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AN INERTIAL ALGORITHM WITH A SELF-ADAPTIVE STEP SIZE FOR A
SPLIT EQUILIBRIUM PROBLEM AND A FIXED POINT PROBLEM OF AN

INFINITE FAMILY OF STRICT PSEUDO-CONTRACTIONS
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Abstract. In this paper, we study a split equilibrium problem and a fixed point problem with an infinite
family of strict pseudo-contractive mappings. We introduce a new inertial iterative scheme with a self-
adaptive step size for obtaining a common solution of the problems. Under mild conditions on the
control parameters, we prove a strong convergence result of the proposed algorithm in Hilbert spaces.
The implementation of our proposed algorithm does not require a prior estimate of the norm of the
bounded linear operator. Finally, we present some numerical experiments to demonstrate the efficiency
of the proposed algorithm in comparison with some existing results in the current literature.
Keywords. Equilibrium problem; Fixed point; Monotone operator; Variational inequality; Zero point.

1. INTRODUCTION

Throughout this paper, R denotes the set of all real numbers, and N denotes the set of all
positive integers. Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H. Let F : C×C→ R be a bifunction. The Equilibrium Problem (shortly, (EP)) in the sense
of Blum and Oettli [1] is to find x̂ ∈C such that

F(x̂,y)≥ 0, ∀ y ∈C.

The set of all solutions of the EP is denoted by EP(F). The EP attracts considerable research
efforts and serves as a unifying framework for studying many problems, such as, the nonlinear
complementarity problems, variational inequality problems, fixed point problems; see, e.g.,
[2, 3, 4, 5, 6] and the references therein. Indeed, it also has many real applications in computer
science, traffic transportation, and economics; see, e.g., [7, 8, 9, 10] and the references therein.

Let T : C→C be a nonlinear mapping. A point x∗ ∈C is called a fixed point of T if T x∗ = x∗.
We denote by F(T ) the set of all fixed points of T, i.e.,

F(T ) = {x∗ ∈C : T x∗ = x∗}.
It is known that several problems in sciences and engineering can be formulated as finding fixed
points of of a nonlinear mapping. Recently, the research on common solutions of fixed point
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and equilibrium prolems has been investigated by some authors. More precisely, many authors
studied the following problem, which consisting of find x̂ ∈C such that

T x̂ = x̂ and F(x̂,y)≥ 0, ∀ y ∈C,

where F : C×C→ R is a bifunction and T : C→ C is a nonlinear operator. The importance
and motivation for studying such a common solution problem lies in its potential application to
mathematical models whose constraints can be expressed as fixed point and equilibrium prob-
lems. This arises in practical problems such as signal processing, network resource allocation,
image recovery. A scenario is in network bandwidth allocation problem for two services in a
heterogeneous wireless access networks in which the bandwidth of the services are mathemati-
cally related (see, e.g., [11, 12] and the references therein).

In 1994, Censor and Elfving [13] introduced the following Split Feasibility Problem (SFP) in
finite-dimensional Hilbert spaces: Let C and Q be nonempty closed convex subsets of Hilbert
spaces H1 and H2, respectively, and let A : H1→ H2 be a bounded linear operator. The SFP is
formulated as finding a point x̂ with the property

x̂ ∈C and Ax̂ ∈ Q.

The SFP has been studied intensively by several authors due to its wide area of applications.
The problem is applicable in intensity-modulated radiation therapy, signal processing, image
restoration, and computer tomograph; see, e.g., [14, 15, 16].

In 2013, Kazmi and Rizvi [17] introduced and studied the following Split Equilibrium Prob-
lem (SEP): Let C ⊆ H1 and Q ⊆ H2. Let F1 : C×C→ R and F2 : Q×Q→ R be nonlinear
bifunctions. Let A : H1→ H2 be a bounded linear operator. The SEP is to find x̂ ∈C such that

F1(x̂,x)≥ 0, ∀ x ∈C, (1.1)

and ŷ = Ax̂ ∈ Q solves
F2(ŷ,y)≥ 0, ∀ y ∈ Q. (1.2)

Observe that inequality (1.1) is the classical equilibrium problem. (1.1) and (1.2), which
consist of a pair of equilibrium problems, is to find the image ŷ = Ax̂ under a given bounded
linear operator A of the solution x̂ of the problem (1.1) in H1, which is the solution of the
problem (1.2) in H2. It is easy to see that the SEP includes the SFP as a special case. We denote
the solution set of the SEP (1.1)-(1.2) by SEP(F1,F2) = {x̂ ∈ EP(F1) : Ax̂ ∈ EP(F2)}.

In 2016, Suantai et al. [18] proposed the following iterative algorithm, Algorithm 1.1, for
finding a solution of the SEP and a fixed point of a nonspreading multivalued mapping in Hilbert
spaces:

x1 ∈C,

un = T F1
rn
(I− γA∗(I−T F2

rn
)A)xn,

xn+1 ∈ αnxn +(1−αn)Sun, ∀ n ∈ N,

where {αn} ⊂ (0,1), {rn} ⊂ (0,∞) and γ ∈ (0, 1
L) with L being the spectral radius of A∗A,

where A∗ is the adjoint of A, C ⊂ H1, Q ⊂ H2, S : C→ K(C) is a 1
2 -nonspreading multivalued

mapping, K(C) is the collection of all nonempty compact subsets of C, and F1 : C×C→R and
F2 : Q×Q→R are two bifunctions. They proved that the sequence {xn} generated by the above
scheme converges weakly to an element in F(S)∩SEP(F1,F2) under certain conditions.
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In solving optimization problems, the strong convergence of iterative schemes are more de-
sirable and useful than their weak convergence counterparts according to Bauschke and Com-
bettes [19]. Hence, constructing iterative schemes that generate strong convergence sequence is
necessary and helpful.

In 2017, Zhang and Gui [20] introduced the following iterative algorithm, Algorithm 1.2,
for finding a solution the SEP and a common fixed point of a finite family of asymptotically
nonexpansive mappings in Hilbert spaces:

x0 ∈C,

un = T F1
rn
(I− γA∗(I−T F2

sn
)A)xn,

xn+1 = αn f (xn)+
(1−αn)

m

m

∑
i=1

T n
i un, n ∈ N,

where {αn}⊂ (0,1),{rn}⊂ [r,∞) with r > 0,{sn}⊂ [s,∞) with s> 0, γ ∈ (0, 1
L2 ), where L is the

spectral radius of A∗A and A∗ is the adjoint of A,C ⊂ H1,Q⊂ H2, f : C→C is a ρ-contraction
mapping, {Ti}m

i=1 : C→C is a finite family of asymptotically nonexpansive mappings with the
same sequence {kn}, and F1 : C×C→ R and F2 : Q×Q→ R are two bifunctions. Under the
following conditions on the control parameters:

(i) limn→∞ αn = 0,∑∞
n=1 = ∞;

(ii) ∑
∞
n=1 |αn−αn−1|< ∞,∑∞

n=1 |rn− rn−1|< ∞,∑∞
n=1 |sn− sn−1|< ∞;

(iii) limn→∞
kn−1

αn
= 0;

(iv) limn→∞ supx∈K ||T n+1
i x−T n

i x||= 0;

where K is any bounded subset of C, they proved that the sequence {xn} generated by the above
scheme converges strongly to an element of

⋂m
i=1 F(Ti)∩SEP(F1,F2).

However, we notice that conditions (ii) is restrictive. Hence, the following question arise
naturally. Can we devise an iterative scheme and obtain a strong convergence theorem under
mild restrictions. In this paper, we will provide an affirmative answer to this question.

It is also important to point out that the step size γ of the above scheme plays a crucial role in
the convergence analysis. The results obtained in [18] and [20], and several other related results
in literature involve the step size that requires prior knowledge of operator norms. One of the
limitations of such schemes is that they are usually difficult to implement. Furthermore, the
step size defined by such scheme are often very small and deteriorates the rate of convergence.
In practice, a larger step size can often be used to yield better numerical results. In optimization
theory, the second-order dynamical system, which is called the heavy ball method, was used
to accelerate the convergence rate of iterative schemes. This method, which is a two-step it-
erative method for minimizing a smooth convex function, was first introduced by Polyak [21].
The following algorithm introduced by Nesterov [22] is a modified heavy ball method for the
improvement of the convergence rate:

yn = xn +θn(xn− xn−1),

xn+1 = yn−λnO f (yn), ∀n≥ 1,

where λn > 0,θn ∈ [0,1) is an extrapolation factor, f is a convex function and O f is the gradient
of f . Here, the term θn(xn− xn−1) is the inertia.
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Recently, several authors have constructed some various iterative algorithms by using inertial
extrapolation technique; see, e.g., [5, 9, 23, 24, 25]. Motivated by the above results and the
ongoing research interest in this direction, we introduce a new inertial iterative scheme with a
self-adaptive step size for finding solutions of the SEP and common fixed points of an infinite
family of strict pseudo-contractive mappings. Our algorithm is designed such that its imple-
mentation does not require a prior estimate of the norm of the bounded linear operator. We
prove a strong convergence theorem in Hilbert spaces. Moreover, we also consider the zero
point problems of maximal monotone operators, split generalized equilibrium problems and
split variational inequality problems. We present some numerical experiments to demonstrate
the efficiency of the proposed scheme in comparison with some existing results in the current
literature.

2. PRELIMINARIES

Let H be a real Hilbert space and let C be a nonempty closed and convex subset of H. Let PC :
H →C be the metric projection, which assigns each x ∈ H to its unique element PCx ∈C, that
is,||x−PCx||= inf{||x− z|| : z ∈C}. It is known that PC is nonexpansive and has the following
properties:

(1) ||PCx−PCy||2 ≤ 〈PCx−PCy,x− y〉, ∀x,y ∈C;
(2) for any x ∈ H and y ∈C, ||PCx− y||2 + ||x−PCx||2 ≤ ||x− y||2.
For any x,y ∈ H with y 6= 0, let Q = {z ∈ H : 〈y,z− x〉 ≤ 0}. Then, for all u ∈ H, PQ(u) is

given by

PQ(u) = u−max
{

0,
〈y,u− x〉
||y||2

}
y,

which gives an explicit formula for computing the projection of any point onto a half-space. In
what follows, we denote the weak and strong convergence of a sequence {xn} to a point x ∈ H
by xn ⇀ x and xn→ x, respectively, and wω(xn) denotes set of weak limits of {xn}, that is,

ωw(xn) := {x ∈ H : xn j ⇀ x for some subsequence {xn j} of {xn}}.

Now, we present some definitions and results which are necessary in our convergence analy-
sis.

Definition 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping
T : C→C is said to be:

(1) L-Lipschitz continuous with L > 0 if

||T x−Ty|| ≤ L||x− y||, ∀ x,y ∈C;

if L ∈ [0,1), then T is called a contraction mapping;
(2) nonexpansive if T is 1−Lipschitz continuous;
(3) asymptotically nonexpansive if there exists a sequence {kn}⊂ [1,∞) with limn→∞ kn = 1

such that
||T nx−T ny|| ≤ kn||x− y||, ∀ x,y ∈C;

(4) k-strictly pseudo-contractive if there exists a constant k ∈ [0,1) such that

||T x−Ty||2 ≤ ||x− y||2 + k||(I−T )x− (I−T )y||2, ∀ x,y ∈C;
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(5) monotone if
〈T x−Ty,x− y〉 ≥ 0, ∀ x,y ∈C.

Observe that the class of k-strictly pseudo-contractive mappings properly contains the class
of nonexpansive mappings. That is, T is nonexpansive if and only if T is 0-strictly pseudo-
contractive. It is known that if T is a k-strict pseudo-contraction and F(T ) 6= /0, then F(T ) is
a closed convex subset of H (see [26]). Strict pseudo-contractions have many applications due
to their ties with inverse-strongly monotone operators. So, one can recast the problem of zeros
for variational inequalities with inverse-strongly monotone operators as a fixed point problem
of strict pseudo-contractions.

The following equalities are trivial in Hilbert spaces
(i) ||x+ y||2 ≤ ||x||2 +2〈y,x+ y〉;

(ii) ||x+ y||2 = ||x||2 +2〈x,y〉+ ||y||2;
(iii) ||δx+(1−δ )y||2 = δ ||x||2 +(1−δ )||y||2−δ (1−δ )||x− y||2.
Each Hilbert space H satisfies the Opial’s condition, that is, for any sequence {xn} with

xn ⇀ x, the inequality liminfn→∞ ||xn− x|| < liminfn→∞ ||xn− y|| holds for every y ∈ H with
y 6= x.

Recall that a space is said to satisfy the Opial’s condition if for any sequence {xn} in the space
with xn ⇀ x, the inequality liminfn→∞ ||xn−x||< liminfn→∞ ||xn−y|| holds for every y∈H with
y 6= x. It is known that Hilbert spaces enjoy the Opial’s condition. Let C be a nonempty closed
convex subset of a real Hilbert space H. Recall that a bounded linear operator D : C→H is said
to be strongly positive if there exists a constant γ̄ > 0 such that 〈Dx,x〉 ≥ γ̄||x||2, for all x ∈C.

Definition 2.2. [27] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Sn} be a sequence of kn-strict pseudo-contractions. Define S′n = tnI +(1− tn)Sn, tn ∈ [kn,1).
Consider the mapping Wn defined by

Un,n+1 = I,
Un,n = ζnS′nUn,n+1 +(1−ζn)I,
Un,n−1 = ζn−1S′n−1Un,n +(1−ζn−1)I,
· · · ,
Un,k = ζkS′kUn,k+1 +(1−ζk)I,
Un,k−1 = ζk−1S′k−1Un,k +(1−ζk−1)I,
· · · ,
Un,2 = ζ2S′2Un,3 +(1−ζ2)I,
Wn =Un,1 = ζ1S′1Un,2 +(1−ζ1)I,

(2.1)

where {ζi} is a sequence of real numbers such that 0≤ ζi ≤ 1 for all i≥ 1. For each n≥ 1, such
a mapping Wn is nonexpansive.

We have the following lemmas related to the mapping Wn.

Lemma 2.1. [28] Let C be a nonempty closed convex subset of a Hilbert space H. Let {S′i} be
an infinite family of nonexpansive mappings of C into itself such that

⋂
∞
i=1 F(S′i) 6= /0 and let

{ζi} be a real sequence such that 0 < ζi ≤ b < 1 for all i≥ 1. Then
(1) Wn is nonexpansive and F(Wn) =

⋂n
i=1 F(S′i) for each n≥ 1;
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(2) for each x ∈C and for each positive integer k, the limn→∞Un,kx exists;
(3) the mapping W of C into itself defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈C

is a nonexpansive mapping satisfying F(W ) =
⋂

∞
i=1 F(S′i), which is called the modified

W-mapping generated by S1,S2, · · · ,ζ1,ζ2, · · · and t1, t2, · · · .

From [26], we have from Lemma 2.1 that F(W ) =
⋂

∞
i=1 F(S′i) =

⋂
∞
i=1 F(Si).

Lemma 2.2. [29] Let C be a nonempty closed convex subset of a Hilbert space H. Let {S′i} be
an infinite family of nonexpansive mappings of C into itself such that

⋂
∞
i=1 F(S′i) 6= /0 and let

{ζi} be a real sequence such that 0 < ζi ≤ b < 1 for all i≥ 1, where b is a positive real number.
If K is any bounded subset of C, then limn→∞ supx∈K ||Wx−Wnx||= 0.

Lemma 2.3. [26] Let C be a nonempty closed convex subset of a Hilbert space H. If S is a
k-strict pseudo-contraction defined on C, then I−S is demiclosed at any point y ∈ H.

Lemma 2.4. [30] Let {an} be a sequence of non-negative real numbers. Let {αn} be a sequence
in (0,1) with ∑

∞
n=1 αn = ∞ and let {bn} be a sequence of real numbers. Let an+1 ≤ (1−

αn)an+αnbn, for all n≥ 1. If limsupk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying
liminfk→∞(ank+1−ank)≥ 0, then limn→∞ an = 0.

Lemma 2.5. [31] Let {an},{cn} ⊂ R+,{σn} ⊂ (0,1) and {bn} ⊂ R be sequences such that
an+1 ≤ (1−σn)an + bn + cn for all n ≥ 0. Assume ∑

∞
n=0 |cn| < ∞. Then the following results

hold.
(1) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.
(2) If ∑

∞
n=0 σn = ∞ and limsupn→∞

bn
σn
≤ 0, then limn→∞ an = 0.

Assumption 2.1. For solving the equilibrium problem, we assume that the bifunction F : C×
C→ R satisfies the following conditions:

(A1) F(x,x) = 0 for all x ∈C;
(A2) F is monotone, that is, F(x,y)+F(y,x)≤ 0 for all x,y ∈C;
(A3) F is upper hemicontinuous, that is, for all x,y,z ∈C, limt↓0 F

(
tz+(1− t)x,y

)
≤ F(x,y);

(A4) for each x ∈C,y 7→ F(x,y) is convex and lower semicontinuous.

Lemma 2.6. [1] Let C be a nonempty closed convex subset of a Hilbert space H and let F :
C×C→ R be a bifunction satisfying Assumption 2.1. For r > 0 and x ∈ H, define a mapping
T F

r : H→C as follows:

T F
r (x) = {z ∈C : F(z,y)+

1
r
〈y− z,z− x〉 ≥ 0, ∀ y ∈C}.

Then T F
r is well defined and the following hold:

(1) for each x ∈ H,T F
r (x) 6= /0;

(2) T F
r is single-valued;

(3) ‖T F
r x−T F

r y‖2 ≤ 〈T F
r x−T F

r y,x− y〉, for any x,y ∈ H, that is, T F
r is a firmly nonexpan-

sive mapping.
(4) F(T F

r ) = EP(F);
(5) EP(F) is closed and convex.
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3. MAIN RESULTS

In this section, we present our proposed iterative scheme and discuss its convergence.
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respec-

tively, and let A : H1→H2 be a bounded linear operator with adjoint A∗ : H2→H1. Suppose that
F1 : C×C→ R and F2 : Q×Q→ R are bifunctions satisfying Assumption 2.1 with F2 being
upper semicontinuous in the first argument, and let {Wn} be the sequence defined by (2.1). Let
D : H→H be a strongly positive bounded linear operator with coefficient γ̄, and let f : H→H
be a contraction with coefficient ρ ∈ (0,1) such that 0 < γ < γ̄

ρ
. Suppose that the solution set

denoted by Ω = SEP(F1,F2)∩
⋂

∞
i=1 F(Si) is nonempty, where Si : C→C is an infinite family

of ki-strict pseudo-contractions. It is known that SEP(F1,F2) and
⋂

∞
i=1 F(Si) are closed and

convex. Hence, it follows that the solution set Ω is closed and convex and the projection PΩ is
well defined. We establish the convergence of the scheme under the following conditions on the
control parameters:

(C1) Let {αn} ⊂ (0,1) such that limn→∞ αn = 0 and ∑
∞
n=0 αn = ∞,{βn} ⊂ (0,1);

(C2) Let θ > 0,{δn} be a positive sequence such that limn→∞
δn
αn

= 0, and 0 < a≤ τn≤ b < 1;
(C3) {rn} ⊂ (0,∞) and {sn} ⊂ (0,∞) such that liminfn→∞ rn > 0 and liminfn→∞ sn > 0.
Now, our main algorithm is presented as follows.

Algorithm 3.1.
Step 0. Let x0,x1 ∈C be two arbitrary initial points and set n = 1.
Step 1. Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , δn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.
(3.1)

Step 2. Compute
wn = xn +θn(xn− xn−1).

Step 3. Compute
zn = T F1

rn
(wn + γnA∗(T F2

sn
− I)Awn),

where

γn :=

τn
||(T F2

sn −I)Awn||2

||A∗(T F2
sn −I)Awn||2

, if Awn 6= T F2
sn Awn,

λ , otherwise (λ being any nonnegative real number).
(3.2)

Step 4. Compute

xn+1 = αnγ f (xn)+(I−αnD)[(1−βn)zn +βnWnzn].

Set n := n+1 and return to Step 1.

Remark 3.1. From conditions (C1) and (C2), one can easily verify from (3.1) that

lim
n→∞

θn||xn− xn−1||= 0 and lim
n→∞

θn

αn
||xn− xn−1||= 0.

Also, observe that, in (3.2), the choice of γn is independent on the norm of operator ||A||. The
value of λ does not influence the considered algorithm but was introduced for clarity.
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We first establish the following lemmas which are essential in proving our strong convergence
result.

Lemma 3.1. Let {xn} be the sequence generated by Algorithm 3.1. Then {xn} is bounded.

Proof. First, we show that PΩ(I−D+γ f ) is a contraction on H1. For all x,y ∈H1, we have that

||PΩ(I−D+ γ f )(x)−PΩ(I−D+ γ f )(y)||
≤ ||(I−D)x− (I−D)y||+ γ|| f x− f y||
≤ (1− (γ̄− γρ))||x− y||.

This shows that PΩ(I−D+ γ f ) is a contraction. Hence, there exists an element p ∈ Ω such
that p = PΩ(I−D+ γ f )(p). Since p ∈Ω, then p = T F1

rn p and Ap = T F2
sn (Ap). Also, since T F1

rn is
nonexpansive, we have

||zn− p||2 = ||T F1
rn
(wn + γnA∗(T F2

sn
− I)Awn)− p||2

≤ ||wn + γnA∗(T F2
sn
− I)Awn− p||2 (3.3)

= ||wn− p||2 + γ
2
n ||A∗(T F2

sn
− I)Awn||2 +2γn〈wn− p,A∗(T F2

sn
− I)Awn〉. (3.4)

From the nonexpansivity of T F2
sn , we obtain

〈wn− p,A∗(T F2
sn
− I)Awn〉

= 〈T F2
sn

Awn−Ap− (T F2
sn
− I)Awn,(T F2

sn
− I)Awn〉

= 〈T F2
sn

Awn−Ap,(T F2
sn
− I)Awn〉−〈(T F2

sn
− I)Awn,(T F2

sn
− I)Awn〉

=
1
2
[
||T F2

sn
Awn−Ap||2 + ||(T F2

sn
− I)Awn||2−||T F2

sn
Awn−Ap− (T F2

sn
− I)Awn||2

]
−||(T F2

sn
− I)Awn||2

=
1
2
[
||T F2

sn
Awn−Ap||2−||Awn−Ap||2−||(T F2

sn
− I)Awn||2

]
≤−1

2
||(T F2

sn
− I)Awn||2. (3.5)

Substituting (3.5) into (3.4), and using the definition of γn and the condition on τn, we obtain

||zn− p||2 ≤ ||wn− p||2 + γ
2
n ||A∗(T F2

sn
− I)Awn||2− γn||(T F2

sn
− I)Awn||2

= ||wn− p||2− γn(1− τn)||(T F2
sn
− I)Awn||2 (3.6)

≤ ||wn− p||2. (3.7)

Note that

||wn− p|| ≤ ||xn− p||+αn
θn

αn
||xn− xn−1||. (3.8)

From Remark 3.1, and limn→∞
θn
αn
||xn− xn−1||= 0, we have that there exists a constant M1 > 0

such that θn
αn
||xn− xn−1|| ≤M1 for all n≥ 1. Hence, it follows from (3.8) that

||wn− p|| ≤ ||xn− p||+αnM1. (3.9)
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Define Un = (1−βn)I +βnWn for each n≥ 1. It follows that

||Unzn− p||= ||(1−βn)(zn− p)+βn(Wnzn− p)|| ≤ ||zn− p||. (3.10)

Hence, by using (3.7), (3.9) and (3.10), we have

||xn+1− p||= ||αn(γ f (xn)−Dp)+(I−αnD)(Unzn− p)||
≤ αn||γ( f (xn)− f (p))+(γ f (p)−Dp)||+(1−αnγ̄)||zn− p||
≤ αnγρ||xn− p||+αn||γ f (p)−Dp||+(1−αnγ̄)(||xn− p||+αnM1)

= (1−αn(γ̄− γρ))||xn− p||+αn(γ̄− γρ)
{ ||γ f (p)−Dp||

γ̄− γρ
+

(1−αnγ̄)

γ̄− γρ
M1

}
≤ (1−αn(γ̄− γρ))||xn− p||+αn(γ̄− γρ)M∗,

where

M∗ := sup
n∈N

{ ||γ f (p)−Dp||
γ̄− γρ

+
(1−αnγ̄)

γ̄− γρ
M1

}
.

Setting an := ||xn− p||, bn := αn(γ̄− γρ)M∗, cn := 0, and σn := αn(γ̄− γρ). From Lemma 2.5
and the assumptions on the control sequences, we have that {||xn− p||} is bounded and this
implies that {xn} is bounded. Consequently, {wn} and {zn} are also bounded. �

Lemma 3.2. Let {xn} be the sequence generated by Algorithm 3.1 and p ∈ Ω. Then, under
conditions (C1)-(C3),

||xn+1− p||2 ≤
(

1− 2αn(γ̄− γρ)

(1−αnγρ)

)
||xn− p||2 + 2αn(γ̄− γρ)

(1−αnγρ)

{
αnγ̄2M

2(γ̄− γρ)

+
3M2(1−αnγ̄)2

2(γ̄− γρ)

θn

αn
||xn− xn−1||+

1
(γ̄− γρ)

〈γ f (p)−Dp,xn+1− p〉
}

− (1−αnγ̄)2

(1−αnγρ)

[
γn(1− τn)||(T F2

sn
− I)Awn||2 +βn(1−βn)||Wnzn− zn||2

]
.

Proof. Let p ∈Ω. From the Cauchy-Schwartz inequality, we have

||wn− p||2 = ||xn− p||2 +θ
2
n ||xn− xn−1||2 +2θn〈xn− p,xn− xn−1〉

≤ ||xn− p||2 +θn||xn− xn−1||(θn||xn− xn−1||+2||xn− p||)

≤ ||xn− p||2 +3M2αn
θn

αn
||xn− xn−1||, (3.11)

where M2 := supn∈N{||xn− p||,θn||xn− xn−1||}> 0.
Next, by using (3.6) and (3.11), we obtain

||Unzn− p||2 ≤ (1−βn)||zn− p||2 +βn||Wnzn− p||2−βn(1−βn)||Wnzn− zn||2

≤ ||zn− p||2−βn(1−βn)||Wnzn− zn||2

≤ ||xn− p||2 +3M2αn
θn

αn
||xn− xn−1||− γn(1− τn)||(T F2

sn
− I)Awn||2

−βn(1−βn)||Wnzn− zn||2. (3.12)
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In view of (3.12), we conclude

||xn+1− p||2

= ||αn(γ f (xn)−Dp)+(I−αnD)(Unzn− p)||2

≤ (1−αnγ̄)2
{
||xn− p||2 +3M2αn

θn

αn
||xn− xn−1||− γn(1− τn)||(T F2

sn
− I)Awn||2

−βn(1−βn)||Wnzn− zn||2
}
+2αnγ〈 f (xn)− f (p),xn+1− p〉

+2αn〈γ f (p)−Dp,xn+1− p〉

≤ (1−αnγ̄)2||xn− p||2 +3M2(1−αnγ̄)2
αn

θn

αn
||xn− xn−1||

− (1−αnγ̄)2
{

γn(1− τn)||(T F2
sn
− I)Awn||2 +βn(1−βn)||Wnzn− zn||2

}
+2αnγρ||xn− p||||xn+1− p||+2αn〈γ f (p)−Dp,xn+1− p〉

≤ (1−αnγ̄)2||xn− p||2 +3M2(1−αnγ̄)2
αn

θn

αn
||xn− xn−1||

− (1−αnγ̄)2
{

γn(1− τn)||(T F2
sn
− I)Awn||2 +βn(1−βn)||Wnzn− zn||2

}
+αnγρ(||xn− p||2 + ||xn+1− p||2)+2αn〈γ f (p)−Dp,xn+1− p〉.

This implies that

||xn+1− p||2

≤ (1−2αnγ̄ +(αnγ̄)2 +αnγρ)

(1−αnγρ)
||xn− p||2 +3M2

(1−αnγ̄)2

(1−αnγρ)
αn

θn

αn
||xn− xn−1||

+
2αn

(1−αnγρ)
〈γ f (p)−Dp,xn+1− p〉− (1−αnγ̄)2

(1−αnγρ)

{
γn(1− τn)||(T F2

sn
− I)Awn||2

+βn(1−βn)||Wnzn− zn||2
}

=
(1−2αnγ̄ +αnγρ)

(1−αnγρ)
||xn− p||2 + (αnγ̄)2

(1−αnγρ)
||xn− p||2

+3M2
(1−αnγ̄)2

(1−αnγρ)
αn

θn

αn
||xn− xn−1||+

2αn

(1−αnγρ)
〈γ f (p)−Dp,xn+1− p〉

− (1−αnγ̄)2

(1−αnγρ)

{
γn(1− τn)||(T F2

sn
− I)Awn||2 +βn(1−βn)||Wnzn− zn||2

}
≤
(

1− 2αn(γ̄− γρ)

(1−αnγρ)

)
||xn− p||2 + 2αn(γ̄− γρ)

(1−αnγρ)

{
αnγ̄2

2(γ̄− γρ)
M

+
3M2(1−αnγ̄)2

2(γ̄− γρ)

θn

αn
||xn− xn−1||+

1
(γ̄− γρ)

〈γ f (p)−Dp,xn+1− p〉
}

− (1−αnγ̄)2

(1−αnγρ)

{
γn(1− τn)||(T F2

sn
− I)Awn||2 +βn(1−βn)||Wnzn− zn||2

}
,

where M := sup{||xn− p||2 : n ∈ N}. This completes the proof. �
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Lemma 3.3. The following inequality holds

||xn+1− p||2 ≤ (1−αnγ̄)2{||xn− p||2 +3M2αn
θn

αn
||xn− xn−1||− ||zn−wn||2

+2γn||zn−wn||||A∗(T F2
sn
− I)Awn||

}
+2αn〈γ f (xn)−Dp,xn+1− p〉, ∀p ∈Ω.

Proof. Let p ∈Ω. From (3.3) and (3.7), we observe that

||wn + γnA∗(T F2
sn
− I)Awn− p||2 ≤ ||wn− p||2.

From the firm nonexpansivity of T F1
rn , we have

||zn− p||2 ≤ 〈zn− p,wn + γnA∗(T F2
sn
− I)Awn− p〉

=
1
2
{
||zn− p||2 + ||wn + γnA∗(T F2

sn
− I)Awn− p||2−||(zn− p)

− (wn + γnA∗(T F2
sn
− I)Awn− p)||2

}
≤ 1

2
{
||zn− p||2 + ||wn− p||2−||zn−wn− γnA∗(T F2

sn
− I)Awn||2

}
=

1
2
{
||zn− p||2 + ||wn− p||2−

(
||zn−wn||2 + γ

2
n ||A∗(T F2

sn
− I)Awn||2

−2γn〈zn−wn,A∗(T F2
sn
− I)Awn〉

)}
≤ 1

2
{
||zn− p||2 + ||wn− p||2−||zn−wn||2− γ

2
n ||A∗(T F2

sn
− I)Awn||2

+2γn||zn−wn||||A∗(T F2
sn
− I)Awn||

}
≤ 1

2
{
||zn− p||2 + ||wn− p||2−||zn−wn||2 +2γn||zn−wn||||A∗(T F2

sn
− I)Awn||

}
,

which implies that

||zn− p||2 ≤ ||wn− p||2−||zn−wn||2 +2γn||zn−wn||||A∗(T F2
sn
− I)Awn||. (3.13)

Using (3.10), (3.11) and (3.13), we have

||xn+1− p||2 = ||αn(γ f (xn)−Dp)+(I−αnD)(Unzn− p)||2

≤ (1−αnγ̄)2||Unzn− p||2 +2αn〈γ f (xn)−Dp,xn+1− p〉

≤ (1−αnγ̄)2{||xn− p||2 +3M2αn
θn

αn
||xn− xn−1||− ||zn−wn||2

+2γn||zn−wn||||A∗(T F2
sn
− I)Awn||

}
+2αn〈γ f (xn)−Dp,xn+1− p〉,

which is the required inequality.
�

Lemma 3.4. Let {xn} be the sequence generated by Algorithm 3.1 and p ∈ Ω. Suppose that
{xnk} is a subsequence of {xn} such that

liminf
k→∞

(||xnk+1− p||− ||xnk− p||)≥ 0.

Then xnk ⇀ x∗ ∈Ω, i.e., wω(xn)⊂Ω.
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Proof. Let p ∈Ω. It follows from Lemma 3.2 that

(1−αnk γ̄)2

(1−αnkγρ)
βnk(1−βnk)||Wnkznk− znk ||

2

≤
(

1−
2αnk(γ̄− γρ)

(1−αnkγρ)

)
||xnk− p||2−||xnk+1− p||2 +

2αnk(γ̄− γρ)

(1−αnkγρ)

{
αnk γ̄2M

2(γ̄− γρ)

+
3M2(1−αnk γ̄)2

2(γ̄− γρ)

θnk

αnk

||xnk− xnk−1||+
1

(γ̄− γρ)
〈γ f (p)−Dp,xnk+1− p〉

}
.

From Lemma 3.4 together with the fact that limk→∞ αnk = 0, we obtain

(1−αnk γ̄)2

(1−αnkγρ)
βnk(1−βnk)||Wnkznk− znk ||

2→ 0, k→ ∞.

Hence, it follows that

||Wnkznk− znk || → 0, k→ ∞. (3.14)

Following a similar argument, we obtain from Lemma 3.2 that

γnk(1− τnk)||(T
F2

snk
− I)Awnk ||

2→ 0, k→ ∞.

From the definition of γn, we have

τnk(1− τnk)
||(T F2

snk
− I)Awnk ||4

||A∗(T F2
snk
− I)Awnk ||2

→ 0, k→ ∞,

which implies that

||(T F2
snk
− I)Awnk ||2

||A∗(T F2
snk
− I)Awnk ||

→ 0, k→ ∞.

Since ||A∗(T F2
snk
− I)Awnk || is bounded, then it follows that

||(T F2
snk
− I)Awnk || → 0, k→ ∞. (3.15)

Hence,

||A∗(T F2
snk
− I)Awnk || ≤ ||A

∗||||(T F2
snk
− I)Awnk ||= ||A||||(T

F2
snk
− I)Awnk || → 0, k→ ∞. (3.16)

In view of (3.14), we obtain

||Unkznk− znk ||= ||(1−βnk)znk +βnkWnkznk− znk ||
≤ (1−βnk)||znk− znk ||+βnk ||Wnkznk− znk || → 0, k→ ∞. (3.17)
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From Lemma 3.3, we obtain

||znk−wnk ||
2

≤ (1−αnk γ̄)2||xnk− p||2−||xnk+1− p||2 +(1−αnk γ̄)2{3M2αnk

θnk

αnk

||xnk− xnk−1||

+2γnk ||znk−wnk ||||A
∗(T F2

snk
− I)Awnk ||

}
+2αnk〈γ f (xnk)−Dp,xnk+1− p〉

≤ (1−αnk γ̄)2||xnk− p||2−||xnk+1− p||2 +(1−αnk γ̄)2{3M2αnk

θnk

αnk

||xnk− xnk−1||

+2M3||A∗(T F2
snk
− I)Awnk ||

}
+2αnk〈γ f (xnk)−Dp,xnk+1− p〉,

where M3 := sup{γnk ||znk −wnk || : k ∈ N}. By applying (3.16), and using limk→∞ αnk = 0 to-
gether with the hypothesis of Lemma 3.4 and Remark 3.1, we obtain

||znk−wnk || → 0, k→ ∞. (3.18)

In view of Remark 3.1, we have

||wnk− xnk ||= ||xnk +θnk(xnk− xnk−1)− xnk ||
≤ ||xnk− xnk ||+θnk ||xnk− xnk−1|| → 0, k→ ∞. (3.19)

It follows from (3.14), (3.17), (3.18) and (3.19) that

lim
k→∞
||Wnkznk−wnk ||= 0, lim

k→∞
||Wnkznk− xnk ||= 0, lim

k→∞
||Unkznk−wnk ||= 0,

and
lim
k→∞
||Unkznk− xnk ||= 0, lim

k→∞
||znk− xnk ||= 0. (3.20)

By applying (3.20) and the fact that limk→∞ αnk = 0, we obtain

||xnk+1− xnk ||= ||αnkγ f (xnk)+(1−αnkD)Unkznk− xnk ||
≤ αnk ||γ f (xnk)−Dxnk ||+(1−αnk γ̄)||Unkznk− xnk || → 0, k→ ∞. (3.21)

Now, we show that wω(xn) ⊂ ∩∞
i=1F(Si) = F(W ). Let x∗ ∈ wω(xn) and suppose that x∗ /∈

F(W ), that is, Wx∗ 6= x∗. From (3.20), we have that wω(xn) = wω(zn). It follows that

liminf
k→∞

||znk− x∗||< liminf
k→∞

|znk−Wx∗|||

≤ liminf
k→∞

{||znk−Wznk ||+ ||Wznk−Wx∗||}

≤ liminf
k→∞

{||znk−Wznk ||+ ||znk− x∗||}. (3.22)

Since xnk ∈ K for all k ≥ 1 and limk→∞ ||xnk− znk ||= 0, we obtain

||Wznk− znk || ≤ ||Wznk−Wnkznk ||+ ||Wnkznk− znk ||
≤ sup

x∈K
||Wx−Wnkx||+ ||Wnkznk− znk ||.

By applying Lemma 2.2 and (3.14), we have limk→∞ ||Wznk − znk || = 0. Combining this with
(3.22) yields

liminf
k→∞

||znk− x∗||< liminf
k→∞

||znk− x∗||,

which is a contradiction. Hence, x∗ ∈ F(W ) = ∩∞
i=1F(Si), i.e., wω(xn)⊂ F(W ) =

⋂
∞
i=1 F(Si).
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Next, we show that wω(xn) ⊂ SEP(F1,F2). First, we show that wω(xn) ⊂ EP(F1). Since
znk = T F1

rnk
(wnk + γnkA∗(T F2

snk
− I)Awnk), then

F1(znk ,y)+
1

rnk

〈y− znk ,znk−wnk− γnkA∗(T F2
snk
− I)Awnk〉 ≥ 0, ∀ y ∈C,

which implies that

F1(znk ,y)+
1

rnk

〈y− znk ,znk−wnk〉−
1

rnk

〈y− znk ,γnkA∗(T F2
snk
− I)Awnk〉 ≥ 0, ∀ y ∈C.

It follows from the monotonicity of F1 that

1
rnk

〈y− znk ,znk−wnk〉−
1

rnk

〈y− znk ,γnkA∗(T F2
snk
− I)Awnk〉 ≥ F1(y,znk), ∀ y ∈C.

Since znk ⇀ x∗, then it follows from (3.8), (3.15), liminfk→∞ rnk > 0, and condition (A4) that

F1(y,x∗)≤ 0, ∀ y ∈C. (3.23)

Now, for y ∈C, let yt := ty+(1− t)x∗ for all t ∈ (0,1]. This implies that yt ∈C, and it follows
from (3.23) that F1(yt ,x∗)≤ 0. From Assumptions (A1)-(A4), we have

0 = F1(yt ,yt)≤ tF1(yt ,y)+(1− t)F1(yt ,x∗)≤ tF1(yt ,y).

Hence, F1(yt ,y)≥ 0, ∀ y ∈C. Letting t→ 0, and using Condition (A3), we have F1(x∗,y)≥ 0,
∀ y ∈C. This implies that x∗ ∈ EP(F1).

Finally, we show that Ax∗ ∈ EP(F2). Since A is a bounded linear operator and wω(xn) =
wω(wn) by (3.19), then Awnk ⇀ Ax∗. It follows from (3.15) that

T F2
snk

Awnk ⇀ Ax∗, k→ ∞. (3.24)

By the definition of T F2
snk

Awnk , we have

F2(T F2
snk

Awnk ,y)+
1

snk

〈y−T F2
snk

Awnk ,T
F2

snk
Awnk−Awnk〉 ≥ 0, ∀ y ∈ Q.

Since F2 is upper semi-continuous in the first argument, it follows from (3.15), (3.24) and
liminfk→∞ snk > 0 that F2(Ax∗,y)≥ 0, ∀y∈Q. This shows that Ax∗ ∈ EP(F2). Hence, wω(xn)⊂
Ω as required. �

Now, we state and prove the strong convergence theorem.

Theorem 3.1. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1→H2 be a bounded linear operator with adjoint A∗. Let F1 : C×C→R
and F2 : Q×Q→R be bifunctions satisfying conditions (A1)-(A4) and the fact that F2 is upper
semicontinuous in the first argument. Suppose that {Wn} is the sequence defined by (2.1). Let
{xn} be a sequence generated by Algorithm 3.1 such that conditions (C1)-(C3) are satisfied.
Then the sequence {xn} converges strongly to a point x̂ ∈Ω, where x̂ = PΩ(I−D+ γ f )(x̂) is a
solution of the variational inequality 〈(D− γ f )x̂, x̂− x〉 ≤ 0, ∀x ∈Ω.
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Proof. Let x̂ = PΩ(I−D+ γ f )(x̂). Then it follows from Lemma 3.2 that

||xn+1− x̂||2 ≤
(

1− 2αn(γ̄− γρ)

(1−αnγρ)

)
||xn− x̂||2 + 2αn(γ̄− γρ)

(1−αnγρ)

{
αnγ̄2M

2(γ̄− γρ)

+
3M2(1−αnγ̄)2

2(γ̄− γρ)

θn

αn
||xn− xn−1||+

1
(γ̄− γρ)

〈γ f (x̂)−Dx̂,xn+1− x̂〉
}
.

Now, we claim that the sequence {||xn− x̂||} converges to zero. In order to establish this, by
Lemma 2.4, it suffices to show that limsupk→∞〈γ f (x̂)−Dx̂,xnk+1− x̂〉 ≤ 0 for every subse-
quence {||xnk− x̂||} of {||xn− x̂||} satisfying liminfk→∞(||xnk+1− x̂||−||xnk− x̂||)≥ 0. Suppose
that {||xnk− x̂||} is a subsequence of {||xn− x̂||} such that liminfk→∞(||xnk+1− x̂||−||xnk− x̂||)≥
0. From Lemma 3.4, we have that wω{xn} ⊂ Ω. It also follows from (3.20) that wω{znk} =
wω{xnk}. From the boundedness of {xnk}, there exists a subsequence {xnk j

} of {xnk} such that

xnk j
⇀ x† and

lim
j→∞
〈γ f (x̂)−Dx̂,xnk j

− x̂〉= limsup
k→∞

〈γ f (x̂)−Dx̂,xnk− x̂〉= limsup
k→∞

〈γ f (x̂)−Dx̂,znk− x̂〉.

(3.25)
Since x̂ = PΩ(I−D+ γ f )(x̂), it follows from (3.25) that

limsup
k→∞

〈γ f (x̂)−Dx̂,xnk− x̂〉= lim
j→∞
〈γ f (x̂)−Dx̂,xnk j

− x̂〉= 〈γ f (x̂)−Dx̂,x†− x̂〉 ≤ 0. (3.26)

Hence, by (3.21) and (3.26), we have

limsup
k→∞

〈γ f (x̂)−Dx̂,xnk+1− x̂〉 ≤ limsup
k→∞

〈γ f (x̂)−Dx̂,xnk+1− xnk〉+ limsup
k→∞

〈γ f (x̂)−Dx̂,xnk− x̂〉

= 〈γ f (x̂)−Dx̂,x†− x̂〉 ≤ 0. (3.27)

Using Lemma 2.4, (3.27) together with Remark 3.1, and the condition on αn, we deduce that
limn→∞ ||xn− x̂||= 0 as required. This completes the proof. �

Taking γ = 1 and D = I in Theorem 3.1, where I is the identity mapping, we obtain the
following result.

Corollary 3.1. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A : H1→H2 be a bounded linear operator with adjoint A∗. Let F1 :C×C→
R and F2 : Q×Q→ R be bifunctions satisfying conditions (A1)-(A4) and the fact that F2 is
upper semicontinuous in the first argument. Suppose that {Wn} is the sequence defined by
(2.1). Let {xn} be a sequence generated as follows:

Algorithm 3.2.
Step 0. Let x0,x1 ∈ H1 be arbitrary and set n = 1.
Step 1. Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , δn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

Step 2. Compute
wn = xn +θn(xn− xn−1).
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Step 3. Compute
zn = T F1

rn
(wn + γnA∗(T F2

sn
− I)Awn),

where

γn :=

τn
||(T F2

sn −I)Awn||2

||A∗(T F2
sn −I)Awn||2

, if Awn 6= T F2
sn Awn,

λ , otherwise (λ being any nonnegative real number).

Step 4. Compute
xn+1 = αn f (xn)+(1−αn)[(1−βn)zn +βnWnzn].

Set n := n+1 and return to Step 1.

Suppose that conditions (C1)-(C3) are satisfied. Then the sequence {xn} generated by Algo-
rithm 3.2 converges strongly to a point x̂∈Ω, where x̂=PΩ( f )(x̂) is a solution of the variational
inequality 〈(I− f )x̂, x̂− x〉 ≤ 0, ∀x ∈Ω.

Taking γ = 1,D = I and Sn = S for all n ≥ 1 in Theorem 3.1, then we have the following
result.

Corollary 3.2. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A : H1→H2 be a bounded linear operator with adjoint A∗. Let F1 :C×C→
R and F2 : Q×Q→ R be bifunctions satisfying conditions (A1)-(A4) and the fact that F2 is
upper semicontinuous in the first argument. Suppose that {Wn} is the sequence defined by
(2.1). Let {xn} be a sequence generated as follows:

Algorithm 3.3.
Step 0. Let x0,x1 ∈ H1 be arbitrary and set n = 1.
Step 1. Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , δn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

Step 2. Compute
wn = xn +θn(xn− xn−1).

Step 3. Compute
zn = T F1

rn
(wn + γnA∗(T F2

sn
− I)Awn),

where

γn :=

τn
||(T F2

sn −I)Awn||2

||A∗(T F2
sn −I)Awn||2

, if Awn 6= T F2
sn Awn,

λ , otherwise (λ being any nonnegative real number).

Step 4. Compute
xn+1 = αn f (xn)+(1−αn)[(1−βn)zn +βnSzn].

Set n := n+1 and return to Step 1.

Suppose that conditions (C1)-(C3) are satisfied. Then the sequence {xn} generated by Algo-
rithm 3.3 converges strongly to a point x̂∈Ω, where x̂=PΩ( f )(x̂) is a solution of the variational
inequality 〈(I− f )x̂, x̂− x〉 ≤ 0, ∀x ∈Ω.
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4. APPLICATIONS

In this section, we present some theoretical applications of our results to solve some related
problems in nonlinear analysis and optimization.

4.1. Split equilibrium and zero point problems of maximal monotone operators. We con-
sider a common solution of split equilibrium and zero point problems for an infinite family
of maximal monotone operators. Let F : H → H be a single-valued nonlinear mapping and
let B : H → 2H be a multivalued mapping. The problem of finding a zero of the sum of two
monotone operators, which is formulated as the following monotone inclusion problem, is to
find a point x ∈ H such that 0 ∈ (F +B)x. This problem includes, as special cases, convex pro-
gramming, variational inequalities, split feasibility problem and minimization problem. More
precisely, some concrete problems in machine learning, image processing and linear inverse
problem can be modelled mathematically as this form; see, e.g., [32, 33, 34]. We denote the
zero point set {x ∈ H : 0 ∈ (F +B)x} of F +B by (F +B)−10.

Let H be a real Hilbert space and B : H → 2H be a multivalued mapping. The effective
domain of B denoted by D(B) is given as D(B) = {x ∈ H : Bx 6= /0}.

(1) the graph G(B) is defined by

G(B) := {(x,u) ∈ H×H : u ∈ B(x)};

(2) B is said to be monotone if 〈x− y,u− v〉 ≥ 0 for all x,y ∈ D(B),u ∈ Bx, and v ∈ By;
(3) B is said to be maximal if its graph is not properly contained in the graph of any other

monotone operator on H;
(4) For a maximal monotone set-valued mapping B on H and r > 0, the operator

JB
r := (I + rB)−1 : H→ D(B)

is called the resolvent of B.

Remark 4.1. In [35], it was shown that F(JB
r ) = B−10≡ {x ∈ H : 0 ∈ Bx} for all r > 0 and JB

r
is singled-valued firmly nonexpansive, that is,

||JB
r x− JB

r y|| ≤ 〈JB
r x− JB

r y,x− y〉, for all x,y ∈ H.

The following lemma will be also needed in establishing our results in this section.

Lemma 4.1. [35] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
G : H→ H be a mapping and letB : H→ 2H be a maximal monotone operator. Then F(JB

r (I−
rG)) = (G+B)−1(0).

Now, we have the following results.

Theorem 4.1. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A : H1 → H2 be a bounded linear operator, and suppose that {Wn} is
the sequence defined by (2.1). Let Bi : H → 2H be an infinite family of maximal monotone
mappings with D(Bi) 6= /0 and let JBi

ri be the resolvent of Bi for each ri > 0. Suppose that {xn}
is a sequence generated by Algorithm 3.1 such that conditions (C1)-(C3) are satisfied. Then
the sequence {xn} converges strongly to a point x̂ ∈Ω = SEP(F1,F2)∩

⋂
∞
i=1(B

−1
i 0) 6= /0, where

x̂ = PΩ(I−D+γ f )(x̂) is a solution of the variational inequality 〈(D−γ f )x̂, x̂−x〉 ≤ 0, ∀x ∈Ω.
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Proof. Note that JBi
ri is nonexpansive and F(JBi

ri ) = B−1
i 0. From Theorem 3.1, taking JBi

ri = Si in
Definition 2.1, we have the desired conclusion immediately. �

Theorem 4.2. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A : H1→ H2 be a bounded linear operator, and suppose that {Wn} is the
sequence defined by (2.1). Let Bi : H→ 2H be an infinite family of maximal monotone mappings
with D(Bi) 6= /0. Let JBi

ri be the resolvent of Bi for each ri ∈ (0,2δi) and let Gi : H → H be an
infinite family of δi−inverse strongly monotone mappings. Suppose that {xn} is a sequence
generated by Algorithm 3.1 such that conditions (C1)-(C3) are satisfied. Then the sequence
{xn} converges strongly to a point x̂ ∈ Ω = SEP(F1,F2)∩

⋂
∞
i=1(Bi +Gi)

−10 6= /0, where x̂ =
PΩ(I−D+ γ f )(x̂) is a solution of the variational inequality 〈(D− γ f )x̂, x̂− x〉 ≤ 0, ∀x ∈Ω.

Proof. Since Gi is δi−inverse strongly monotone, we have that I− riGi is nonexpansive. From
the nonexpansiveness of JBi

ri , it follows that JBi
ri (I−riGi) is also nonexpansive. The proof follows

from Theorem 3.1 by applying Lemma 4.1 and taking JBi
ri (I− riGi) = Si in Definition 2.1. �

4.2. Split generalized mixed equilibrium and fixed point problems. Let φ : C → H be a
nonlinear mapping and let ψ : C→ R∪{+∞} be a proper lower semicontinuous and convex
function. Define

G(u,y) = F(u,y)+ 〈φu,y−u〉+ψ(y)−ψ(u)≥ 0, for all y ∈C.

It is known (see [36]) that if F(u,y) satisfies conditions (A1)-(A4), then G(u,y) also satisfies
them. Hence, the EP reduces to the problem: Find x̂ ∈C such that

F(x̂,y)+ 〈φ x̂,y− x̂〉+ψ(y)−ψ(x̂)≥ 0, for all y ∈C. (4.1)

This problem is called the Generalized Mixed Equilibrium Problem (shortly, (GMEP)). The set
of solutions of GMEP is denoted by GMEP(F,φ ,ψ). The GMEP is very general in the sense
that it includes as special cases, optimization problems, variational inequality problems, min-
imization problems, variational inclusion problems, fixed point problems, mathematical pro-
gramming problems, minimax problems, Nash equilibrium problems in noncooperative games,
and many others. Due to its generality, the GMEP has recently attracted attention of many au-
thors; see, e.g., [10, 37] and the references therein. If φ = 0 in (4.1), then the GMEP reduces
to the Mixed Equilibrium Problem. If ψ = 0 in (4.1), then the GMEP becomes the Generalized
Equilibrium Problem. In particular, if φ = ψ = 0 in (4.1), then the GMEP reduces to the EP.

Definition 4.1. Let H1 and H2 be Hilbert spaces. Let C and Q be nonempty closed and convex
subsets of H1 and H2, respectively. Let F1 : C×C→ R, F2 : Q×Q→ R be bifunctions. Let
φ1 : C → H1, φ2 : Q→ H2, be nonlinear mappings, and let ψ1 : C → R∪ {+∞}, ψ2 : Q→
R∪{+∞} be proper lower semicontinuous and convex functions. Let A : H1→H2 be a bounded
linear operator. The Split Generalised Mixed Equilibrium Problem (shortly, (SGMEP)) (see, for
example [38]) is to find a point x̂ ∈C such that

F1(x̂,x)+ 〈φ1x̂,x− x̂〉+ψ1(x)−ψ1(x̂)≥ 0, for all x ∈C, (4.2)

and ŷ = Ax̂ ∈ Q solves

F2(ŷ,y)+ 〈φ2ŷ,y− ŷ〉+ψ2(y)−ψ2(ŷ)≥ 0, for all y ∈ Q. (4.3)

We denote the solution set of (4.2)-(4.3) by SGMEP(F1,φ1,ψ1,F2,φ2,ψ2) = {x̂ ∈ GMEP(F1,
φ1,ψ1) : Ax̂ ∈ GMEP(F2,φ2,ψ2)}.
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Taking

G1(u,y) = F1(u,y)+ 〈φ1u,y−u〉+ψ1(y)−ψ1(u)≥ 0, for all y ∈C,

and
G2(w,z) = F2(w,z)+ 〈φ2w,z−w〉+ψ2(z)−ψ2(w)≥ 0, for all z ∈ Q,

we can directly obtain the following result from Theorem 3.1 when F1 and F2 satisfy conditions
(A1)-(A4).

Theorem 4.3. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A : H1→H2 be a bounded linear operator with adjoint A∗. Let G1 and G2
be as above, and let φ1,φ2,ψ1 and ψ2 be the same as in Definition 4.1. Suppose that {Wn} is
the sequence defined by (2.1). Let {xn} be a sequence generated as follows:

Algorithm 4.1.
Step 0. Let x0,x1 ∈ H1 be arbitrary and set n = 1.
Step 1. Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , δn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

Step 2. Compute
wn = xn +θn(xn− xn−1).

Step 3. Compute
zn = T G1

rn
(wn + γnA∗(T G2

sn
− I)Awn),

where

γn :=

τn
||(T G2

sn −I)Awn||2

||A∗(T G2
sn −I)Awn||2

, if Awn 6= T G2
sn Awn,

λ , otherwise (λ being any nonnegative real number).

Step 4. Compute

xn+1 = αnγ f (xn)+(I−αnD)[(1−βn)zn +βnWnzn].

Set n := n+1 and return to Step 1.

Suppose that conditions (C1)-(C3) are satisfied. Then the sequence {xn} generated by Algo-
rithm 4.1 converges strongly to a point x̂ ∈ Ω = SGMEP(F1,φ1,ψ1,F2,φ2,ψ2)∩

⋂
∞
i=1 F(Si),

where x̂ = PΩ( f )(x̂) is a solution of the variational inequality 〈(D− γ f )x̂, x̂− x〉 ≤ 0, ∀x ∈Ω.

4.3. Split variational inequality and fixed point problems. Let C be a nonempty closed con-
vex subset of a real Hilbert space H, and let B : H → H be a single-valued mapping. The
Variational Inequality Problem (shortly, (VIP)) is defined as follows:

Find x∗ ∈C such that 〈y− x∗,Bx∗〉 ≥ 0, ∀ y ∈C.

The solution set of the VIP is denoted by V I(C,B). The VIP is a useful mathematical model
that unifies many important concepts in applied mathematics, such as, necessary optimality
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conditions, complementarity problems, network equilibrium problems, and the systems of non-
linear equations. Here, we apply our result to the following Split Variational Inequality Problem
(shortly, (SVIP)):

Find x∗ ∈
∞⋂

n=1

F(Sn) such that 〈x− x∗,B1x∗〉, ∀ x ∈C, (4.4)

and
y∗ = Ax∗ ∈ Q solves 〈y− y∗,B2y∗〉 ≥ 0, ∀ y ∈ Q, (4.5)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2, re-
spectively, {Sn} is the sequence of kn-strict pseudo-contraction mappings in Definition 2.1,
A : H1→ H2 is a bounded linear operator, and B1 : C→ H1,B2 : Q→ H2 are monotone map-
pings. We denote the solution set of problem (4.4)-(4.5) by Ω and assume that Ω 6= /0. By
taking Fi(x,y) := 〈y− x,Bix〉, i = 1,2, the (SVIP) (4.4)-(4.5) becomes the problem of finding
a solution of the (SEP) (1.1)-(1.2) which is also a solution of an infinite family of kn-strict
pseudo-contraction mappings {Si}. Moreover, all the conditions of Theorem 3.1 are satisfied.
Therefore, Theorem 3.1 provides a strong convergence theorem for approximating a common
solution of the SVIP and fixed points of an infinite family of kn-strict pseudo-contraction map-
pings.

5. NUMERICAL EXAMPLES

In this section, we present some numerical experiments to demonstrate the efficiency of our
algorithm in comparison with Algorithm 1 proposed in [20] and Algorithm 3.3 in [39]. We plot
the graph of errors against the number of iterations in each case. All numerical computations
were carried out using Matlab 2019(b).

Example 5.1. Let H1 = H2 = R and C = Q = R. Define A : R→ R by Ax = x
2 and A∗y = y

2 .
Clearly, A is a bounded linear operator. Define F1 : C×C→R and F2 : Q×Q→R by F1(x,y) =
−11x2 + xy+10y2 and F2(x,y) =−15x2 + xy+14y2. It is easily verified that F1 and F2 satisfy
conditions (A1)− (A4). Using Lemma 2.6, we obtain

T F1
r (u) =

u
21r+1

, ∀ x ∈C,

and
T F2

s (v) =
v

29s+1
, ∀ v ∈ Q.

Define an infinite family of mappings Sn : R→ R by

Snx :=−2
n

x for all x ∈ R.

It can easily be verified that Sn is kn-strict pseudo-contractive for each n ∈ N. Define S′n =
tnI + (1− tn)Sn, tn ∈ [kn,1). Let {ζn} be a sequence of nonnegative real numbers defined by
ζn = { n

3n−1} for all n ∈ N and Wn be generated by {Sn},{ζn} and {tn}. Let f (x) = 1
5x, then

ρ = 1
5 is the Lipschitz constant for f . Let D(x) = x

3 with constant γ̄ = 1
3 . Then we take γ = 1,

which satisfies 0 < γ < γ̄

ρ
. Choose τn = 0.8,θ = 0.9,αn = 1

n+3 ,δn = 1
(n+3)2 ,βn = n+1

2n+3 ,rn =
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sn =
n+2
n+3 , and tn = 1

n+3 . It can easily be checked that all the conditions on the control sequences
in Theorem 3.1 are satisfied. Then Algorithm 3.1 becomes

wn = xn +θn(xn− xn−1), 0≤ θn ≤ θ̂n

zn =
1

21rn+1wn− γn
29sn

4(21rn+1)(29sn+1)wn

xn+1 =
1

5n+15xn +
(3n+8

3n+9

)( n+2
2n+3zn +

n+1
2n+3Wnzn

)
,

where

θ̂n =

{
min

{
θ , δn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise,

and

γn :=

τn
||(T F2

sn −I)Awn||2

||A∗(T F2
sn −I)Awn||2

, if Awn 6= T F2
sn Awn,

λ , otherwise (λ being any nonnegative real number).

We use the stopping criterion ||xn+1− xn|| < 10−5 and choose four different initial values as
follows:

(I) x0 =−50 and x1 =
27
89 ;

(II) x0 = 200 and x1 = 13.732;
(III) x0 =

17
19 and x1 =−20;

(IV ) x0 =−0.95 and x1 =−300.
The numerical results are presented in Figure 1 and Table 1.

TABLE 1. Numerical results for Example 5.1

Alg. 1 Alg. 3.3 in
[39]

Alg. 3.1

Case I CPU time
(sec)

0.010 0.7233 0.0085

No of Iter. 4 14 5
Case II CPU time

(sec)
0.0109 0.7008 0.0110

No. of Iter. 5 19 6
Case III CPU time

(sec)
0.0113 0.7138 0.0108

No of Iter. 5 19 6
Case IV CPU time

(sec)
0.0101 7.4439 0.0101

No of Iter. 6 36 8

Example 5.2. We consider the second example in the infinite dimensional Hilbert space H =
L2([0,1]) with the inner product defined by

〈x,y〉 :=
∫ 1

0
x(t)y(t)dt for all x,y ∈ H
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FIGURE 1. Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom
right: Case IV.

and the induced norm by

||x|| :=

(∫ 1

0
|x(t)|2dt

) 1
2

for all x ∈ H.

We define F1 : C×C → R and F2 : Q×Q→ R by F1(x,y) = 〈L1x,y− x〉 and F2(x,y) =
〈L2x,y− x〉, where L1x(t) = x(t)

3 and L2x(t) = x(t)
2 . It can easily be checked that F1 and F2

satisfy conditions (A1)-(A4). Let A : L2([0,1])→ L2([0,1]) be defined by Ax(t) = x(t)
3 and

A∗y(t) = y(t)
3 . Then, A is a bounded linear operator. From Lemma 2.6, we obtain

T F1
r (u) =

3u
r+3

, ∀ u ∈C,

and

T F2
s (v) =

2v
s+2

, ∀ v ∈ Q.

Let f (x) = x(t)
3 . Then ρ = 1

3 . Take D(x) = x(t)
2 with constant γ̄ = 1

2 . Then, we take γ = 1, which
satisfies 0 < γ < γ̄

ρ
. Define the sets C := {x ∈ H : ||x|| ≤ 1} and Q := {y ∈ H : ||y|| ≤ 1}, and

define an infinite family of mappings Sn : L2([0,1])→ L2([0,1]) by

(Snx)(t) =
∫ 1

0
tnx(s)ds for all t ∈ [0,1].
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It can easily be verified that Sn is nonexpansive for each n ∈ N, and hence 0-strict pseudo-
contractive. Define S′n = θnI +(1−θn)Sn, θn ∈ [0,1). Let {ζn} be a sequence of nonnegative
real numbers defined by ζn = { n

2n+1} for all n ∈ N and let Wn be generated by {Sn},{ζn} and
{θn}. Choose τn = 0.7,θ = 0.8,αn =

1
n+1 ,δn =

1
(n+1)2 ,βn =

n
2n+1 ,rn = sn =

n+1
n+3 , tn =

1
n+3 . It can

easily be checked that all the conditions on the control sequences in Theorem 3.1 are satisfied.
Then Algorithm 3.1 becomes

wn = xn +θn(xn− xn−1), 0≤ θn ≤ θ̂n

zn =
3

rn+3wn− γn
sn

3(rn+3)(sn+2)wn

xn+1 =
1

3n+3xn +
(2n+1

2n+2

)( n+1
2n+1zn +

n
2n+1Wnzn

)
,

where

θ̂n =

{
min

{
θ , δn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise,
and

γn :=

τn
||(T F2

sn −I)Awn||2

||A∗(T F2
sn −I)Awn||2

, if Awn 6= T F2
sn Awn,

λ , otherwise (λ being any nonnegative real number).

We choose two different initial values as follows and plot the graph of errors against the
number of iterations for three different stopping criterion:

(I) x0 =
9

10t6 and x1 =
2
5t8;

(II) x0 =
9

10t5 and x1 =
2
5t6;

The numerical results are reported in Figures 2, 3 and Table 2.

6. CONCLUSION

We studied the SEP and the FPP of an infinite family of strict pseudo-contractions. We
proposed a new inertial iterative scheme with the self-adaptive step size for approximating a
common solution of the problems. Under mild conditions on the control sequences, we prove
a strong convergence theorem in Hilbert spaces. Our proposed algorithm is simple and easy to
implement. We applied our results to some optimization problems. Finally, we presented some
numerical experiments to demonstrate the efficiency of the proposed algorithm in comparison
with some recent results in the literature.
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FIGURE 2. Top left: Case I, ε = 10−2; Top right: Case I, ε = 10−3; Bottom :
Case I, ε = 10−4.
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TABLE 2. Numerical results for Example 5.2

Alg. 1 Alg. 3.3
in [39]

Alg. 3.1 Alg. 3.1
θn = 0

Case I with
ε = 10−2

CPU time
(sec)

0.5043 0.3078 0.4134 0.66576

No of Iter. 4 5 2 5
Case I with
ε = 10−3

CPU time
(sec)

0.4239 0.2934 0.3810 0.6456

No. of Iter. 4 5 2 5
Case I with
ε = 10−4

CPU time
(sec)

0.5458 0.5318 1.4584 1.6223

No of Iter. 7 12 11 15
Case II with
ε = 10−2

CPU time
(sec)

0.5360 0.3857 0.9671 1.1362

No of Iter. 6 8 7 10
Case II with
ε = 10−3

CPU time
(sec)

0.5666 0.5500 1.5777 1.6738

No of Iter. 7 12 12 15
Case II with
ε = 10−4

CPU time
(sec)

0.5444 0.5320 1.5385 1.6465

No of Iter. 7 12 12 15
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