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Abstract. In this paper, we give a generalization of Euler’s pentagonal number theorem. As an applica-
tion, we derive a recursion formula for successively determining the coefficients ak of 1/nk. We conclude
this paper by presenting brief descriptions for some related results and other motivating developments.
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1. INTRODUCTION

Euler’s pentagonal number theorem states that (see, for example, [1, p. 11, Eq. (1.3.1)])
∞

∏
k=1

(1− xk) =
∞

∑
m=−∞

(−1)m xm(3m−1)/2

= 1+
∞

∑
m=1

(−1)m
(

xm(3m−1)/2 + xm(3m+1)/2
)
. (1.1)

Franklin [2] gave a wonderful combinatorial proof of this theorem.
The following special case of Jacobi’s triple product identity (see [3]; see also [1, p. 21, Eq.

(2.2.10); p. 23, Eq. (2.2.12)]
∞

∏
k=1

(1− xk)3 =
∞

∑
j=0

(−1) j xx j
=

∞

∏
j=1

(
1− x j

1+ x j

)
=

∞

∑
m=0

(−1)m (2m+1) xm(m+1)/2
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is widely known. Further explicit formulas for the powers of the Euler product given by
∞

∏
k=1

(1− xk)s =
∞

∑
k=0

fk(s) xk (s ∈ R)

have been derived for several special values for the power s such as those which we recall below
(see [4] and the references cited therein):

s = 1,3,8,10,14,15,21,24,26,28,35,36, · · · .

Our first aim in this paper is to give an explicit formula for determining the coefficients b j
such that

∞

∏
k=1

(1+ak xk) =
∞

∑
j=0

b j x j, (1.2)

where ak (k ∈ N := {1,2,3, · · ·}) are given real numbers. We then consider the expansion for
the powers of the following product:

∞

∏
k=1

(1+ak xk).

The Euler-Mascheroni constant γ given by

γ = 0.577215664 · · ·

is defined as the limit of the following sequence:

Dn = Hn− lnn (n ∈ N), (1.3)

where Hn given by

Hn =
n

∑
k=1

1
k

(n ∈ N)

denotes the nth harmonic number.
It is well known that (see [5, p. 258, Eq. (6.3.2)])

ψ(n+1) =−γ +Hn (n ∈ N), (1.4)

where ψ(x) given by

ψ(x) =
Γ′(x)
Γ(x)

is the psi (or digamma) function.
For any positive integer m, in 2018, You and Chen presented the following family of se-

quences (see, for details, [6, Theorem 1]):

γm(n) = Hn− lnn−
m

∑
k=1

ln
(

1+
ak

nk

)
(n ∈ N), (1.5)

which would converge to the Euler-Mascheroni constant γ , where

a1 =
1
2
, a2 =

1
24

, a3 =−
1

24
, a4 =

143
5760

, a5 =−
1

160
,

a6 =−
151

290304
, a7 =−

1
896

, · · · . (1.6)
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However, You and Chen [6] did not give the general formula for the coefficients ak of 1/nk in
(1.5).

By using (1.2), we derive here a recursion formula for successively determining the coeffi-
cients ak of 1/nk in (1.5), which is the second aim of this paper. Some computations in this
paper were performed using the Maple software.

2. GENERALIZATION OF EULER’S PENTAGONAL NUMBER THEOREM

Using the Maple software, we find that
∞

∏
k=1

(1+akxk) = 1+a1x+a2x2 +(a3 +a1a2)x3 +(a4 +a1a3)x4

+(a5 +a1a4 +a2a3)x5 +(a6 +a1a5 +a2a4 +a1a2a3)x6

+(a7 +a1a6 +a2a5 +a3a4 +a1a2a4)x7 + · · · . (2.1)

Even though as many coefficients as we please in the right-hand side of (2.1) can be obtained by
using the Maple software, here we aim at giving a formula for determining these coefficients.

For our later use, we introduce the following set of partitions of an integer n ∈ N:

An :=
{
(k1, k2, · · · , kn) ∈ Nn

0 : k1 + k2 + · · ·+ kn = n

and k j satisfies k1 < k2 < · · ·< kn when k j 6= 0 ( j = 1,2, · · · ,n)
}
. (2.2)

Upon setting
N0 := N∪{0}= {0,1,2, · · ·},

the coefficients b j ( j ∈ N0) in (1.2) can be calculated by the following explicit formula:

b0 = 1 and b j = ∑
(k1,k2,··· ,k j)∈A j

ak1ak2 · · ·ak j , (2.3)

where the A j is given by (2.2). We stipulate that a0 = 1.
Here we give explicit numerical values of some first terms of b j by using the partition set

(2.2) and the formula (2.3). Obviously, we have

b0 = 1 and b1 = ∑
(k1∈mathcalA1)

ak1 = a1.

For k1+k2 = 2 (k j satisfies k1 < k2 when k j 6= 0), the partition set A2 in (2.2) is seen to have
1 element:

A2 = {(0,2)} .
From (2.3), we have

b2 = ∑
(k1,k2)∈A2

ak1 ak2 = a0 a2 = a2.

For k1 + k2 + k3 = 3 (k j satisfies k1 < k2 < k3 when k j 6= 0), as above, the partition set A3 in
(2.2) contains 2 elements:

A3 = {(0,0,3), (0,1,2)} .
We then find from (2.3) that

b3 = ∑
(k1,k2,k3)∈A3

ak1ak2ak j = a0a0a3 +a0a1a2 = a3 +a1a2.
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Likewise, the partition sets A4, A5, A6 and A7 have 2, 3, 4 and 5 elements, respectively, and
so we get

A4 = {(0,0,0,4), (0,0,1,3)} , A5 = {(0,0,0,0,5), (0,0,0,1,4), (0,0,0,2,3)} ,
A6 = {(0,0,0,0,0,6), (0,0,0,0,1,5), (0,0,0,0,2,4), (0,0,0,1,2,3)} ,
A7 = {(0,0,0,0,0,0,7), (0,0,0,0,0,1,6), (0,0,0,0,0,2,5), (0,0,0,0,0,3,4),

(0,0,0,0,1,2,4)},

which yields

b4 = a4 +a1a3, b5 = a5 +a1a4 +a2a3, b6 = a6 +a1a5 +a2a4 +a1a2a3,

and b7 = a7 +a1a6 +a2a5 +a3a4 +a1a2a4.

We note that the values of b j (for j = 1,2,3,4,5,6,7) above are equal to the coefficients appear-
ing in (2.1).

By Lemma 2.1 below and Eq. (1.2), we now present a generalization of Euler’s pentagonal
number theorem given by Theorem 2.1.

Lemma 2.1. (see [7]) Let g be a function with a formal power series given by

g(x) =
∞

∑
n=0

bn xn (b0 6= 0).

Then, for all s ∈ R, it is asserted that

[g(x)]s =
∞

∑
n=0

Pn(s) xn,

where

P0(s) = bs
0 and Pn(s) =

1
nb0

n

∑
k=1

[k(1+ s)−n]bk Pn−k(s). (2.4)

Theorem 2.1. Let s 6= 0. Then

∞

∏
k=1

(1+ak xk)s =

(
∞

∑
j=0

b j x j

)s

=
∞

∑
n=0

Pn(s) xn, (2.5)

where

P0(s) = 1 and Pn(s) =
1
n

n

∑
k=1

[k(1+ s)−n]bk Pn−k(s) (2.6)

and the coefficients bk can be calculated in (2.3), that is,
∞

∏
k=1

(1+akxk)s = 1+ sa1 x+
s(2a2 + sa2

1−a2
1)

2
x2

+
s(6a3 + s2a3

1−3sa3
1 +2a3

1 +6sa1a2)

6
x3 + · · · .

Remark 2.1. The Ramanujan function τ(n) is defined by the following expansion:

x
∞

∏
k=1

(1− xk)24 =
∞

∑
n=1

τ(n) xn. (2.7)
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We write (2.5) as follows:

x
∞

∏
k=1

(1+ak xk)s =
∞

∑
n=0

Pn(s) xn+1 =
∞

∑
n=1

τ(n,s) xn, (2.8)

where
τ(n,s) = Pn−1(s). (2.9)

The formula (2.8) is a generalization of (2.7).

3. AN APPLICATION OF THE PRODUCT FORMULA (1.2)

As an application of the product formula (1.2), we derive a recursion formula for successively
determining the coefficients ak of 1/nk in (1.5).

Theorem 3.1. The coefficients ak of 1/nk in (1.5) can be derived from the following recursion
formula:

∑
(k1,k2,··· ,k j)∈A j

ak1 ak2 · · ·ak j = b j ( j ∈ N), (3.1)

where

b j = ∑
k1+2k2+···+ jk j= j

(−1)k1+k2+···+k j

k1! k2! · · ·k j!

(
B1

1

)k1
(

B2

2

)k2

· · ·
(

B j

j

)k j

(3.2)

and B j ( j ∈ N0) are the Bernoulli numbers, and the sum is taken over all nonnegative integers
k j satisfying the following equation:

k1 +2k2 + · · ·+ jk j = j.

Proof. In view of (1.4) and (1.5), we can set

eψ(x+1)

x
∼

∞

∏
k=1

(
1+

ak

xk

)
(x→ ∞), (3.3)

where ak (k ∈ N) are real numbers to be determined. It follows from the known result [8,
Theorem 2.1] that, as x→ ∞,

eψ(x+1)

x
∼ 1+

∞

∑
j=1

b j

x j

= 1+
1
2x

+
1

24x2 −
1

48x3 +
23

5760x4 +
17

3840x5 −
10099

2903040x6 −
2501

1161216x7

+
795697

199065600x8 +
870041

398131200x9 −
2727899759

367873228800x10 −
318246113

81749606400x11 + · · · ,
(3.4)

with the coefficients b j ( j ∈ N) given by

b j = ∑
k1+2k2+···+ jk j= j

(−1)k1+k2+···+k j

k1! k2! · · ·k j!

(
B1

1

)k1
(

B2

2

)k2

· · ·
(

B j

j

)k j

,
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where B j ( j ∈N0) are the Bernoulli numbers and the sum is taken over all nonnegative integers
k j satisfying the following equation:

k1 +2k2 + · · ·+ jk j = j.

Finally, by applying (1.2), we find that

eψ(x+1)

x
∼ 1+

∞

∑
j=1

b j

x j =
∞

∏
k=1

(
1+

ak

xk

)
, (3.5)

where

b j = ∑
(k1,k2,··· ,k j)∈A j

ak1 ak2 · · ·ak j ( j ∈ N),

which completes the proof of Theorem 3.1. �

Remark 3.1. The asymptotic expansion of the function given by

x 7→ epψ(x+t)

xp

was presented in the earlier works [9] and [10].

Lastly, we give explicit numerical values of the first few coefficients ak by using the formula
(3.1). This demonstrates the ease with which the coefficients ak in (1.5) can be determined.
Indeed, from (3.4), we observe that

b0 = 1, b1 =
1
2
, b2 =

1
24

, b3 =−
1

48
, b4 =

23
5760

, b5 =
17

3840
,

b6 =−
10099

2903040
and b7 =−

2501
1161216

.

Moreover, we fing from (3.1) that

a1 = b1 =
1
2
,

a2 = b2 =
1

24
,

b3 = a3 +a1a2 =⇒ a3 = b3−a1a2 =−
1

24
,

b4 = a4 +a1a3 =⇒ a4 = b4−a1a3 =
143

5760
,

b5 = a5 +a1a4 +a2a3 =⇒ a5 = b5−a1a4−a2a3 =−
1

160
,

b6 = a6 +a1a5 +a2a4 +a1a2a3

=⇒ a6 = b6−a1a5−a2a4−a1a2a3 =−
151

290304
,

b7 = a7 +a1a6 +a2a5 +a3a4 +a1a2a4

=⇒ a7 = b7−a1a6−a2a5−a3a4−a1a2a4 =−
1

896
.

We note that the values of the coefficients ak (k = 1,2,3,4,5,6,7) above are equal to the coef-
ficients appearing in (1.5).
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4. CONCLUDING REMARKS AND OBSERVATIONS

Our present investigation is motivated by an earlier work by You and Chen [6] who studied,
for any positive integer m, a family γm(n) of sequences given by

γm(n) = Hn− lnn−
m

∑
k=1

ln
(

1+
ak

nk

)
(n = 1,2,3, · · ·),

which would converge to the Euler-Mascheroni constant γ , where

a1 =
1
2
, a2 =

1
24

, a3 =−
1

24
, a4 =

143
5760

, a5 =−
1

160
,

a6 =−
151

290304
, a7 =−

1
896

, · · · .

The fact that You and Chen [6] did not give the general formula for computing the coefficients
ak of 1/nk led us to give a generalization of Euler’s pentagonal number theorem. As an appli-
cation of our generalization of Euler’s pentagonal number theorem, we successfully presented
recursion formula for successively determining the coefficients ak of 1/nk. Moreover, with a
view to encouraging further researches on the subject of our study in this paper, we included a
couple of citations of related recent works (see, for example, [11] and [12]).

The list of additional references, which we included in this paper, is believed to be potentially
useful for indicating some of the directions for further researches and related developments on
the subject-matter which we dealt with here. In particular, in connection especially with the
zeta and theta functions as well as Jacobi’s triple-product identities, we refer to [13], [14], [15]
and [16] (see also the recently-published survey-cum-expository review articles [17] and [18]),
each of which investigated interesting problems related to the subject-matter of our presentation
in this paper.
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[2] F. Franklin, Sur le développement du produit infine (1− x)(1− x2)(1− x3) · · · , C.R. Acad. Sci. Sér. I Math.
82 (1881), 448-450.

[3] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti, Sumtibus Fratrum
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