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Abstract. We consider the vector equilibrium problem in Hadamard manifolds, which extends the scalar
equilibrium problem to vector valued bifunctions. We propose an extragradient method for solving this
problem. Under suitable assumptions on the bifunction, we prove that the generated sequence converges
to a solution of the problem. We also give some examples of Hadamard manifolds and vector equilibrium
problems to which our main result can be applied. Finally, we present some numerical experiments.
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1. INTRODUCTION

Let M be a connected n-dimensional manifold. We always assume that M can be endowed
with a Riemannian metric to become a Riemannian manifold. The tangent space at the point
x ∈ M is denoted by TxM. We denote by 〈·, ·〉x the scalar product on TxM with the associated
norm ‖·‖x, where the subscript x is sometimes omitted. The tangent bundle of M is denoted by
T M = ∪x∈MTxM, which is naturally a manifold. Given a piecewise smooth curve γ : [a,b]→M
joining x to y (i.e. γ(a) = x and γ(b) = y), we can define the length of γ by L(γ) =

∫ b
a ‖γ ′(t)‖dt.

Then the Riemannian distance d(x,y), which induces the original topology on M, is defined by
minimizing this length over the set of all such curves joining x to y. The set K ⊂M is said to
be convex if it contains the geodesic segment γ whenever it contains the end points of γ , that is,
γ((1− t)a+ tb) is in K whenever γ(a) = x and γ(b) = y are in K, and t ∈ [0,1].

We assume that K ⊂ M is a nonempty, closed and convex set, C ⊂ Rm is a closed, convex
and pointed cone with nonempty interior (denoted as int(C)), and f : M×M→ Rm is a vector
valued bifunction. The vector equilibrium problem, denoted as VEP( f ,K), consists of finding
x∗ ∈ K such that

f (x∗,y) 6∈ −int(C) (1.1)

for all y ∈ K. If x∗ satisfies (1.1), then x∗ is said to be a solution or equilibrium point for
VEP( f ,K). We denote the set of all equilibrium points of VEP( f ,K) as S( f ,K). It is easy to see
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that when m = 1, then vector equilibrium problems become ordinary (i.e., scalar) equilibrium
problems.

The associated dual vector equilibrium problem, denoted by DVEP( f ,K), consists of finding
x∗ ∈ K such that

f (y,x∗) ∈ −C, ∀y ∈ K. (1.2)

The set of solutions of DVEP( f ,K) will be denoted as DS( f ,K).
Equilibrium problems with monotone and pseudo-monotone bifunctions have been studied

extensively in Hilbert, Banach as well as in topological vector spaces by many authors (e.g.
[1, 2, 3, 4, 5, 6]).

The equilibrium problem encompasses, among its particular cases, convex optimization prob-
lems, variational inequalities, saddle point problems, fixed point problems and other problems
of interest in many applications (see, for example [5, 6, 7] and the references therein). The
prototypical example of an equilibrium problem is a variational inequality problem, and as
mentioned by Németh [8], there are numerous problems in many fields of mathematics and
physics can be reformulated as variational inequalities or boundary value problems on man-
ifolds, like e.g., convex optimization problems, PDEs boundary value problems, lubrication
problems, the analysis of filtration of a liquid through a porous medium, the determination of
a flow past a given profile, the deflection of a simply supported beam, etc. Therefore, the ex-
tension of concepts, results and techniques of equilibrium problems and variational inequalities
from linear spaces to Riemannian manifolds is natural and has some important advantages. For
example, optimization problems with nonconvex objective functions become convex optimiza-
tion problems by introducing an appropriate Riemannian metric, and also constrained optimiza-
tion problems can be considered as unconstrained optimization problems from the Riemannian
geometry point of view. Therefore the study of convergence analysis of approximation meth-
ods for finding the solutions of equilibrium problems, optimization problems and variational
inequalities over Hadamard manifolds is emerging as an interesting research topic; see, e.g.,
[7, 9, 10, 11, 12, 13, 14, 15] and the references therein. We will present some interesting exam-
ples of vector equilibrium problems in Hadamard manifolds in Section 4.

The prototypical example of vector equilibrium problems occurs when C is the nonnegative
cone, i.e. C = Rm

+. If we take G : M → Rm and f (x,y) = G(y)−G(x), then VEP( f ,K) is
equivalent to the problem of finding a Pareto minimizer of G on K, i.e. a point x∗ ∈ K such
that there exists no x ∈ K such that G(x) ≤ G(x∗),G(x) 6= G(x∗) (here G(x) ≤ G(x∗) means
G(x)i ≤ G(x∗)i for all i ∈ {1, . . .m}).

A complete simply connected Riemannian manifold of nonpositive sectional curvature is
called a Hadamard manifold. If M is a Hadamard manifold, then M have the same topology and
differential structure of the Euclidean space Rn.

We will deal in this paper with the extragradient (or Korpelevich’s) method for vector equi-
librium problems on Hadamard manifolds, and thus we start with an introduction to its well
known finite dimensional formulation when applied to variational inequalities, i.e., we assume
that M = Rn, m = 1 and f (x,y) = 〈T (x),y− x〉 with T : Rn→ Rn. We assume that T is mono-
tone, i.e. 〈T (x)− T (y),x− y〉 ≥ 0 for all x,y ∈ M. In this setting, there are several iterative
methods for solving VIP(T,K). One of the most useful ones is the extragradient method pre-
sented in [16], which generates a sequence {xk} ⊂M according to:

yk = PK(xk−αkT (xk)), (1.3)
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xk+1 = PK(xk−αkT (yk)), (1.4)

where PK denotes the orthogonal projection onto K and {αk} ⊂ R is a sequence of positive
stepsizes.

It was proved in [16] that if T is monotone and Lipschitz continuous with constant L, and
VIP(T,K) has solutions, then the sequence generated by (1.3)–(1.4) converges to a solution of
VIP(T,K) provided that αk = α ∈ (0,1/L).

In the absence of Lipschitz continuity of T , it is natural to search for an appropriate stepsize
in an inner loop. This is achieved in the following procedure:

Take δ ∈ (0,1), β̂ , β̃ satisfying 0 < β̂ ≤ β̃ , and a sequence {βk} ⊆ [β̂ , β̃ ]. The method is
initialized with any x0 ∈ K and the iterative step is as follows:

Given xk, define

zk := xk−βkT (xk). (1.5)

If xk = PK(zk) stop. Otherwise take

j(k) :=min
{

j≥ 0 :
〈

T (2− jPK(zk)+(1−2− j)xk),xk−PK(zk)
〉
≥ δ

βk
‖xk−PK(zk)‖2

}
, (1.6)

αk := 2− j(k), (1.7)

yk := αkPK(zk)+(1−αk)xk, (1.8)

Hk :=
{

z ∈ Rn : 〈T (yk),z− yk〉= 0
}
, (1.9)

xk+1 := PK

(
PHk(x

k)
)
. (1.10)

This method converges to a solution of VIP(T,K) under the only assumptions of monotonicity
of T and existence of solutions; see [17].

The above backtracking procedure for determining the right αk is sometimes called an Armijo-
type search (see [18]). It has been analyzed for VIP(T,K) in [17] and [19]. Other variants of
Korpelevich’s method can be found in [20, 21, 22, 23, 24, 25, 26]. An extragradient method
for scalar equilibrium problems in Hadamard spaces has been studied in [21] and also an ex-
tragradient method for vector equilibrium problems in Banach spaces has been introduced in
[23]. In this paper, we extend the method in [23] to vector equilibrium problems in Hadamard
manifolds.

The paper is organized as follows. In Section 2, we introduce some preliminary material
related to properties of Hadamard manifolds and vector optimization. In Section 3, we present
our extragradient method for solving vector equilibrium problems and prove convergence of the
generated sequence to a solution of the problem. In Section 4, we give some examples of vector
equilibrium problems in Hadamard manifolds to which our main result can be applied. Finally,
we present some numerical experiments.

2. PRELIMINARIES

In this section, we give some definitions and preliminary material related to properties of
Hadamard manifolds and vector optimization.
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Definition 2.1. Let (X ,d) be a complete metric space and C ⊂ X be nonempty. A sequence
{xk} ⊂ X is called Fejér convergent to C if

d(z,xk+1)≤ d(z,xk)

for all z ∈C and for all k.

Lemma 2.1. (Lemma 4.6 of [27]) Let (X ,d) be a complete metric space and let C ⊂ X be a
nonempty set. Let {xk} ⊂ X be Fejér convergent to C and suppose that any cluster point of {xk}
belongs to C.Then {xk} converges to a point of C.

If M is a Hadamard manifold, then for all p ∈ M, the exponential mapping is a diffeo-
morphism. Denoting the inverse of the exponential mapping by exp−1

p : M → TpM, we have
d(p,q) = ‖exp−1

p q‖.

Proposition 2.1. (Proposition 2.1 of [28]) Let M be a Hadamard manifold and p ∈M. Then we
know that expp : TpM→M is a diffeomorphism, and for any two points p,q ∈M, there exists a
unique minimal geodesic γp,q = expp t exp−1

p q for all t ∈ [0,1] joining p to q.

Proposition 2.2. (Comparison theorem for triangles, Proposition 2.2 in [27]) Let γi : [0,1]→M
be the geodesic joining pi to pi+1 and ∆(p1, p2, p3) be the geodesic triangle. Take li := L(γi),
αi := ∠(γ ′i (0),−γ ′i−1(li−1)), where i≡ 1,2,3(mod 3). Then

α1 +α2 +α3 ≤ π,

l2
i + l2

i+1−2lili+1 cosαi+1 ≤ l2
i−1.

Since
〈exp−1

pi+1
pi,exp−1

pi+1
pi+2〉= d(pi, pi+1)d(pi+1, pi+2)cosαi+1,

we have

d2(pi, pi+1)+d2(pi+1, pi+2)−d2(pi, pi+2)≤ 2〈exp−1
pi+1

pi,exp−1
pi+1

pi+2〉 (2.1)

Definition 2.2. The subdifferential of a function h : M→R is the set-valued mapping ∂h : M→
2T M defined by

∂h(x) =
{

u ∈ TxM : 〈exp−1
x y,u〉 ≤ h(y)−h(x), ∀y ∈M

}
, ∀x ∈M.

Proposition 2.3. (Proposition 3.3 of [29]) Let M be a Hadamard manifold and z ∈M. Then the
map ρz(x) = 1

2d2(z,x) is strictly convex and its gradient at x is5ρz(x) =−exp−1
x z.

Throughout this paper K will denote a nonempty, closed and convex set in a Riemannian
manifold. For any p ∈M and K ⊂M, there exists a unique q ∈ K such that d(p,q)≤ d(p,z) for
all z ∈ K; this unique point is called the projection of p onto the convex set K and is denoted as
PK(p). The next result gives a characterization of the projection PK .

Proposition 2.4. [30] For any p ∈M, there exists a unique projection PK(p). Furthermore, the
following inequality holds:

〈exp−1
PK(p) z,exp−1

PK(p) p〉 ≤ 0, ∀z ∈ K.
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We continue by establishing some standard notation. The norm in Rm will be denoted as ‖·‖,
while the inner product in Rm will be denoted as 〈·, ·〉. The dual cone C+ of C is defined as
C+ = {z ∈ Rm : 〈y,z〉 ≥ 0, ∀y ∈C}. We define the partial order � in Rm, induced by the cone
C, as

y� y′⇐⇒ y′− y ∈C,

with its associate relation ≺, by

y≺ y′⇐⇒ y′− y ∈ int(C).

We define R̄m = Rm ∪{−∞,+∞}, where a neighbourhood of +∞ is defined as a set N ⊂ R̄m

containing r+C∪{+∞} for some r ∈ Rm and its opposite −N is a neighbourhood of −∞. The
binary relations � and ≺ defined above are extended to R̄m by

−∞≺ y≺+∞, −∞� y�+∞.

for all y ∈ Rm.
Note that the embedding Rm ⊂ R̄m is continuous and dense. We extend by continuity every

z ∈C+ \ {0} to R̄m, by putting 〈±∞,z〉 = ±∞. Given a set T ⊂ R̄m, we denote its topological
closure in the topological space R̄m by T̄ . To a given set T ⊂ R̄m, we associate the following
set:

infCw(T ) = {y ∈ T̄ | 6 ∃z ∈ T : z≺ y}.
Given S ⊂M and G : S→ Rm∪{+∞}, the point a ∈M is called weakly efficient if a ∈ S and
G(a) ∈ infCw(G(S)). We denote as argminC

w{G(x)|x ∈ S} the set of weakly efficient points. We
observe that

argminC
w{G(x)|x ∈ S}= S∩G−1(infCw(G(S))).

A map G : M→ Rm ∪{+∞} is called C-convex whenever for any piecewise smooth curve
γ : [a,b]→M joining x to y, we have

G(γ(t))� tG(x)+(1− t)G(y), ∀x,y ∈M and ∀t ∈ [0,1].

Definition 2.3. A vector valued function G : M→ Rm∪{+∞} is called positively lower semi-
continuous, if for every z ∈C+ the extended scalar function x 7→ 〈G(x),z〉 is lower semicontin-
uous. Also we say that G is positively upper semicontinuous whenever −G is positively lower
semicontinuous.

Now we recall an essential theorem from [31], which is needed in the next sections.

Theorem 2.1. If S⊂M is a convex set and G : S→Rm∪{+∞} is a C-convex proper map, then

argminC
w{G(x) | x ∈ S}=

⋃
z∈C+\{0}

argmin{〈G(x),z〉 | x ∈ S}.

For convergence of the scalar extragradient method for equilibrium problems in Rn, some
monotonicity-like assumptions on the bifunction f are needed. We define next two suitable
properties of this kind in the context of vector equilibrium problems in Hadamard manifolds.
The bifunction f is said to be C-pseudomonotone whenever f (x,y) ∈ Rm \ (−C) with x,y ∈M,
it holds that f (y,x)∈−C\{0}, and f is weakly C-pseudomonotone whenever f (x,y) 6∈ −int(C)
with x,y ∈M, it holds that f (y,x) ∈ −C.

We introduce some assumptions on a vector valued bifunction f : M×M→ Rm, which will
be needed in our convergence analysis.
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B1: f (x,x) = 0 for all x ∈M,
B2: f (·, ·) : M×M→ Rm is uniformly continuous on bounded sets,
B3: f (x, ·) : M→ Rm is C-convex for all x ∈M.
B4: f is weakly C-pseudomonotone.
In connection with B4, we mention that for the case of scalar valued bifunctions, the usual

monotonicity-like assumption is pseudo-monotonicity of f , meaning that whenever f (x,y) ≥
0 with x,y ∈ M, it holds that f (y,x) ≤ 0. Clearly, B4 is a suitable extension of pseudo-
monotonicity.

We recall now some properties of the solution set of dual vector equilibrium problems.

Proposition 2.5. Assume that f : M×M → Rm satisfies B1, that f (·,y) is positively upper
semicontinuous for all y ∈ M and that f (x, ·) is C-convex for all x ∈ M. Then DS( f ,K) ⊆
S( f ,K).

Proof. Take x∗ ∈DS( f ,K) and define γ(t) = expx∗ t exp−1
x∗ y with t ∈ (0,1) and y ∈ K. Take any

c ∈C+ \{0}. B1 and C-convexity of f (γ(t), ·) imply that

0 = 〈 f (γ(t),γ(t)),c〉 ≤ (1− t)〈 f (γ(t),x∗),c〉+ t〈 f (γ(t),y),c〉. (2.2)

Since 〈 f (γ(t),x∗),c〉 ≤ 0, (2.2) implies that

〈 f (γ(t),y),c〉 ≥ 0. (2.3)

Since 〈 f (·,y),c〉 ≥ 0 is upper semicontinuous, taking limsup with t→ 0 in (2.3) gives

〈 f (x∗,y),c〉 ≥ 0.

Hence f (x∗,y) 6∈ −int(C). Since y ∈ K is arbitrary, DS( f ,K)⊆ S( f ,K). �

Corollary 2.1. Under B1–B3, DS( f ,K)⊆ S( f ,K). If B4 holds, then S( f ,K)⊆ DS( f ,K).

Proof. Elementary. �

Proposition 2.6. If f (x, ·) is C-convex and positively lower semicontinuous for all x ∈M, then
DS( f ,K) is closed and convex.

Proof. Take x̄,x∗ ∈ DS( f ,K) and define γ(t) = expx∗ t exp−1
x∗ x̄ with t ∈ (0,1). Take any c ∈

C+ \{0}. By C-convexity of f (x, ·), we have

〈 f (x,γ(t)),c〉 ≤ (1− t)〈 f (x,x∗),c〉+ t〈 f (x, x̄),c〉 ≤ 0, (2.4)

for all x ∈ K. Since c ∈C+ \ {0} is arbitrary, it follows that γ(t) ∈ DS( f ,K), i.e. DS( f ,K) is
convex. Closedness of DS( f ,K) follows from positive lower semicontinuity of f (x, ·) for all
x ∈M. �

3. EXTRAGRADIENT METHOD WITH LINESEARCH AND CONVERGENCE ANALYSIS

Let M be a Hadamard manifold and K ⊂ M be nonempty, closed and convex. We take a
closed, convex and pointed cone C ⊂ Rm with nonempty interior and a bifunction f : M×
M→ Rm which satisfies B1-B4 and such that S( f ,K) 6= /0. We consider the vector equilibrium
problem VEP( f ,K) as defined in (1.1), and propose the following Extragradient Method with
Linesearch (EML) for solving this problem.

Take δ ∈ (0,1), β̂ , β̃ satisfying 0 < β̂ ≤ β̃ , a sequence {βk} ⊆ [β̂ , β̃ ], and a sequence {ek} ⊂
int(C) such that ek→ e ∈ int(C).
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1. Initialization:

x0 ∈ K. (3.1)

2. Iterative step: Given xk, define

zk ∈ argminC
w

{
f (xk,y)+

1
2βk

d2(xk,y)ek : y ∈ K
}
. (3.2)

If xk = zk stop. Otherwise, let

`(k) = min
{
`≥ 0 :−βk f (y`,xk)+βk f (y`,zk)+

δ

2
d2(zk,xk)ek 6∈ int(C)

}
, (3.3)

where
y` = expxk(2−` exp−1

xk zk). (3.4)

We take
αk := 2−`(k), (3.5)

yk := expxk(αk exp−1
xk zk), (3.6)

wk = PHk(x
k), (3.7)

where

Hk =
{

y ∈M : f (yk,y) ∈ −C
}
.

Finally we define

xk+1 = PK(wk). (3.8)

We start the analysis of the algorithm with some elementary properties of EML.

Proposition 3.1. The sequence {zk} is well defined.

Proof. Take any c ∈ C+ \ {0}. Since ek ∈ int(C), it follows from the definition of C+ that
〈ek,c〉> 0. Define ψ : M→ R∪{+∞} as

ψ(y) = 〈 f (xk,y),c〉+ 1
2βk

d2(xk,y)〈ek,c〉. (3.9)

It is easy to see that ψ is proper, convex and lower semicontinuous. By Lemma 4.2 of [29], the
subdifferential ∂ψ has some zero, which is a minimizer of ψ . In view of Theorem 2.1, such
minimizer satisfies (3.2) and can be taken as zk. �

Proposition 3.2. Assume that f satisfies B1–B3. Take x ∈ K, β ∈ R+ and e ∈ int(C) such that
‖e‖= 1. If

z ∈ argminC
w

{
f (x,y)+

1
2β

d2(x,y)e : y ∈ K
}

(3.10)

then there exists c ∈C+ \{0} such that

〈exp−1
z y,exp−1

z x〉〈e,c〉 ≤ β [〈 f (x,y),c〉−〈 f (x,z),c〉], ∀y ∈ K.
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Proof. Let NK(z) be the normal cone of K at z ∈ K, i.e., NK(z) = {v ∈ TzM : 〈exp−1
z y,v〉 ≤

0,∀y ∈ K}. Since z solves the vector optimization problem in (3.10), in view of Theorem 2.1
there exists c ∈C+ \{0} such that z satisfies the first order optimality condition, given by

0 ∈ ∂

{
〈 f (x, ·),c〉+ 1

2β
d2(x,y)〈e,c〉

}
(z)+NK(z).

Therefore, in view of Proposition 2.3, there exist w ∈ ∂ 〈 f (x, ·),c〉(z) and w̄ ∈ NK(z) such that

0 = w− 〈e,c〉
β

exp−1
z x+ w̄.

Now since w̄ ∈ NK(z), we have 〈exp−1
z y,−w+ 〈e,c〉

β
exp−1

z x〉 ≤ 0, so that, using the fact that
w ∈ ∂ 〈 f (x, ·),c〉(z),

〈e,c〉
β
〈exp−1

z y,exp−1
z x〉 ≤ 〈exp−1

z y,w〉 ≤ 〈 f (x,y),c〉−〈 f (x,z),c〉. (3.11)

�

Corollary 3.1. Assume that {xk} and {zk} are the sequences generated by EML. Then there
exists {ck} ⊂C+ \{0} such that

〈exp−1
zk y,exp−1

zk xk〉〈ek,ck〉 ≤ βk

[
〈 f (xk,y),ck〉−〈 f (xk,zk),ck〉

]
∀y ∈ K.

Proof. Follows from Proposition 3.2 and (3.2). �

Proposition 3.3. If Algorithm EML stops at the k-th iteration, then xk is a solution of VEP( f ,K).

Proof. If xk = zk, then Corollary 3.1 implies that 〈 f (xk,y),ck〉 ≥ 0 for all y ∈ K. Since ck ∈
C+ \{0}, f (xk,y) 6∈ −int(C) for all y ∈ K. �

Proposition 3.4. The following statements hold for Algorithm EML.
i) `(k) is well defined, (i.e. the Armijo-type search for αk is finite), and consequently the same
holds for the sequence {xk}.
ii) xk ∈ K for all k ≥ 0.
iii) If the algorithm does not stop at iteration k, then f (yk,xk) 6∈ −C.

Proof. i) We proceed inductively, i.e. we assume that xk is well defined, and proceed to establish
that the same holds for xk+1. Note that zk is well defined by Proposition 3.1. It suffices to check
that `(k) is well defined. Assume by contradiction that

−βk f (y`,xk)+βk f (y`,zk)+
δ

2
d2(zk,xk)ek ∈ int(C) (3.12)

for all `. Since ck ∈C+ \{0}, we have

βk[〈 f (y`,xk),ck〉−〈 f (y`,zk),ck〉]< δ

2
d2(zk,xk)〈ek,ck〉 (3.13)

for all `. Note that the sequence {y`} is strongly convergent to xk. In view of B2, taking limits
in (3.13) as `→+∞,

βk[〈 f (xk,xk),ck〉−〈 f (xk,zk),ck〉]≤ δ

2
d2(zk,xk)〈ek,ck〉. (3.14)



AN EXTRAGRADIENT METHOD FOR VECTOR EQUILIBRIUM PROBLEMS 467

Since xk ∈ K by (3.8), we apply Corollary 3.1 with y = xk in (3.14), obtaining

〈exp−1
zk xk,exp−1

zk xk〉 ≤ δ

2
d2(zk,xk). (3.15)

Thus by (2.1) and (3.15), we get

d2(zk,xk)+d2(xk,zk)≤ δd2(zk,xk). (3.16)

Since δ ∈ (0,1), this contradiction shows that `(k) is well defined.
ii) It follows from (3.1) and (3.8).
iii) Assume that f (yk,xk) ∈ −C. Using B1, B3 and (3.6), we have

0 = f (yk,yk)� αk f (yk,zk)+(1−αk) f (yk,xk).

Since −(1−αk) f (yk,xk) and αk f (yk,zk)+(1−αk) f (yk,xk) belong C, and C is a convex cone,
we conclude that f (yk,zk) ∈C. Therefore

−βk f (yk,xk)+βk f (yk,zk)+
δ

2
d2(zk,xk)ek ∈ int(C), (3.17)

which contradicts (3.3)–(3.6). Note that the inclusion in (3.17) is due to the fact that xk 6= zk and
ek ∈ int(C). �

We continue the analysis of the convergence properties of EML. Recall that S( f ,K) denotes
the solution set of VEP( f ,K).

Proposition 3.5. Assume that S( f ,K) 6= /0 and the bifunction f satisfies B1-B4. Let {xk}, {yk},
{zk} and {wk} be the sequences generated by Algorithm EML. If the algorithm does not have
finite termination, then
i) the sequence {d(x∗,xk)} is nonincreasing (and henceforth convergent) for any x∗ ∈ S( f ,K),
ii) the sequence {xk} is bounded,
iii) limk→+∞ d(wk,xk) = 0,
iv) the sequence {zk} is bounded,
v) all cluster points of { f (yk,xk)} belong to −C.

Proof. i) Take x∗ ∈ S( f ,K). By B4, x∗ ∈Hk for all k. By Proposition 3.4(iii), xk 6∈Hk. Also, we
have wk = PHk(x

k). Using Proposition 2.4,

〈exp−1
wk x∗,exp−1

wk xk〉 ≤ 0. (3.18)

Therefore (2.1) shows that

d2(wk,xk)+d2(x∗,wk)−d2(x∗,xk)≤ 0. (3.19)

Now, since xk+1 = PK(wk), again Proposition 2.4 implies that

〈exp−1
xk+1 x∗,exp−1

xk+1 wk〉 ≤ 0 (3.20)

and consequently by (2.1), we have

d2(xk+1,wk)+d2(x∗,xk+1)−d2(x∗,wk)≤ 0. (3.21)

In view of (3.19) and (3.21), we have

d2(x∗,xk+1)≤ d2(x∗,wk)−d2(xk+1,wk)≤ d2(x∗,wk)≤ d2(x∗,wk)+d2(wk,xk)≤ d2(x∗,xk).
(3.22)
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ii) In view of (i), limk→+∞ d2(x∗,xk) exists, so that {xk} is bounded.
iii) It follows from (i) and (3.22).
iv) Since xk ∈K by (3.8), we conclude from (3.2) and Theorem 2.1 that there exists ck ∈C+\{0}
such that

βk〈 f (xk,zk),ck〉+ 1
2

d2(xk,zk)〈ek,ck〉 ≤ βk〈 f (xk,xk),ck〉+ 1
2

d2(xk,xk)〈ek,ck〉= 0, (3.23)

using B1 in the equality. From (3.23), we get

d2(xk,zk)〈ek,ck〉 ≤ −2βk〈 f (xk,zk),ck〉. (3.24)

Take now uk
∗ ∈ ∂ 〈 f (xk, ·),ck〉(xk) and define uk = 〈ek,ck〉−1uk

∗. By definition of ∂ 〈 f (xk, ·),ck〉
at xk, we have

〈exp−1
xk y,uk〉〈ek,ck〉 ≤ 〈 f (xk,y),ck〉−〈 f (xk,xk),ck〉= 〈 f (xk,y),ck〉. (3.25)

Define B1(xk)= {x∈M : d(x,xk)≤ 1}. Since f is bounded on bounded sets and {xk} is bounded
by item (ii), there is N > 0 such that

∥∥ f (xk,y)
∥∥<N for all k and for all y∈ B1(xk). Now without

loss of generality, we can assume ‖ck‖= 1 for all k. Then we have

‖uk‖〈ek,ck〉= sup
y∈B1(xk)

〈exp−1
xk y,uk〉〈ek,ck〉 ≤ sup

y∈B1(xk)

〈 f (xk,y),ck〉 ≤ N. (3.26)

Since ek→ e ∈ int(C), therefore {uk} is bounded. Now from (3.25), we have

〈exp−1
xk zk,uk〉〈ek,ck〉 ≤ 〈 f (xk,zk),ck〉. (3.27)

Combining (3.24) and (3.27), we get, after dividing by 〈ek,ck〉,

d2(xk,zk)≤−2βk〈exp−1
xk zk,uk〉 ≤ 2β̃

∥∥∥uk
∥∥∥d(xk,zk). (3.28)

Now since {xk} is bounded by item (ii), we obtain that {zk} is bounded.

v) Note that {xk}, {yk}, and {wk} are bounded by items (ii), (iv), (3.6) and (3.22). Since
f (·, ·) is uniformly continuous on bounded sets by B2, and limk→+∞ d(wk,xk) = 0 by item (iii),
we conclude that

lim
k→+∞

∥∥∥ f (yk,xk)− f (yk,wk)
∥∥∥= 0. (3.29)

Note that if the algorithm does not stop at iteration k, then f (yk,xk) 6∈ −C, by Proposition
3.4(iii). Also, since wk ∈ Hk, we have f (yk,wk) ∈ −C for all k. Since C is closed and convex,
these two facts, together with (3.29), easily imply that each limit point of { f (yk,xk)} belongs to
−C. �

Proposition 3.6. Assume that S( f ,K) 6= /0 and the bifunction f satisfies B1-B4. Let {xk} and
{zk} be the sequences generated by Algorithm EML. If {xki} is a subsequence of {xk} satisfying

lim
i→+∞

d(zki,xki) = 0, (3.30)

then each cluster point of {xki} solves VEP( f ,K).
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Proof. Note that {xki} and {zki} are bounded, and

lim
i→+∞

d(zki,xki) = lim
i→+∞

∥∥∥exp−1
zki

xki
∥∥∥= 0.

Therefore, by B2, we get
lim

i→+∞
f (xki,zki) = 0. (3.31)

In the sequel, without loss of generality, we can assume that xki → x̄. Take now any y ∈ K. By
Corollary 3.1, we have

〈exp−1
zki

y,exp−1
zki

xki〉〈eki,cki〉 ≤ βki

[
〈 f (xki,y),cki〉−〈 f (xki,zki),cki〉

]
,

which implies that

−
∥∥∥exp−1

zki
y
∥∥∥∥∥∥exp−1

zki
xki
∥∥∥〈eki,cki〉 ≤ βki

[
〈 f (xki,y),cki〉−〈 f (xki,zki),cki〉

]
. (3.32)

Since cki ∈ C+ \ {0}, without loss of generality, we can assume that
∥∥ck
∥∥ = 1 and cki → c∗.

Taking the limit when i→ ∞ from (3.32) and using (3.30) and (3.31), we get

0≤ limsup
i→∞

〈 f (xki,y),cki〉. (3.33)

Now since xki → x̄ and cki → c∗, we get from B2 that

〈 f (x̄,y),c∗〉 ≥ 0.

Since c∗ ∈C+ \{0}, we have f (x̄,y) 6∈ −int(C). Now since y ∈ K is arbitrary, f (x̄,y) 6∈ −int(C)
for all y ∈ K. �

Proposition 3.7. Assume that S( f ,K) 6= /0 and the bifunction f satisfies B1-B4. If a subse-
quence {αki} of {αk}, as defined in (3.5), converges to 0, then each cluster point of {xki} solves
VEP( f ,K).

Proof. For proving the result, we will use Proposition 3.6. Thus, we must show that

lim
i→+∞

d(zki,xki) = 0.

For the sake of contradiction, and without loss of generality, let us assume that

liminfi→+∞d2(zki,xki)≥ η > 0. (3.34)

Define
ŷi := expxki (2αki exp−1

xki
zki), (3.35)

or equivalently
exp−1

xki
ŷi = 2αki exp−1

xki
zki. (3.36)

Note that, since limi→+∞ αki = 0, `(ki)> 1 for large enough i. Also, in view of (3.35), we have
that ŷi = y`(ki)−1 in the inner loop of the linesearch for determining αki , i.e., in (3.4). Since
`(ki) is the first integer for which the exclusion in (3.3) holds, such exclusion does not hold for
`(ki)−1. i.e., we have

−βki f (ŷi,xki)+βki f (ŷi,zki)+
δ

2
d2(zki,xki)eki ∈ int(C) (3.37)
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for large enough i. On the other hand, since limi→+∞ αki = 0 by hypothesis, and {exp−1
xki

zki} is
bounded by Proposition 3.5(ii) and (iv), it follows from (3.36) that

lim
i→+∞

d(xki, ŷi) = lim
i→+∞

∥∥∥exp−1
xki

ŷi
∥∥∥= 0. (3.38)

Since f (·, ·) is uniformly continuous on bounded sets by B2, (3.37) and (3.38) imply that

−βki f (xki,xki)+βki f (xki,zki)+
δ

2
d2(zki,xki)eki ∈C (3.39)

for large enough i. Since δ belongs to (0,1), it follows from (3.39) that

βki f (xki,zki)+
1
2

d2(zki,xki)eki ∈ int(C). (3.40)

Take now y = xki in Corollary 3.1. Then by (2.1), we have
1
2

[
d2(zki,xki)+d2(xki,zki)

]
〈eki,cki〉 ≤ 〈exp−1

zki
xki,exp−1

zki
xki〉〈eki,cki〉

≤ βki

[
〈 f (xki,xki),cki〉−〈 f (xki,zki),cki〉

]
, (3.41)

which implies that
1
2

[
d2(zki,xki)+d2(xki,zki)

]
〈eki,cki〉+βki〈 f (x

ki,zki),cki〉 ≤ 0. (3.42)

Since cki ∈C+ \{0}, we have

1
2

d2(zki,xki)eki +
1
2

d2(xki,zki)eki +βki f (xki,zki) 6∈ int(C). (3.43)

Note that d2(xki,zki)> 0. Hence, (3.43) contradicts (3.40), establishing the result.
�

Proposition 3.8. Assume that S( f ,K) 6= /0 and the bifunction f satisfies B1-B4. Then each
cluster point of the sequence {xk} generated by Algorithm EML solves VEP( f ,K).

Proof. First assume that there exists a subsequence {αki} of {αk} which converges to 0. In
this case, by Proposition 3.7, we obtain that each cluster point of {xki} solves VEP( f ,K). Now
assume that {αki} is any subsequence of {αk} bounded away from zero (say αki ≥ ᾱ > 0). It
follows from (3.3) and (3.6) that

−βki f (yki,xki)+βki f (yki,zki)+
δ

2
d2(zki,xki)eki 6∈ int(C). (3.44)

Note that, since αki ≤ 1 by (3.5), we get, in view of B1 and B3,

0 = f (yki,yki)� αki f (yki,zki)+(1−αki) f (yki,xki) ∈C. (3.45)

Hence we have

−βki f (yki,zki)+
−βki(1−αki)

αki

f (yki,xki) ∈ −C. (3.46)

Summing up (3.44) and (3.46), we have

−βki

αki

f (yki,xki)+
δ

2
d2(zki,xki)eki 6∈ int(C). (3.47)
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Note that each cluster point of { f (yki,xki)} belongs to −C by Proposition 3.5(v). Since C is a
closed and convex cone, taking limits in (3.47) with i→+∞, we obtain

lim
i→+∞

d2(zki,xki) = 0.

We are within the assumptions of Proposition 3.6, and thus we conclude that each cluster point
of {xki} solves VEP( f ,K). It follows that each cluster point of every subsequence of {xk} solves
VEP( f ,K), and hence the same holds for the whole sequence {xk}. �

Now we prove our main result.

Theorem 3.1. Assume that S( f ,K) 6= /0 and the bifunction f satisfies B1-B4. Let {xk} be the
sequence generated by Algorithm EML. Then the sequence {xk} converges to a solution of
VEP( f ,K).

Proof. i) Proposition 3.8 shows that each cluster point of {xk} solves VEP( f ,K), so that all
cluster points of {xk} belong to S( f ,K). By (3.22), the sequence {xk} is Fejér convergent to
S( f ,K). Therefore Lemma 2.1 implies that {xk} converges to a point of S( f ,K). �

4. EXAMPLES AND APPLICATIONS

In this section, we first give some examples of vector equilibrium problems in several Hadamard
manifolds to which our main theorem can be applied for finding a solution. We also present
some numerical experiments. We start by recalling hyperbolic spaces.

The hyperbolic space Hn:
We equip Rn+1 with the inner product

〈x,y〉=
n

∑
i=1

xiyi− xn+1yn+1,

for x = (x1,x2, . . . ,xn+1) and y = (y1,y2, . . . ,yn+1). Define

Hn :=
{

x = (x1,x2, . . . ,xn+1) ∈ Rn+1 : 〈x,x〉=−1, xn+1 > 0
}
.

Then 〈·, ·〉 induces the Riemannian metric d on the tangent spaces TpHn ⊂ TpRn+1 as

d(x,y) = arccosh(−〈x,y〉), ∀x,y ∈Hn (4.1)

for p ∈Hn. Note that a normalized geodesic γx : [0,1]→Hn starting from γx(0) = x, will have
the equation

γx(t) = (cosh t)x+(sinh t)v,

where v = γ ′x(0) ∈ TxHn is the tangent unit vector of γ in the starting point. Also, we get from
(4.1)

exp−1
x y = arccosh(−〈x,y〉) y+ 〈x,y〉x√

〈x,y〉2−1
, ∀x,y ∈Hn. (4.2)

It is well known that (Hn,d) is a Hadamard manifold with sectional curvature −1 at every
point (see [32]).

Now, we give an example of vector equilibrium problems in the hyperbolic space Hn.
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Example 4.1. Let M = Hn be the hyperbolic space and C = {z ∈ R3 : zi ≥ 0, i = 1,2,3}. We
define the vector valued bifunction f : M×M→ R3 as

f (x,y) = 〈x−T (x),y− x〉ε,

where ε belongs to the positive orthant R3
++ = {z ∈ R3 : zi > 0, i = 1,2,3} and T is a map

from M into itself defined by T (x) = (−x1,−x2, . . . ,−xn,xn+1). If x is an equilibrium point of
VEP( f ,M), then

〈x−T (x),y− x〉ε 6∈ −int(C) (4.3)

for all y ∈M. Taking y = T (x), we get

〈x−T (x),T (x)− x〉ε 6∈ −int(C). (4.4)

Therefore there exists c∗ ∈C+ \{0} such that

〈x−T (x),T (x)− x〉〈ε,c∗〉 ≥ 0. (4.5)

Since ε ∈ R3
++, 〈ε,c∗〉> 0. Therefore (4.5) implies that

〈x−T (x),T (x)− x〉 ≥ 0. (4.6)

Now (4.6) shows that−4x2
1−4x2

2−·· ·−4x2
n ≥ 0. Hence, we get x1 = x2 = · · ·= xn = 0. On the

other hand, we have 〈x,x〉 = −1. We conclude that xn+1 = 1. Hence x = (0,0, . . . ,0,1) is the
solution of VEP( f ,M).

We continue with other examples of vector equilibrium problems in Hadamard manifolds to
which our main result can be applied, some of which were adapted from [13].

Example 4.2. Let M = R×H1 be a Hadamard manifold and

K =
{

x = (x1,x2,x3) ∈ R×H1 : x2
2− x2

3 =−1, 0≤ x1 ≤ 1, x2 ≥ 0, x3 ≥ 1
}
.

K is a nonempty, closed and convex subset of M. We define the vector valued bifunction f :
K×K→ R3 as

f (x,y) = ((2− x1)(y2
2 + y2

3− x2
2− x2

3),x
2
1− x1y1,(3−2x1)(y2

2− x2
2)).

Now suppose that C = {x ∈R3 : xi ≥ 0, i = 1,2,3}. It is easy to see that x∗ = (1,0,1) is an equi-
librium point of VEP( f ,K). Note that f (x,x) = 0 for all x ∈ K, f is weakly C-pseudomonotone
and C-convex with respect to the second variable and f (·, ·) : K×K→R3 is uniformly continu-
ous on bounded sets. If {xk} is the sequence generated by Algorithm EML, then {xk} converges
to a solution of VEP( f ,K) by Theorem 3.1.

The positive orthant with another metric:
We endow the positive orthant Rn

++ = {z ∈ Rn : zi > 0, i = 1, · · · ,n} with the so-called affine
metric defined by G : Rn

++→ Sn
++,

G(x) = diag
( 1

x2
1
,

1
x2

2
, · · · , 1

x2
n

)
.

In other words, for any x ∈M := Rn
++ and u,v ∈ TxM, we have 〈u,v〉x = 〈G(x)u,v〉= ∑

n
i=1

uivi
x2

i
.

The geodesic joining x ∈M to y ∈M is the curve γ : [0,1]→M defined by

γ(t) = 〈x1−t
1 yt

1,x
1−t
2 yt

2, · · · ,x1−t
n yt

n〉.
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Also, we can obtain that the distance between x and y is d(x,y) =
(

∑
n
i=1(ln

xi
yi
)2
) 1

2 . It is well
known that (M,d) is a Hadamard manifold such that the tangent space at a point x is Rn (see
also [33]).

Example 4.3. Suppose that (M,d) is the Hadamard manifold defined as above. Consider the
vector valued bifunction f : M×M→ R3 defined by

f (x,y) =
m

∑
i=1

〈
αi(

n

∏
j=1

yai j
j −

n

∏
j=1

xai j
j ),βi(

n

∏
j=1

ybi j
j −

n

∏
j=1

xbi j
j ),γi(

n

∏
j=1

yci j
j −

n

∏
j=1

xci j
j )
〉
,

where αi,βi,γi ∈ R++ and ai j,bi j,ci j ∈ R for any i, j. Note that each component of f is a
nonconvex function with respect to the second variable, but it is geodesic convex on M with
respect to the metric d. Let K = {z ∈ Rn : zi ≥ 1, i = 1, · · · ,n} ⊂ M. It is obvious that K is
a nonempty, closed and convex set. Now take C = {z ∈ R3 : zi ≥ 0, i = 1,2,3} which is a
closed, convex and pointed cone with nonempty interior. Then it is easy to see that S( f ,K) 6= /0,
f (x,x) = 0 for all x ∈ M, and f is C-convex with respect to the second variable and weakly
C-pseudomonotone. Now, if f (·, ·) : M×M → R3 is uniformly continuous on bounded sets,
then we can use Algorithm EML to approximate a solution of VEP( f ,K), and if {xk} is the
sequence generated by Algorithm EML, then the sequence {xk} converges to a solution of the
problem.

The Nash equilibrium problem:
Suppose that I = {1,2, · · · ,n} is a finite index set which denotes the set of players. Let Mi be a
Hadamard manifold where i ∈ I, and the strategy set Ki is subset of Mi for the i-th player. Note
that M := M1×M2×·· ·×Mn is a Hadamard manifold (see [27]), and the set K := K1×K2×
·· ·×Kn is a subset of the Hadamard manifold M. Let ϕi : K → R be a payoff function which
shows the loss of each player where i ∈ I. Also, ϕi depends on the strategies of all the player
for any i ∈ I. The Nash equilibrium problem corresponding to {ϕi}i∈I and {Ki}i∈I is to find
x = (x1,x2, · · · ,xn) ∈ K such that

ϕi(x)≤ ϕi(x1, · · · ,xi−1,yi,xi+1, · · · ,xn),

for all i ∈ I and all yi ∈ Ki . The point x is a solution of the problem and is called a Nash
equilibrium point. The above inequality implies that each Nash equilibrium point corresponds
to an optimal amount for minimizing the loss. Now, we define f : K×K→ R as

f (x,y) =
n

∑
i=1

(ϕi(x1, · · · ,xi−1,yi,xi+1, · · · ,xn)−ϕi(x1, · · · ,xi−1,xi,xi+1, · · · ,xn)),

where x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn). So, f is a bifunction and its corresponding
equilibrium problem is to find x ∈ K such that

f (x,y)≥ 0, for all y ∈ K.

It is easy to see that x is a Nash equilibrium point if and only if it is an equilibrium point of f .
Now, for any i ∈ I, we extend the payoff function ϕi : K→ R to a finite family of functions

ϕi j : K → R showing the loss of each player in m areas separately (for example, losses in the
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areas of finance, energy, time, human resources and etc) where 1≤ j ≤ m. Consider

f j(x,y) =
n

∑
i=1

(ϕi j(x1, · · · ,xi−1,yi,xi+1, · · · ,xn)−ϕi j(x1, · · · ,xi−1,xi,xi+1, · · · ,xn)),

for all 1≤ j≤m and x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn). We define f : M×M→Rm as

f (x,y) = 〈 f1(x,y), f2(x,y), · · · , fm(x,y)〉. (4.7)

Therefore, our problem has been formulated as a vector equilibrium problem on the Hadamard
manifold M, and the solution of the problem is the vector which minimizes the losses of the nm
payoff functions corresponding to the m areas of the problem.

Example 4.4. Consider the bifunction f : M×M→Rm as defined in (4.7) and assume that the
cost function ϕi j is convex and uniformly continuous on bounded sets for all i, j. Let K ⊂M be
nonempty, closed and convex, and C = {z ∈Rm : zi ≥ 0, i = 1, · · · ,m} which is a closed, convex
and pointed cone with nonempty interior. Then it is obvious that the assumptions B1-B4 are
satisfied. Now, if S( f ,K) 6= /0 and {xk} is the sequence generated by Algorithm EML, then
Theorem (3.1) implies that {xk} converges to a solution of VEP( f ,K).

We end this paper by performing some numerical experiments.

Example 4.5. Consider (R2,d) where the metric d is defined by

d((x1,x2),(y1,y2)) =
(
(x1− y1)

2 +(x2
1− x2− y2

1 + y2)
2
) 1

2
,

for all (x1,x2),(y1,y2) ∈ R2. Note that (R2,d) is a Hadamard manifold with the geodesic

γ(t) =
(
(1− t)x1 + ty1,((1− t)x1 + ty1)

2− (1− t)(x2
1− x2)− t(y2

1− y2)
)
,

where t ∈ [0,1] (see [33]). Let M be the Hadamard manifold (R2,d), and define f : M×M→R
by

f (x,y) = a
(
(y2− y2

1)
2− (x2− x2

1)
2
)
+b
(
(1− y1)

2− (1− x1)
2
)
, (4.8)

where a,b ∈ R+. In order to implement our algorithm (EML) in Section 3, we suppose that
K =

{
x=(x1,x2)∈M : x1≥ 0

}
and C = [0,+∞). It is easy to see that K is nonempty, closed and

convex, f satisfies B1–B4 and S( f ,K) 6= /0; indeed, it is easy to check that for all (a,b) ∈ R2
++

the unique solution is x∗ = (1,1). We take δ = 1
100 , βk ≡ 1 and ek ≡ 1. If {xk} is the sequence

generated by EML in Section 3, then Theorem 3.1 ensures that {xk} converges to the solution of
VEP( f ,K). We performed some numerical experiments for this example. We chose randomly
100 random pairs (a,b) ∈ [0,100]× [0,100] and five starting points. Our stopping criterion is
d(xk−1,xk)< ε , and we take ε = 10−8

The numerical results are displayed in the following table, where the starting points, the
average number of iterations and the average CPU times have been reported.

Also, all tests for the 100 problems corresponding to each starting point were successful,
meaning that the sequence {xk} converges to (1,1), which is the solution of VEP( f ,K). All
problems were solved by the Optimization Toolbox in Matlab R2020a on a Laptop Intel(R)
Core(TM) i7- 8665U CPU @ 1.90GHz RAM 8.00 GB.
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Starting point: x0 Average number of iterations Average CPU time (Sec)
(3, -2) 16.67 1.2321
(7, -11) 17.89 1.3496
(19, 4) 18.38 1.5412
(73, 98) 19.48 2.0146
(0, -18) 15.10 1.1295
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