
(c3) f (x, ·) is convex, for all y ∈C,
(c4) f (·,y) is upper semicontinuous, for all x ∈C,
(c5) the set {

x ∈C : inf
y∈Dϕ (x)

f (x,y)≥ α

}
is closed.

Then problem (1.2) has a solution.

Clearly, if ϕ(x,y) = δ (y,K(x)), then α = 0 and Theorem 2.3 comes down to Theorem 2.1.

Example 2.3. Let us consider the quasiequilibrium problem (1.1) with C = [0,2], K : C ⇒ C
defined by

K(x) =
{

y ∈C : 0≤ y≤−x2 +2x
}

and f : C×C→ R defined by f (x,y) = (y− x)(5−41Q(y− x))+1, where 1Q is the Dirichlet
function. The fixed point set of K is [0,1]. Clearly f (x, ·) is not convex and f (·,y) is not
upper semicontinuous. Therefore, the assumptions (a3) and (a4) of Theorem 2.1 fail. Now we
decompose f as the sum of g1(x,y) = 5(y−x)+1 and g2(x,y) =−41Q(y−x) and we transform
the problem considered into (1.2):

find x ∈C such that 5(y− x)+1+(−41Q(y− x)+δ (y,K(x)))≥ δ (x,K(x)) for all y ∈C.
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Taking ϕ(x,y) =−41Q(y− x)+δ (y,K(x)), we have

α = sup{41Q(y− x) : x,y ∈ K(x)}= 4sup{−x2 + x : x ∈ [0,1]}= 1.

Since g1(x,x) = 1 for every x ∈C, all the assumptions of Theorem 2.3 hold and the existence
of solutions is guaranteed. The solution set is [0,1/5].
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variationnelles, J. Funct. Anal. 34 (1979), 107-137.

[4] J.-P. Aubin, I. Ekeland, Applied nonlinear analysis, John Wiley & Sons, New York, 1984.
[5] F. Flores-Bazán, Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex

case, SIAM J. Optim. 11 (2020), 675-690.


	1. Introduction
	2. Main insights
	References

