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Abstract. In this paper, we introduce two derivative-free projection iterative algorithms for solving a
system of nonlinear monotone operator equations. The two proposed algorithms can be viewed as two-
step methods where the first step uses an inertial effect in every iteration. The global convergence of
the proposed algorithms is established under some mild assumptions. We present numerical experiments
to show the efficiency and advantage of the inertial projection steps of the proposed algorithms and
compare it with some existing methods for solving nonlinear problems. Finally, we consider the problem
of solving a motion control problem involving a two-joint planar robotic manipulator.
Keywords. Derivative-free method; Inertial method; Motion control problem; Nonlinear monotone
equations; Projection method.

1. INTRODUCTION

Let x0 ∈ Rn be a starting point. Consider the iterative algorithm

xk+1 := xk +ηkdk, k = 0,1,2, . . . , (1.1)

where ηk > 0 denotes a step length and dk ∈Rn denotes a search direction. Let F : Rn→Rn be
a continuous function, the search direction in (1.1) is usually computed as follows

dk :=

{
−F(xk), for k = 0,
−θkF(xk)+βksk−1, for k = 1,2,3, . . . ,

(1.2)
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where sk−1 := xk− xk−1, θk > 0 and βk ∈ R are referred to be spectral parameter and conjugate
gradient parameter, respectively. Iterative method (1.1) with the search direction dk defined in
(1.2) is referred to a spectral-conjugate gradient method. If parameter θk = 1, for all k, then (1.1)
is called a conjugate gradient method while if βk = 0, for all k, then (1.1) is called a spectral
gradient method. Iterative method (1.1) has been investigated by researchers (see, e.g., [1, 2])
that it is very efficient for solving unconstrained optimization problems min{ f (x) : x ∈ Rn},
where f is a continuous differentiable function that is assumed to be bounded from below.

Definition 1.1. A function F : Rn→ Rn is said to be monotone if, for all x,y ∈ Rn,

〈F(x)−F(y), x− y〉 ≥ 0.

Definition 1.2. A function F : Rn→ Rn is said to be Lipschitz continuous if there exists some
positive constants, say L, such that, for all x,y ∈ Rn,

‖F(x)−F(y)‖ ≤ L‖x− y‖.

Recently, with the aid of the hyperplane projection proposed by Solodov and Svaiter in [3],
some researchers (see, e.g., [4, 5, 6]) extended iterative method (1.1) to solve the following
nonlinear system of equations

F(x) = 0, such that x ∈ Λ⊆ Rn, (1.3)

where F : Rn→ Rn is assumed to be Lipschitz continuous and monotone. The solution set of
problem (1.3) is assumed to be nonempty and is denoted as χ. The feasible set Λ is assumed to
be nonempty, closed and convex and therefore, the set χ is also convex [7]. Various problems
arising in different areas and applications, such as optimization, differential equations, motion
control problems, `1-norm regularization problems and so on can be reformulated into problem
(1.3) (see, [8, 9, 10, 11]).

On the other hand, given two starting points, say x0 and x−1, we consider an inertial step

wk := xk +αk(xk− xk−1). (1.4)

Iterative algorithms that incorporate inertial step (1.4) are popularly referred as inertial-type
algorithms. These algorithms were originated from the heavy-ball method of the second-order-
in-time dissipative dynamical system. In 1964, Polyak [12] considered the inertial extrapolation
as a speed-up method to solve smooth convex minimization problems. Inertial-type methods
are two-step iterative schemes, and the next iterate is defined by making use of the previous
two iterates [13]. In order to speed up the iteration process, an inertial extrapolation term
is required to boost the iterative sequence. These inertial-type methods are basically used to
accelerate the iterative sequence towards the required solution. Recently, there is a growing in-
terest in studying inertial-type algorithms for variational inequalities and monotone inclusions;
see, e.g., [14, 15, 16, 17, 18, 19] and the references therein. Various studies have shown that
iterative algorithms for solving the above nonlinear problems with an inertial step have better
numerical performance in terms of the number of iterations and a time of execution compared
to their counterparts without the inertial step. These two impressive advantages enhance the
researcher’s interest in developing new inertial-like methods.

Given a starting point, say x0, classical iterative algorithms (such as Newton’s method and its
variants as well as quasi-Newton methods and so on) use formula (1.1) to update their iterative
sequences. The search direction dk in (1.1) is usually updated via xk and its preceding point



INERTIAL-TYPE PROJECTION METHODS WITH APPLICATIONS 833

xk−1 as well as their images, that is, F(xk) and F(xk−1) (see, e.g., [6, 11, 20, 21]). Following
the research line on inertial step (1.4) in variational inequalities, split feasibility problems and
so on, we pose the following question. Can a search direction incorporated with inertial effect
(1.4) improve the numerical performance of the conjugate gradient-like algorithms?. To answer
this question, for a given step size αk ∈ [0,1] and any two starting points, say x−1 and x0, we
compute the sequence of inertial steps {wk} as well as their images via wk := xk+αk(xk−xk−1),
and then use them to build the search direction of the proposed algorithm.

In this paper, based on the projection technique considered by Solodov and Svaiter, we pro-
pose two inertial-type algorithms for solving a system of monotone nonlinear equations with
convex constraints. One of them is an inertial-type conjugate gradient projection algorithm and
the other one is an inertial-type spectral gradient projection algorithm. We propose two search
directions that are sufficiently descent and bounded. Furthermore, we consider solving a mo-
tion control problem involving a two-joint planar robotic manipulator. Throughout this paper,
we denote by Rn

+, ‖ · ‖2 and 〈·, ·〉 the set {(x1,x2, . . . ,xn)
T ∈ Rn | xi ≥ 0, i = 1,2, . . . ,n}, the

Euclidean norm in Rn and the Euclidean inner product in Rn, respectively.
The remaining part of this paper is organized as follows: In Section 2, we describe our

proposed method, its algorithm as well as its global convergence. In Section 3, we report
numerical experiments to show the efficiency of our algorithms as well as the application of
the proposed algorithms in motion control problems. In Section 4, the last section, we give our
conclusion in this paper.

2. INERTIAL-TYPE DERIVATIVE-FREE ALGORITHMS AND THEIR CONVERGENCE

ANALYSIS

Let x0 and x−1 be two given starting points, and let wk := xk +αk(xk− xk−1) be an inertial
step, where αk ∈ [0,1]. We begin this section by stating the following assumptions, which are
vital in the convergence analysis of the proposed algorithms.

Assumption 2.1.
A. The solution set χ of problem (1.3) is nonempty.
B. The function F : Rn→ Rn is monotone and Lipschitz continuous.

If the search direction dk given by (1.2) satisfies the following sufficient descent condition

F(xk)
T dk ≤−t‖F(xk)‖2, t > 0, (2.1)

then, it is said to be a descent direction (see, e.g., [22, 23, 24]). It is worth mentioning that
inequality (2.1) is very important for conjugate gradient-like iterative algorithms to be globally
convergent.

In order to state the proposed algorithms, the following projection operator is of great im-
portance. Given any point x ∈ Rn, its projection onto the feasible set Λ ⊆ Rn is defined as
PΛ(x) := argmin{‖x− y‖ : y ∈ Λ}, which satisfies the following properties

‖PΛ(x)−PΛ(y)‖ ≤ ‖x− y‖, for all x,y ∈ Rn. (2.2)

‖PΛ(x)− y‖ ≤ ‖x− y‖, for all y ∈ Λ. (2.3)

We now state the details of the proposed algorithms for solving problem (1.3).
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Algorithm 1: Conjugate Gradient (CG) Algorithm with Inertial–Step (CGAIS)
Input: Give x−1, x0 ∈ Λ, κ,r > 0, γ ∈ (0,2), σ ,ρ ∈ (0,1), the stopping tolerance

Tol ≥ 0, and αk ∈ [0,1].
Step 0: Set k = 0, and compute d0 :=−F(x0) and w0 := x0 +α0(x0− x−1).
Step 1: If ‖F(xk)‖ ≤ Tol, then xk is a solution and the iteration process stops.
Step 2: Set

υk := xk +ηkdk and ηk := κρ
i, (2.4)

where i is the smallest non–negative integer such that

−〈F(xk +κρ
idk), dk〉 ≥ σκρ

i‖dk‖2‖F(xk +κρ
idk)‖1/c, c≥ 1. (2.5)

Step 3: If ‖F(υk)‖= 0, stop. Else, compute the next iterate

xk+1 := PΛ

[
xk− γ

〈F(υk), xk−υk〉
‖F(υk)‖2 F(υk)

]
, ‖F(υk)‖ 6= 0. (2.6)

Step 4: Compute wk+1 := xk+1 +αk(xk+1− xk).
Step 5: Set k := k+1, update the search direction and repeat the process from Step 1.

dk :=−θ̂kF(xk)+βk(wk−wk−1)−uk−1zk−1, (2.7)

βk :=
〈zk−1, F(xk)〉
〈zk−1, wk−wk−1〉

, wk 6= wk−1, (2.8)

uk−1 :=
〈wk−wk−1, F(xk)〉
〈zk−1, wk−wk−1〉

, wk 6= wk−1, (2.9)

where

zk−1 := F(wk)−F(wk−1)+ r(wk−wk−1), (2.10)

θ̂k :=

{
λk, if θk ≤ 0 or 〈zk−1, F(xk)〉= 0,
θk, otherwise,

(2.11)

θk :=
1

〈zk−1, F(xk)〉

〈
F(xk), wk−wk−1 + zk−1−

wk−wk−1

〈wk−wk−1, zk−1〉
‖zk−1‖2

〉
, (2.12)

λk :=
‖wk−wk−1‖2

〈zk−1, wk−wk−1〉
. (2.13)

Algorithm 2: Spectral Algorithm with Inertial–Step (SAIS)
Input: Give the same inputs as in Algorithm 1.
Realize Step 0 to Step 4 of Algorithm 1, but replace Step 5 by:
Step 5: Compute

dk :=−θ̂kF(xk), (2.14)

where θ̂k is defined in (2.11).
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Remark 2.1. Observe that Algorithm 2 can be obtained by setting βk = uk−1 = 0 in (2.7) of
Algorithm 1.

Remark 2.2. From the definition of zk−1 and the monotonicity assumption on F, we have

〈zk−1, wk−wk−1〉= 〈F(wk)−F(wk−1)+ r(wk−wk−1), wk−wk−1〉
= 〈F(wk)−F(wk−1), wk−wk−1〉+ r〈wk−wk−1, wk−wk−1〉

≥ r‖wk−wk−1‖2 > 0, if wk 6= wk−1. (2.15)

Next, we show that θk is well-defined. We begin by showing that λk (according to (2.13)) is
bounded. From the Lipschitz continuity of F , we have

〈zk−1, wk−wk−1〉= 〈F(wk)−F(wk−1), wk−wk−1〉+ r‖wk−wk−1‖2 ≤ (L+ r)‖wk−wk−1‖2.
(2.16)

From (2.15) and (2.16) we have

1
L+ r

≤ ‖wk−wk−1‖2

〈zk−1, wk−wk−1〉
≤ 1

r
. (2.17)

This implies that λk is bounded. Therefore, from (2.11), we can find some constants, say t1 > 0
and t2 > 0, such that

t1 ≤ θk ≤ t2. (2.18)
Combining (2.17) and (2.18) gives

p≤ θ̂k ≤ q, (2.19)
where p ∈ [t1, 1

L+r ] and q ∈ [1
r , t2].

The following lemma shows that the proposed search directions satisfy (2.1) is independent
of the line search strategy used.

Lemma 2.1. The search directions (2.7) and (2.14) generated by Algorithms 1 and 2 satisfy the
descent condition defined by (2.1).

Proof. Taking the inner product of the search direction dk defined by (2.7) with F(xk), for k = 0,
it follows that 〈F(x0), d0〉 ≤ −‖F(x0)‖2. For k > 0, we have

〈F(xk), dk〉=−θ̂k‖F(xk)‖2 +
〈zk−1, F(xk)〉
〈zk−1, wk−wk−1〉

〈F(xk), wk−wk−1〉

− 〈wk−wk−1, F(xk)〉
〈zk−1, wk−wk−1〉

〈F(xk), zk−1〉

=−θ̂k‖F(xk)‖2

≤−p‖F(xk)‖2.

(2.20)

The last inequality follows from (2.19). This shows that the search direction dk is a descent
direction. �

Remark 2.3. Line search (2.5) is well-defined. That is, for all k ≥ 0, there always exists a
step-size ηk satisfying (2.5) in a finite number of iteration.

Suppose on the contrary that there exists some k0 such that, for any i = 0,1,2, . . . , (2.5) does
not hold, that is,

−〈F(xk0 +κρ
idk0), dk0〉< σκρ

i‖dk0‖
2‖F(xk0 +κρ

idk0)‖
1/c, κ > 0 and c≥ 1. (2.21)
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From the continuity of F and the fact that 0 < ρ i < 1, (i = 0,1,2, . . .), we let i→ ∞, which
together with (2.21) yields

〈F(xk0), dk0〉 ≥ 0. (2.22)
It is clear that inequality (2.22) contradicts (2.1). Hence line search (2.5) is well-defined.

Lemma 2.2. Suppose that Assumption 2.1 holds and let 0 < γ < 2. Let x̂ be a solution to
problem (1.3). If the sequences {dk}, {υk}, {xk} and {wk} are generated by (2.7), (2.4) and
(2.6) as well as the sequences of scalars {αk} and {ηk} in Algorithm 1 or 2 with the Lipschitz
constant L, then the following assertions hold:

(i) {xk} and {wk} are bounded and lim
k→∞
‖xk− x̂‖ exists.

(ii) The sequence of the search direction {‖dk‖} is bounded.
(iii) {υk} and {‖F(υk)‖} are bounded.
(iv) limk→∞ ηk‖dk‖= 0.

Proof. (i). From projection property (2.3), we have∥∥∥∥PΛ

(
xk− γ

〈F(υk), xk−υk〉
‖F(υk)‖2 F(υk)

)
− x̂
∥∥∥∥≤ ∥∥∥∥xk− γ

〈F(υk), xk−υk〉
‖F(υk)‖2 F(υk)− x̂

∥∥∥∥ . (2.23)

Since x̂ is a solution of problem (1.3), then F(x̂) = 0. Therefore, 〈F(x̂), υk− x̂〉 = 0. By the
monotonicity of F , we have 〈F(x̂), υk− x̂〉 ≤ 〈F(υk), υk− x̂〉. This means

〈F(υk), xk−υk〉= 〈F(υk), xk−υk〉+ 〈F(x̂), υk− x̂〉
≤ 〈F(υk), xk−υk〉+ 〈F(υk), υk− x̂〉
= 〈F(υk), xk− x̂〉.

(2.24)

By (2.23), (2.24) and the definition of xk+1 in (2.6), we get

‖xk+1− x̂‖2 ≤
∥∥∥∥xk− x̂− γ

〈F(υk), xk−υk〉
‖F(υk)‖2 F(υk)

∥∥∥∥2

= ‖xk− x̂‖2−2γ
〈F(υk), xk−υk〉
‖F(υk)‖2 〈F(υk), xk− x̂〉+ γ

2 〈F(υk), xk−υk〉2

‖F(υk)‖2

≤ ‖xk− x̂‖2−2γ
〈F(υk), xk−υk〉
‖F(υk)‖2 〈F(υk), xk−υk〉+ γ

2 〈F(υk), xk−υk〉2

‖F(υk)‖2

= ‖xk− x̂‖2− γ(2− γ)
〈F(υk), xk−υk〉2

‖F(υk)‖2 (2.25)

≤ ‖xk− x̂‖2. (2.26)

The relation (2.26) implies that, for all k ≥ 0,

‖xk+1− x̂‖ ≤ ‖xk− x̂‖ ≤ ‖xk−1− x̂‖ ≤ . . .≤ ‖x0− x̂‖,
where x0 is one of the given starting points. This means that lim

k→∞
‖xk− x̂‖ exists and then {xk}

is bounded. Since αk ∈ [0,1], we have that {wk} is also bounded. Let b1 := L‖x0− x̂‖. Since F
is Lipschitz continuous, then, for all k ≥ 0,

‖F(xk)‖= ‖F(xk)−F(x̂)‖ ≤ L‖xk− x̂‖ ≤ ·· · ≤ L‖x0− x̂‖= b1. (2.27)
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To show (ii), let k = 0. From the definition of the search direction dk in (2.7), we have

‖d0‖= ‖F(x0‖ ≤ b1. (2.28)

From the Lipschitz continuity of F , we have

‖zk−1‖= ‖F(wk)−F(wk−1)+ r(wk−wk−1)‖ ≤ (L+ r)‖wk−wk−1‖.
(2.29)

Note that

‖dk‖= ‖− θ̂kF(xk)+βk(wk−wk−1)−uk−1zk−1‖

≤ θ̂k‖F(xk)‖+ |βk|‖wk−wk−1‖+ |uk−1|‖zk−1‖

= θ̂k‖F(xk)‖+
∣∣∣∣ 〈zk−1, F(xk)〉
〈zk−1, wk−wk−1〉

∣∣∣∣‖wk−wk−1‖+
∣∣∣∣〈wk−wk−1, F(xk)〉
〈zk−1, wk−wk−1〉

∣∣∣∣‖zk−1‖

≤ θ̂k‖F(xk)‖+
‖zk−1‖‖F(xk)‖
〈zk−1, wk−wk−1〉

‖wk−wk−1‖+
‖wk−wk−1‖‖F(xk)‖
〈zk−1, wk−wk−1〉

‖zk−1‖

= θ̂k‖F(xk)‖+2
‖zk−1‖‖F(xk)‖
〈zk−1, wk−wk−1〉

‖wk−wk−1‖

≤ 1
r
‖F(xk)‖+2

(L+ r)‖wk−wk−1‖2

r‖wk−wk−1‖2 ‖F(xk)‖

=

[
1
r
+2

(L+ r)
r

]
‖F(xk)‖. (2.30)

The first and the second inequality follow from the triangle inequality and the Cauchy-Schwarz
inequality, respectively. The third inequality follows from (2.15) and (2.29).

If we let b̂2 :=
[

1
r +2 (L+r)

r

]
, then (2.30) becomes

‖dk‖ ≤ b̂2‖F(xk)‖. (2.31)

Combining (2.31) and (2.28) gives

‖dk‖ ≤ b, for all k ≥ 0, (2.32)

where b := b1b̂2.
(iii). From the definition of υk in (2.4), (2.32) and the boundedness of {xk}, we have that, for

all k ≥ 0, {υk} is bounded. Therefore, we can find some constant, say b2, such that ‖υk− x̂‖ ≤
b2. Subsequently, from the Lipschitz continuity of F, there exists some constant, say b2, such
that, for all k ≥ 0,

‖F(υk)‖= ‖F(υk)−F(x̂)‖ ≤ L‖υk− x̂‖ ≤ b2, (2.33)

where b2 := Lb2.
(iv). From (2.25), we can deduce that

〈F(υk), ηkdk〉2 ≤
‖F(υk)‖2

γ(2− γ)
(‖xk− x̂‖2−‖xk+1− x̂‖2). (2.34)

From the definition of ηk in Step 3 of Algorithm 1, and (2.5), we have

σ
2
η

4
k ‖dk‖4‖F(υk)‖2/c ≤ 〈F(υk), ηkdk〉2. (2.35)
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Combining (2.34) and (2.35), we have

σ
2
η

4
k ‖dk‖4‖F(υk)‖2/c ≤ ‖F(υk)‖2

γ(2− γ)
(‖xk− x̂‖2−‖xk+1− x̂‖2). (2.36)

Using (2.33) and the fact that σ > 0, 0 < γ < 2 and lim
k→∞
‖xk− x̂‖ exists, we obtain from (2.36)

that

lim
k→∞

η
4
k ‖dk‖4 ≤ 1

γ(2− γ)σ2 lim
k→∞
‖F(υk)‖2−2/c(‖xk− x̂‖2−‖xk+1− x̂‖2)

≤
b2−2/c

2
γ(2− γ)σ2 lim

k→∞
(‖xk− x̂‖2−‖xk+1− x̂‖2)

= 0.

This implies
lim
k→∞

ηk‖dk‖= 0. (2.37)

�

Theorem 2.1. Suppose that Assumption 2.1 holds. For κ > 0, let {xk} be the iterative sequence
and let dk be the search direction generated by Algorithm 1 or 2. Then,

liminf
k→∞

‖F(xk)‖= 0. (2.38)

Furthermore, {xk} converges to a point x̂, which satisfies F(x̂) = 0.

Proof. Suppose that, for all k > 0, ‖dk‖ 6= 0. Then, from (2.31), we have

‖F(xk)‖
‖dk‖

≥ 1

b̂2
, ‖dk‖ 6= 0, (2.39)

where b̂2 :=
[

1
r +2 (L+r)

r

]
, L is a Lipschitz constant and r > 0 is a positive constant.

Let υ ′k := xk +η ′kdk and suppose that ηk 6= κ, κ > 0. Then, for ρ ∈ (0,1), η ′k := ρ−1ηk does
not satisfy (2.5), i.e.,

〈F(υ ′k), dk〉+ση
′
k‖F(υ ′k)‖1/c‖dk‖2 > 0, c > 0. (2.40)

Under our assumptions, x̂ is a solution to problem (1.3). Then, from the Lipschitz continuity of
F and the boundedness of ‖dk‖ in (2.32) with b = b1b̂2, for any given starting point, say x0, we
have

‖F(υ ′k)‖ ≤ L‖xk +η
′
kdk− x̂‖

≤ L‖xk− x̂‖+Lη
′
k‖dk‖

≤ L‖x0− x̂‖+Lη
′
k‖dk‖

≤ b1 +Lρ
−1b,

where b1 := L‖x0− x̂‖. Now, letting b3 := b1 +Lρ−1b, we have, for all k ≥ 0,

‖F(υ ′k)‖ ≤ b3. (2.41)
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Using (2.40), we find from inequality (2.1), the Lipschitz continuity of F , and the Cauchy-
Schwarz inequality that

t‖F(xk)‖2 ≤−〈F(xk), dk〉

<−〈F(xk), dk〉+ 〈F(υ ′k), dk〉+ση
′
k‖F(υ ′k)‖1/c‖dk‖2

= 〈F(υ ′k)−F(xk), dk〉+ση
′
k‖F(υ ′k)‖1/c‖dk‖2

≤ ‖F(υ ′k)−F(xk)‖‖dk‖+ση
′
k‖F(υ ′k)‖1/c‖dk‖2

≤ Lη
′
k‖dk‖2 +ση

′
k‖F(υ ′k)‖1/c‖dk‖2

= ρ
−1

ηk(L+σ‖F(υ ′k)‖1/c)‖dk‖2.

This further gives

ηk ≥
ρt‖F(xk)‖2

(L+σ‖F(υ ′k)‖1/c)‖dk‖2
≥ ρt

(L+σb1/c
3 )

1

b̂2
2

, (2.42)

where the last inequality follows from (2.39) and (2.41). Combining (2.37) with (2.42), we
obtain

liminf
k→∞

‖dk‖= 0. (2.43)

Moreover, we can deduce from (2.1) the following relation

t‖F(xk)‖2 ≤−F(xk)
T dk ≤ ‖F(xk)‖‖dk‖, t > 0,

which further gives
‖dk‖ ≥ t‖F(xk)‖, t > 0. (2.44)

Therefore,
0 = liminf

k→∞
‖dk‖ ≥ t liminf

k→∞
‖F(xk)‖, (2.45)

which gives (2.38).
Furthermore, since F is continuous and the sequence {xk} is bounded, then there is some

accumulation point of {xk}, say x̂, for which ‖F(x̂)‖ = 0. From the boundedness of {xk}, we
can find a subsequence {xk j} of {xk} such that limk→∞ ‖xk j − x̂‖ = 0. Since limk→∞ ‖xk− x̂‖
exist (according to Lemma 2.2), we can conclude that limk→∞ ‖xk− x̂‖ = 0 and the proof is
complete. �

3. NUMERICAL EXPERIMENTS AND COMPARISONS

In this section, we present some numerical experiments to assess the performance of the pro-
posed algorithms (Algorithm 1 and 2) as well as their computational advantages in comparison
with some existing methods. We implement these algorithms to solve a collection of mono-
tone systems of nonlinear equations, see Test Problems for Algorithm 1 (Experiment One), i.e.
Conjugate Gradient Algorithm with Inertial Step (CGAIS) as well as Algorithm 2 (Experiment
Two), i.e., Spectral Algorithm with Inertial Step (SAIS). Finally, we modify and implement Al-
gorithm 1 to solve a motion control problem involving two-joint planar robotic manipulator. All
the solvers were coded in MATLAB R2017a software and run on a PC with Intel(R) Core(TM)
i7–7500U processor with 8.00 GB of RAM and CPU of 2.70 GHz.
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3.1. Experiment I. In this experiment, we compare the performance of our proposed algo-
rithm, i.e., Algorithm 1 (CGAIS) with the same algorithm but without inertial step denoted by
CGWOI (Conjugate Gradient WithOut Inertial step) and Algorithm 1 of Awwal et al. [25],
denoted by HSS on Problems: 3.1, 3.2, 3.3, 3.4, 3.5 and 3.10 of the Test Problems. In other
words, we try to compare the numerical performance of the method that incorporate the inertial
step with two other methods without the inertial step. In order to have best possible results,
the following parameters were chosen for the implementation of Algorithm 1 (CGAIS) as well
as CGWOI method: σ = 10−4, r = 0.01, c = 2, ρ = 0.50, γ = 1.99, κ = 1 and αk =

1
(k+1)2 .

The parameters for the HSS method were chosen as reported in [25]. Furthermore, the itera-
tion process for the Test Problems is terminated whenever the inequality ‖F(xk)‖ < 10−6 or
‖F(υk)‖< 10−6 is satisfied and failure is declared when the number of iterations exceed 1000
and the terminating criterion mentioned above has not been satisfied.

The Test Problems were taken from the existing literature and the function F is taken as
F(x) = ( f1(x), f2(x), . . . , fn(x))T , fi : Rn→ R, for i = 1,2, . . . ,n. However, since our proposed
algorithm uses two starting points, i.e., x−1 and x0, then, for each x j, j = 1,2, . . . ,14, taken from
Table 1, we set x−1 := {x1

j + i,x2
j + i, . . . ,xn

j + i}, i ≥ 0, and update them subsequently. All the
Test Problems were solved using the dimension (DIM) of n = 1000, 5000, 10000, 50000, and
100000.

TABLE 1. The initial points used for Algorithm 1 and 2

Initial Points (INP) Values

x1 (1,1,1, . . . ,1)T

x2
( 1

10 ,
1
10 ,

1
10 , . . . ,

1
10
)T

x3
( 1

2 ,
1
22 ,

1
23 , . . . ,

1
2n

)T

x4
(
1− 1

n ,1−
2
n ,1−

3
n , . . . ,0

)T

x5
(
0, 1

n ,
2
n , . . . ,

n−1
n
)T

,

x6
(
1, 1

2 ,
1
3 , . . . ,

1
n
)T

x7
( n−1

n , n−2
n , n−3

n , . . . ,0
)T

x8
( 1

n ,
2
n ,

3
n , . . . ,1

)T

x9 rand(0,1)
x10

( 3
2 ,

3
2 ,

3
2 , . . . ,

3
2
)T

x11 (2,2,2, . . . ,2)T

x12
( 1

2 ,
1
2 ,

1
2 , . . . ,

1
2
)T

x13 5min(ih, 1− ih), 1≤ i≤ n, h = 1/(n+1)

x14

(
−1
4 , 2

5 ,
−3
6 , . . . ,

(−1)n

n+3

)T

Test Problems:

Problem 3.1. [26]: f1(x) = ex1−1, fi(x) = exi + xi−1−1, for i = 1,2, . . . ,n−1 and Λ = Rn
+.

Problem 3.2. [26]: fi(x) = 2xi− sin |xi|, i = 1,2, . . . ,n and Λ = Rn
+.

Problem 3.3. [27]: fi(x) = exi−1, i = 1,2, . . . ,n and Λ = Rn
+.
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Problem 3.4. [28]:

f1(x) = x1− ecos(h(x1+x2)),

fi(x) = xi− ecos(h(xi−1+xi+xi+1)), i = 2, . . . ,n−1,

fn(x) = xn− ecos(h(xn−1+xn)), where h =
1

n+1
and Λ = Rn

+.

Problem 3.5. [6]:

fi(x) = xi− sin(|xi−1|), i = 1,2, . . . ,n−1,

and Λ = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥−1, i = 1,2, . . . ,n}.

Problem 3.6. [29]: fi(x) = (exi)2 + 3
2 sin(2xi)−1, i = 1,2, . . . ,n and Λ = Rn

+.

Problem 3.7. [29]:

f1(x) =
5
2

x1 + x2−1,

fi(x) = xi−1 +
5
2

xi + xi+1−1, i = 2, . . . ,n−1,

fn(x) = xn−1 +
5
2

xn−1 and Λ = Rn
+.

Problem 3.8. [29]:
f1(x) = 2x1− x2 + ex1−1,

fi(x) =−xi−1 +2xi− xi+1 + exi−1, i = 2, . . . ,n−1,

fn(x) =−xn−1 +2xn + exn−1 and Λ = Rn
+.

Problem 3.9. [30]:

f1(x) = x1 + sinx1−1,

fi(x) =−xi−1 +2xi + sinxi−1, i = 2, . . . ,n−1,

fn(x) = xn + sinxn−1 and Λ ∈ [−3,+∞].

Problem 3.10. [29]: fi(x) = i
nexi−1, for i = 1,2, . . . ,n and Λ = Rn

+.

The metrics used for the comparison are ITER (number of iterations), FVAL (number of func-
tion evaluations) and TIME (CPU time in seconds) where the information together with their
NORM (norm of the objective functions at the solutions) is reported. The table of the numerical
results is available in the following link https://github.com/AMBakoji/CGAIS-CGWOIS. The
NORM values reported indicate that each solver successfully obtained solutions of virtually all
the test problems with least ITER and FVAL. These information are summarized in Figures 1
and 2 based on the Dolan and Moré performance profile [31]. Figure 1 (A) compares the perfor-
mance between CGAIS and CGWOI methods based on ITER while Figure 1 (B) illustrates the
Dolan and Moré performance profile of CGAIS and HSS methods based on ITER, respectively.
Figure 2 (A) and (B) demonstrate the performance profile based on FVAL of CGAIS with CG-
WOI and FVAL of CGAIS with HSS methods, respectively. We see from Figure 1 ((A) and (B))
and Figure 2 ((A) and (B)) that CGAIS solver performs better with higher percentage win of
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FIGURE 1. Performance profiles based on number of iterations (ITER)
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FIGURE 2. Performance profiles based on number of function evaluations (FVAL)

ITER and FVAL than CGWOI and HSS solvers for solving all the four hundred and twenty
(420) Test Problems. In other words, this experiment reveals that CGAIS solver has advantage
over CGWOI and HSS solvers with regards to ITER and FVAL. Thus, we may conclude that the
inertial step incorporated in Algorithm 1 has impacted positively on improving the numerical
performance of the proposed algorithm.

On the other hand, in order to see the cost expensive optimization of the solvers for the Test
Problems with expensive function evaluations, we employ Data Profile proposed by Moré and
Wild [32]. In this case the performance measure is the number of function evaluations (FVAL)
because this is assumed to be the dominant cost per iteration. Performance profiles provide an
accurate view of the relative performance of solvers within a given number of function evalua-
tions, (see Figure 2). Performance profiles do not, however, provide sufficient information for a
user with an expensive optimization problem.

Users with expensive optimization problems are often interested in the performance of solvers
as a function of the number of functions evaluations. In other words, these users are interested
in the percentage of problems that can be solved (for a given tolerance τ) with say µ function
evaluations. Performance profiles and data profiles are cumulative distribution functions, and
thus monotone increasing, step functions with a range in [0,1]. However, performance profiles
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compare different solvers while data profiles display the raw data as it is. In particular, perfor-
mance profiles do not provide the number of function evaluations required to solve any of the
problems. Also note that data profile for a given solver say s∈ S is independent of other solvers;
this is not the case for performance profiles [32].

Data profiles are useful to users with a specific computational budget who need to choose a
solver that is likely to reach a given reduction in function value. The user needs to express the
computational budget in terms of simplex gradients and examine the values of the data profile
for all the solvers. For example, if the user has a budget of 20 simplex gradients (FVAL), then
the data profiles in Figure 3 (top-left, top-right and bottom-left) show that the proposed CGAIS
solver solves about 99% of the problems at this level of accuracy while solver CGWOI solves
about 50% of the problems and HSS solver solves about 63% of the entire problems. This
means that CGWOI and HSS methods are more computationally expensive compared to the
proposed CGAIS method in order to successfully solve certain percentage of the entire four
hundred and twenty (420) Test Problems we have considered. However, this information is not
available from the performance profile in Figure 2. This interpretation means that data profile
measures the reliability of the solver for a given tolerance as a function of the budget.
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FIGURE 3. Percentage Data Profile of CGAIS, CGWOI and HSS methods

3.2. Experiment II. Similar to Experiment I, we compare the performance of Algorithm 2
(SAIS) with Algorithm 1 and 2 of Awwal et al. [14] denoted by DAIS 1 and DAIS 2. All
the three solvers are spectral gradients in nature and each of the solver has an inertial step
incorporated in it, which means that the three solvers are similar in nature. So, the aim of this
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experiment is to compare their numerical performance. Here, we solved Problems: 3.1, 3.2,
3.6, 3.7, 3.8 and 3.10 of the Test Problems for the three solvers. The following parameters were
chosen for Algorithm 2 (SAIS): σ = 10−4, r = 0.01, c= 2, γ = 1.99, ρ = 0.45, κ = 1 and αk =

1
(k+1)2 while the parameters for DAIS 1 and DAIS 2 were chosen as reported in [14]. A total
of four hundred and twenty (420) Test Problems were solved using the same initial points and
dimensions as in experiment one. A detail of the table of numerical results are reported and can
be found via the link https://github.com/AMBakoji/CGAIS-CGWOIS.

In order to have a graphical view on the numerical performance of SAIS solver relative to
DAIS 1 and DAIS 2 solvers with respect to the metrics ITER and FVAL, we employ the Dolan
and Moré performance profile. Figure 4 illustrates the performance profile of the three solvers
based on ITER while Figure 5 demonstrates the performance profile based on FVAL. From
Figures 4 and 5, we can see that SAIS solver recorded least ITER and FVAL with about 90% win
of the entire experiments. This clearly shows that our proposed algorithm (SAIS) outperformed
DAIS 1 and DAIS 2 algorithms, respectively. In other words, we can say that the experiment
reveals that SAIS solver has advantage over DAIS 1 and DAIS 2 solvers with regard to the
metrics ITER and FVAL.
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FIGURE 4. Performance profiles based on number of iterations
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FIGURE 5. Performance profiles based on number of function evaluations
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3.3. The motion control model. Problems arising in the concept of a robot system is now
under spotlight and a number of methods for dealing with them were proposed [33]. Due to the
wide range of applications of n-link-robots, Zhang et al. [34] discussed one of its fundamentals,
known as the 1-link robot system. According to [35], the characteristics of a motor dynamics
should be taken into consideration for a robot movement to satisfy the stability and accuracy
requirements. For the requirements, a motor dynamics needs to satisfy is that the actual output
of the system should track the desired output within an acceptable minimal error [36]. Recently,
a number of methods were raised to deal with the tracking control problems of a nonlinear
system. Here, we can mention the proportional-integral-derivative (PID) control [37, 38], the
feed back linearization [39, 40] and the optimal output tracking control using the approximation
approach [41]. Furthermore, some motion control models can be formulated as a planar location
problem where the distances are measured by certain norms related to the configuration of the
robot that motion should be controlled. These location problems can be considered as special
approximation problems. locational analysis gives effective methods for solving these problems
(see [42]).

In this experiment, we consider a motion control problem involving a two-joint planar robotic
manipulator. We modify Algorithm 1 to be suitable for solving the problems of the nature
min{ f (x) : x ∈ R}, where f : Rn→ R is assumed to be a continuously differentiable and con-
vex function. The modified algorithm is implemented in solving the following motion control
model.

Algorithm 3: Modified CGAIS (MCGAIS)
Input: Give the same inputs as in Algorithm 1 with αk = 0, for all k ≥ 0. Let

F(xk) = ∇ f (xk).
Replace Step 2 and Step 3 of Algorithm 1 with the following:
Step 3: Compute the step size ηk := κρ i with i being the smallest non-negative integer
for which

f (xk +κρ
idk)− f (xk)≤ σκρ

iF(xk)
T dk. (3.1)

Step 4: Update the next iterate using the following

xk+1 := xk +ηkdk. (3.2)

Consider the problem min{ f (x) : x ∈ R}, where f : Rn→ R has a solution and the level set
{x : f (x) ≤ f (x0)} is bounded. Since F(x) is assumed to be Lipschitz continuous on Rn, we
obtain from Theorem 2 of [43] that liminfk→∞ ‖F(xk)‖= 0.

As described in [44], the discrete-time kinematics equation of a two-joint planar robot ma-
nipulator at the position level is given as

Q(θk) := qk. (3.3)

The vectors θk ∈ R2 and qk ∈ R2 represent the joint angle vector and the end effector position
vector, respectively. The function Q(·) is the kinematics mapping with the following known
structure

Q(θk) =

[
`1c1 + `2c2

`1s1 + `2s2

]
, (3.4)
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where `i (i = 1,2) is the length of the ith rod, c1 = cos(θ1), c2 = cos(θ1 + θ2), s1 = sin(θ1)
and s2 = sin(θ1 +θ2). In view of robotic control, we need to solve the following minimization
problem

min
qk∈R2

f (qk), where f (qk) =
1
2
‖qk−qdk‖2, (3.5)

qdk is the end effector control track. Consider computational time intervals with tk ∈ [0, t f ],
where t f is the end of task duration.

Following the approach in [43, 45], we take the length of the rod `i = 1, (i = 1,2) and the
end effector is controlled to track the following two Lissajous curves expressed by

q(1)dk =

[ 3
2 +

1
5 sin(3tk)

√
3

2 + 1
5 sin(2tk)

]
, (3.6)

and

q(2)dk =

[ 3
2 +

1
5 sin(tk)

√
3

2 + 1
5 sin(2tk)

]
. (3.7)

In Algorithm 3 (MCGAIS), we set the parameters ρ = 0.6, σ = 0.08 and the task duration
t f = 10 seconds. For the initial point, we choose θ0 = [0, π

3 ]
T and divide the task duration

t = [0,10] into 200 equal parts. The numerical results generated by Algorithm 3 are depicted in
Figures 6 and 7 for the Lissajous curves given in q(1)dk and q(2)dk , respectively. The Figures 6(A),
6(B), 7(A) and 7(B) show that Algorithm 3 (MCGAIS) completes the task at hand successfully
for q(1)dk and q(2)dk , respectively (compare Figures 7 and 8 in [45]). The Figures 6(C) and 6(D)

present the residual errors ε(tk+1) along the x and y axes, respectively for q(1)dk while Figures

7(C) and 7(D) present the residual errors along the x and y axes for q(2)dk . Looking at the residual
errors on both x and y axes of Figures 6(C), 6(D), 7(C) and 7(D), we can say that Algorithm 3
recorded an error of about 10−5, which is acceptable. Hence, from the two figures, we can say
that Algorithm 3 can be implemented to handle successfully motion control models, which are
real world problems.

4. THE CONCLUSION

In this paper, based on the projection method considered by Solodov and Svaiter [3], we pro-
posed two derivative-free algorithms with inertial effects for solving problem (1.3). We showed
that the proposed search directions are well-defined and satisfy the sufficient descent condition,
which is independent on the line search strategy. Under the assumptions that the underlying
function is monotone and Lipschitz continuous, the global convergence of the proposed algo-
rithms were established. Preliminary numerical experiments showed that the proposed algo-
rithms were capable of solving convex constrained nonlinear monotone operator equations with
acceptable efficiency. The good numerical performance recorded by Algorithms 1 and 2 may be
attributed by the inertial effect incorporated in our algorithms. Finally, we modified Algorithm
1 and solved a real world problem involving a motion control problem for a two-joint planar
robotic manipulator system.
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FIGURE 6. Robot trajectories path and residual errors ε(tk+1) along x and y axes
of motion control model for the Lissajous curve q(1)dk of Algorithm 3 (MCGAIS)
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FIGURE 7. Robot trajectories path and residual errors ε(tk+1) along x and y axes
of motion control model for the Lissajous curve q(2)dk of Algorithm 3 (MCGAIS)



848 A.B. MUHAMMAD, C. TAMMER, A.M. AWWAL, R. ELSTER, Z. MA

Acknowledgments
The authors are very grateful to the anonymous reviewers for their suggestions and comments
that improved the presentation of this paper. The first author, Abubakar Bakoji Muhammad,
was supported by the DAAD (Germany) and PTDF (Nigeria) scholarship at the Martin-Luther-
University Halle-Wittenberg, 06099 Halle (Saale), Germany.

REFERENCES

[1] Y. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J.
Optim. 10 (1999), 177-182.

[2] J. Liu, Y. Feng, L. Zou, Some three-term conjugate gradient methods with the inexact line search condition,
Calcolo, 55 (2018), 16.

[3] M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equa-
tions, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 355-369,
Springer, 1998.

[4] W. Cheng, A PRP type method for systems of monotone equations, Math. Comput. Model. 50 (2009), 15-20.
[5] C. W. Wang, Y. J. Wang, A superlinearly convergent projection method for constrained systems of nonlinear

equations, J. Glob. Optim. 44 (2009), 283-296.
[6] Y. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with appli-

cations in compressive sensing, J. Math. Anal. Appl. 405 (2013), 310-319.
[7] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, SIAM, 2000.
[8] C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, Image sequence filtering in quantum-limited noise with

applications to low-dose fluoroscopy, IEEE Trans. Medical Imaging 12 (1993), 610-621.
[9] S.Y. Cho, A convergence theorem for generalized mixed equilibrium problems and multivalued asymptoti-

cally nonexpansive mappings, J. Nonlinear Convex Anal. 21 (2020), 1017-1026.
[10] N. A. Iusem, V. M. Solodov, Newton-type methods with generalized distances for constrained optimization,

Optimization, 41 (1997), 257-278.
[11] Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for `1-norm problems with applications to

compressed sensing, Nonlinear Anal. 74 (2011), 3570-3577.
[12] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math.

Math. Phys. 4 (1964), 1-17.
[13] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J.

Imaging Sci. 2 (2009), 183-202.
[14] A. M. Awwal, P. Kumam, L. Wang, S. Huang, W. Kumam, Inertial-based derivative-free method for system

of monotone nonlinear equations and application, IEEE Access, 8 (2020), 226921-226930.
[15] X. Qin, L. Wang, J.C. Yao, Inertial splitting method for maximal monotone mappings, J. Nonlinear Convex

Anal. 21 (2020), 2325-2333.
[16] Y. Shehu, J.C. Yao, Rate of convergence for inertial iterative method for countable family of certain quasi-

nonexpansive mappings, J. Nonlinear Convex Anal. 21 (2020), 533-541.
[17] L. Liu, B. Tan, S.Y. Cho, On the resolution of variational inequality problems with a double-hierarchical

structure, J. Nonlinear Convex Anal. 21 (2020), 377-386.
[18] N. T. Vinh, L. D. Muu, Inertial extragradient algorithms for solving equilibrium problems, Acta Math. Viet-

namica 44 (2019), 639-663.
[19] B. Tan, S.Y. Cho, Strong convergence of inertial forward–backward methods for solving monotone inclusions,

Appl. Anal. (2021), 10.1080/00036811.2021.1892080.
[20] A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad, C. Tammer, A modified descent Dai-Yuan conjugate

gradient method for constraint nonlinear monotone operator equations, Appl. Anal. Optim. 4 (2020), 1-24.
[21] W. W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific J. Optim. 2 (2006), 35-58.
[22] M. Al-Baali, Descent property and global convergence of the fletcher-reeves method with inexact line search,

IMA J. Numer. Anal. 5 (1985), 121-124.



INERTIAL-TYPE PROJECTION METHODS WITH APPLICATIONS 849

[23] E. Pola, G. Ribiere, Note sur la convergence de methodes de directions conjugées, Rev Française Informat
Recherche Operationelle, 3e Année, 16 (1969), 35-43.

[24] M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method. In: Griffiths D.F.
(eds) Numerical Analysis. Lecture Notes in Mathematics, vol 1066. Springer, Berlin, Heidelberg, 1984.

[25] A. M. Awwal, L. Wang, P. Kumam, H. Mohammad, W. Watthayu, A projection Hestenes–Stiefel method
with spectral parameter for nonlinear monotone equations and signal processing, Math. Comput. Appl. 25
(2020), 1-29.

[26] A. M. Awwal, P. Kumam, A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear
equations with convex constraints, Appl. Numer. Math. 145 (2019), 507-520.

[27] A.M. Awwal, L. Wang, P. Kumam, H. Mohammad, A two-step spectral gradient projection method for system
of nonlinear monotone equations and image deblurring problems, Symmetry, 12 (2020), 874.

[28] Y. Bing, G. Lin, An efficient implementation of merrills method for sparse or partially separable systems of
nonlinear equations, SIAM J. Optim. 1 (1991), 206–221.

[29] A.M. Awwal, P. Kumam, H. Mohammad, W. Watthayu, A.B. Abubakar, A Perry-type derivative-free algo-
rithm for solving nonlinear system of equations and minimizing `1 regularized problem, Optimization, 70
(2021), 1231-1259.

[30] S. Aji, P. Kumam, A.M. Awwal, M.M. Yahaya, W. Kumam, Two hybrid spectral methods with inertial effect
for solving system of nonlinear monotone equations with application in robotics, IEEE Access, 9 (2021),
30918-30928.
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