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Abstract. In the paper, we introduce two accelerated cyclic iterative algorithms for solving the multiple-
set split common fixed-point problem of quasi-nonexpansive operators in real Hilbert spaces. Inspired
by the primal-dual algorithm, our proposed algorithms combine inertial technique with the self-adaptive
stepsizes such that the implementation of the algorithms does not need any prior information about
bounded linear operator norms. The weak and strong convergence of the proposed algorithms are es-
tablished under suitable assumptions. As applications, we obtain several iterative algorithms to solve
the multiple-set split feasibility problem. Finally, numerical results are included to demonstrate the effi-
ciency of the proposed iterative algorithms.
Keywords. The multiple-set split common fixed-point problem, quasi-nonexpansive operators, inertial
technique, the weak and strong convergence.

1. INTRODUCTION

The split feasibility problem (SFP) was first introduced by Censor and Elfving [1] for mod-
elling some inverse problems. Since then, it has played an important role in many real-world
problems, such as medical image reconstruction [2] and intensity-modulated radiation ther-
apy [3, 4]. Some generalizations of the SFP have also been studied, such as the multiple-set
split feasibility problem (MSFP), the split common fixed point problem (SCFP), the multiple-
set split common fixed point problem (MSCFP), the split equality common fixed-point prob-
lem (SECFP), and the multiple-set split equality common fixed-point problem (MSECFP). The
MSCFP is depicted to find a point in the intersection of a family of fixed point sets such that
its image under a bounded linear operator belongs to the intersection of another family of fixed
point sets. Let H1 and H2 be real Hilbert spaces, and let A : H1→ H2 be a bounded linear op-
erator. Given integers p, r ≥ 1, the MSCFP is formulated as finding a point x∗ satisfying the
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property:

x∗ ∈
p⋂

i=1

F(Ui) such that Ax∗ ∈
r⋂

j=1

F(Tj),

where, for 1 ≤ i ≤ p and 1 ≤ j ≤ r, F(Ui) and F(Tj) are the fixed point sets of Ui : H1→ H1
and Tj : H2→ H2, respectively. In particular, if p = r = 1, then the MSCFP becomes the SCFP
which was originally introduced by Censor and Segal [5] in finite-dimensional Hilbert space.
The SCFP is to find

x∗ ∈ F(U) such that Ax∗ ∈ F(T ),

where F(U) and F(T ) are the fixed point sets of U : H1→ H1 and T : H2→ H2, respectively.
For 1≤ i≤ p and 1≤ j≤ r, when Ui and Tj are the projection operators on the nonempty closed
convex subsets Ci and Q j, respectively, the MSCFP becomes the MSFP which is depicted as
finding

x∗ ∈
p⋂

i=1

Ci such that Ax∗ ∈
r⋂

j=1

Q j.

The above problem was first introduced by Censor et al. [6]. If p = r = 1, then the MSFP is
reduced to the SFP which is described as finding

x∗ ∈C such that Ax∗ ∈ Q,

where C and Q are the nonempty closed convex subsets of H1 and H2, respectively. Such prob-
lem arises in the field of intensity-modulated radiation therapy when one attempts to describe
physical dose constraints and equivalent uniform dose constraints within a single model. Note
that, if the SFP is consistent, then x∗ is a solution to the SFP if and only if it is a solution to the
following fixed point equation:

x∗ = PC(I− γA∗(I−PQ)A)x∗,

where PC and PQ are the projections onto C and Q, respectively, γ > 0 is any positive constant,
and A∗ denotes the adjoint of A. For solving the SFP, Byrne [2] proposed the well-known CQ
algorithm which generates iterative sequence {xk} by

xk+1 = PC(I− γkA∗(I−PQ)A)xk, (1.1)

where, for all k ≥ 1, γk ∈ (0, 2
λ
) with λ being the spectral radius of the operator A∗A. It is

observed that, in this algorithm, the stepsize γk depends on the bounded linear operator (matrix)
norm ‖A‖ (or the largest eigenvalue of A∗A). It is not always easy in practice to compute the
matrix norm of A. To avoid this difficulty, there have been many self-adaptive algorithms that
the stepsize does not depend on the norm of the bounded linear operator A. In [7], Lopez et al.
improved CQ algorithm (1.1), which selects the stepsize by the following way:

γk =
ρk f (xk)

‖∇ f (xk)‖2 ,

where infk ρk(4−ρk)> 0 and f (x) = 1
2‖(I−PQ)Ax‖2.

In 2009, for solving the SCFP, Censor and Segal [5] replaced projection operators PC and PQ
with directed operators U and T , respectively, and CQ-algorithm (1.1) becomes the following
iterative scheme:

xk+1 =U(xk− γkA∗(I−T )Axk),
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where γk ∈ (0, 2
‖A‖2 ).

In [8], a self-adaptive priml-dual iterative algorithm was proposed for solving the SCFP of the
averaged operators U and T , where U is α1−averaged and T is α2−averaged. The sequence
{xk} is generated by the following way:

yk = xk− γkA∗(I−T )Axk,

ωk+1 = (I−U)(yk +(1−λ )ωk),

xk+1 = yk−λωk+1,

where γk is chosen by

γk :=

{
ρk‖(I−T )Axk‖2

‖A∗(I−T )Axk‖2 , (I−T )Axk 6= 0,
γ, (I−T )Axk = 0

with γ > 0 and 0 < ρk <
1

α2
. Under appropriate conditions, the sequence {xk} converges weakly

to a solution of the SCFP. For recent results on the SFP, the MSFP, the SCFP and the MSCFP,
one refers to [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and the references therein.

In [20], Wang and Xu proposed the following cyclic iterative algorithm for solving the
MSCFP of directed operators:

xk+1 =U[k]1(xk + γA∗(T[k]2− I)Axk), (1.2)

where 0 < γ < 2/ρ(A∗A), [k]1 := k( mod p), and [k]2 := k( mod r). They proved the weak
convergence of the sequence {xk} generated by (1.2). In [21], Reich, Tuyen and Trang intro-
duced a parallel iterative algorithm. For 1 ≤ i ≤ p and 1 ≤ j ≤ r, let Ui and Tj be nonex-
pansive operators. Two sequences {ai,k} and {b j,k} are taken in [a,b] ⊂ (0,1) and ∑

p
i=1 ai,k =

∑
r
j=1 b j,k = 1 for all k ≥ 1. The iterative sequence {xk} is generated by the following way:{

yk = ∑
p
i=1 ai,kŨixk,

xk+1 = αku+(1−αk)(yk +∑
r
j=1 b j,kδA∗(I−Tj)Ayk),

where δ ∈ (0, 1
‖A‖2 ), u ∈ H1, and Ũi = βi,kI +(1−βi,k)Ui, {βi,k} ⊂ [c,d]⊂ (0,1) for 1≤ i≤ p.

If limk→∞ αk = 0 and ∑
∞
k=1 αk = ∞, then sequence {xk} converges strongly to x∗ = PΓu, where

Γ denotes the solution set of the MSCFP.
In optimization theory, the inertial technique is an important method to speed up the conver-

gence rate. In [22], Dang, Sun and Xu proposed the inertial relaxed CQ algorithm for solving
the SFP in Hilbert space, which is formulated as{

yk = xk +αk(xk− xk−1),

xk+1 = PCk(yk− γkA∗(I−PQk)Ayk),

where γk ∈ (0, 2
λ
) for all k ≥ 1 and λ is the spectral radius of the operator A∗A.

For solving the MSCFP, Thong and Hieu [23] combined the Mann iteration with the inertial
method and proposed the following iterative algorithm:{

yk = xk +αk(xk− xk−1),

xk+1 = (1−βk)yk +βk ∑
p
i=1 ωiUi(I−∑

r
j=1 η jγA∗(Tj− I)A)yk,

(1.3)
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where Ui : H1 → H1 (1 ≤ i ≤ p) are quasi-nonexpansive operators and Tj : H2 → H2 (1 ≤
j ≤ r) are demicontractive operators. They proved that the sequence {xk} generated by (1.3)
converges weakly to a solution of the MSCFP under approximate conditions. For recent inertial
accelerated iterative algorithms for solving the MSFP and the MSCFP, one refers to [24, 25, 26]
and the references therein.

Inspired and motivated by the above research works, in the paper, we construct two new self-
adaptive cyclic iterative algorithms for solving the MSCFP of quasi-nonexpansive operators.
The proposed algorithms combine inertial technique with the primal-dual method. As appli-
cations, we obtain several iterative algorithms to solve the MSFP. The contents of this paper
are as follows. We give some useful definitions and results for the convergence analysis of the
iterative algorithms in Section 2. We prove the weak convergence of the proposed algorithm
with the dual variable and inertial technique in Section 3. In Section 4, we modify the proposed
algorithm and obtain the strong convergence result. Numerical experiments are provided to
illustrate the effectiveness of our proposed algorithms in the last section, Section 5.

2. PRELIMINARIES

Throughout this paper, we denote the inner product by 〈·, ·〉 and the norm by ‖·‖. Let I denote
the identity operator on Hilbert space H. We denote the fixed point set of an operator T by F(T ).
We use→ and ⇀ to denote the strong convergence and weak convergence, respectively. And
we use ωw(xk) to denote the weak ω-limit set of {xk}.

Let T : H→ H be an operator. Recall that T is said to be
(i) nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖ for all x, y ∈ H;
(ii) firmly nonexpansive if 2T − I is nonexpansive or, equivalently,

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(x− y)− (T x−Ty)‖2

for all x, y ∈ H;
(iii) quasi-nonexpansive if F(T ) 6= /0 and ‖T x−q‖ ≤ ‖x−q‖ for all x ∈ H and q ∈ F(T );
(iv) firmly quasi-nonexpansive (also called directed operator) if F(T ) 6= /0 and

‖T x−q‖2 ≤ ‖x−q‖2−‖x−T x‖2

or, equivalently,
〈x−q,T x−q〉 ≥ ‖T x−q‖2

for all x ∈ H and q ∈ F(T );
(v) demiclosed at the origin if, for any sequence {xn}, which converges weakly to x, {T xn}

converges strongly to 0, then T x = 0.
Let H be a real Hilbert space. For all x, y ∈ H, α ∈ R, one has

2〈x,y〉= ‖x‖2 +‖y‖2−‖x− y‖2 = ‖x+ y‖2−‖x‖2−‖y‖2

and
‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2.

Lemma 2.1. [27] Let H be a real Hilbert space, and let T : H → H be a quasi-nonexpansive
operator. Set Tα = (1−α)I +αT for α ∈ (0,1). For all x ∈ H, q ∈ F(T ), then the following
results hold:

(i) 〈x−T x,x−q〉 ≥ 1
2‖x−T x‖2 and 〈x−T x,q−T x〉 ≤ 1

2‖x−T x‖2 ;
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(ii) ‖Tαx−q‖2 ≤ ‖x−q‖2−α(1−α)‖T x− x‖2;

(iii) 〈x−Tαx,x−q〉 ≥ α

2 ‖T x− x‖2.

Remark 2.1. Let Tα = (1−α)I+αT , where T : H→H is a quasi-nonexpansive operator and
α ∈ (0,1). We have F(Tα) = F(T ) and ‖Tαx− x‖2 = α2‖T x− x‖2. It follows form (ii) of
Lemma 2.1 that ‖Tαx−q‖2 ≤ ‖x−q‖2− 1−α

α
‖Tαx−x‖2, which implies that Tα is firmly quasi-

nonexpansive when α = 1
2 . On the other hand, if T̂ is a firmly quasi-nonexpansive operator, we

can easily obtain T̂= 1
2 I + 1

2T , where T is quasi-nonexpansive operator.

It follows from (iii) of Lemma 2.1 that the following result is easily obtained.

Proposition 2.1. Let T be a quasi-nonexpansive operator and α ∈ (0,1). If Tα =(1−α)I+αT ,
then ‖(I−Tα)x‖2 ≤ 2α〈x−q,(I−Tα)x〉 for all x ∈ H, q ∈ F(T ).

Lemma 2.2. [28] Let the sequences {φk}∞
k=1 ⊂ [0,∞) and {δk}∞

k=1 ⊂ [0,∞) which satisfy:
(i) φk+1−φk ≤ θk(φk−φk−1)+δk;

(ii) Σ∞
k=1δk < ∞;

(iii) {θk} ⊂ [0,θ ],where θ ∈ [0,1).

Then {φk} is a convergent sequence and Σ∞
k=1[φk+1−φk]+ < ∞, where [t]+ = max{t,0} for any

t ∈ R.

Lemma 2.3. [29] Let K be a nonempty closed convex subset of the real Hilbert space. Let {xk}
be a bounded sequence which satisfies the following properties:

(i) every weak limit point of {xk} lies in K;

(ii) limk→∞ ‖xk− x‖ exists for every x ∈ K.

Then {xk} converges weakly to a point in K.

Lemma 2.4. [30] Let E be a uniformly convex Banach space, K be a nonempty closed convex
subset of E and T : K→ K be a nonexpansive operator. Then I−T is demiclosed at the origin.

Lemma 2.5. [31] Let K be a nonempty closed convex subset in H, then for any x, y ∈ H and
z ∈ K,

(i) 〈PKx− x,z−PKx〉 ≥ 0;

(ii) ‖PKx−PKy‖2 ≤ 〈PKx−PKy,x− y〉;
(iii) ‖x−PKx‖2 ≤ ‖x− z‖2−‖z−PKx‖2.

3. THE WEAK CONVERGENCE

In this section, we introduce an accelerated cyclic iterative algorithm that the stepsize does
not depend on the bounded linear operator norm ‖A∗A‖ for solving the MSCFP of quasi-
nonexpansive operators. The proposed algorithm combines the dual variable and inertial tech-
nique, and the weak convergence is obtained. In this paper, we make use of the following
assumptions:

(A1) H1, H2, and H3 are real Hilbert spaces, A : H1→ H2 is a bounded linear operator with
A 6= 0, Ui : H1→H1 (1≤ i≤ p), and Tj : H2→H2 (1≤ j≤ r) are quasi-nonexpansive operators;
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(A2) ∀ k ≥ 1, [k]1 = k( mod p)+1, [k]2 = k( mod r)+1. Let {αk} ⊂ (0,1), {βk} ⊂ (0,1),
Uk = (1−αk)I +αkU[k]1 and Tk = (1−βk)I +βkT[k]2 , α = supk≥1{αk}, and β = supk≥1{βk};

(A3) Γ denotes the solution set of the MSCFP of quasi-nonexpansive operators and Γ is
nonempty.

Algorithm 3.1. (Self-adaptive inertial cyclic iterative algorithm (I))
Initialization: Choose two sequences {ρk}∞

k=1 ⊂ [0,+∞) and {εk}∞
k=1 ⊂ [0,+∞) satisfying

∞

∑
k=1

εk < ∞.

Select arbitrary starting points x0, x1, ω0 ∈ H1, η ∈ [0,1), λ ∈ (0,1], γ > 0, and set ω1 = ω0.

Iterative step: For k≥ 1, given the iterates xk−1, xk, ωk, choose ak such that 0≤ ak ≤ āk, where

āk :=

{
min{η , εk

‖xk−xk−1‖2+‖ωk−1‖2}, if xk 6= xk−1 or ωk−1 6= 0,
η , otherwise.

(3.1)

Compute 
yk = xk +ak(xk− xk−1),

vk = yk− γkA∗(I−Tk)Ayk,

ωk+1 = (I−Uk)(vk +(1−λ )ωk),

xk+1 = vk−λωk+1,

where the stepsize γk is chosen in such a way that

γk :=

{
ρk‖(I−Tk)Ayk‖2

‖A∗(I−Tk)Ayk‖2 , (I−Tk)Ayk 6= 0,
γ, (I−Tk)Ayk = 0.

(3.2)

Remark 3.1. In our proposed Algorithm 3.1, the inertial extrapolation factor ak and the stepsize
γk are chosen by a self-adaptive way. We give a way of selecting the stepsize such that the
implementation of the algorithm does not need any prior information about the norm of the
bounded linear operator.

Remark 3.2. From (3.1), we have that

ak(‖xk− xk−1‖2 +‖ωk−1‖2)≤ āk(‖xk− xk−1‖2 +‖ωk−1‖2)≤ εk,

and so
Σ

∞
k=1ak(‖xk− xk−1‖2 +‖ωk−1‖2)< ∞. (3.3)

For example, we take εk =
1
k2 , i.e.,

āk :=

{
min{η , 1

k2(‖xk−xk−1‖2+‖ωk−1‖2)
}, if xk 6= xk−1 or ωk−1 6= 0,

η , otherwise,

then
Σ

∞
k=1ak(‖xk− xk−1‖2 +‖ωk−1‖2)< ∞.

From the following lemma, we see that γk is well-defined.

Lemma 3.1. γk defined by (3.2) is well-defined.
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Proof. Taking x ∈ Γ, one has x ∈ ∩p
i=1F(Ui) and Ax ∈ ∩r

j=1F(Tj). According to Proposition
2.1, we have

‖A∗(I−Tk)Ayk‖ · ‖yk− x‖ ≥〈A∗(I−Tk)Ayk,yk− x〉
=〈(I−Tk)Ayk,Ayk−Ax〉

≥ 1
2βk
‖(I−Tk)Ayk‖2

≥ 1
2β
‖(I−Tk)Ayk‖2.

Consequently, when ‖(I− Tk)Ayk‖ 6= 0, we have ‖A∗(I− Tk)Ayk‖ > 0. This leads that γk is
well-defined. �

Theorem 3.1. Let {(xk,ωk)} be the sequence generated by Algorithm 3.1. Assume the following
conditions hold:

(i) I−Ui and I−Tj are demiclosed at origin for 1≤ i≤ p and 1≤ j ≤ r;

(ii) 0 < liminfk→∞ αk ≤ αk ≤ α ≤ 1
2 and 0 < liminfk→∞ βk ≤ βk ≤ β < 1;

(iii) 0 < liminfk→∞ ρk ≤ limsupk→∞ ρk <
1
β

.

Then the sequence {xk} converges weakly to x∗ ∈ Γ, and the sequence {(xk,ωk)} converges

weakly to the point (x∗,0). Moreover, {xk} and {Axk} are asymptotically regular.

Proof. Step 1 . We prove that limk→∞ ‖xk− x‖ exists for any x ∈ Γ.
Taking x ∈ Γ, we have x ∈ ∩p

i=1F(Ui) and Ax ∈ ∩r
j=1F(Tj). For 1 ≤ i ≤ p and 1 ≤ j ≤ r,

it follows from the definitions of Uk and Tk, and Remark 2.1 that x ∈ ∩∞
k=1F(Uk) and Ax ∈

∩∞
k=1F(Tk). Thus, from Algorithm 3.1 and Proposition 2.1, we have

‖ωk+1‖2 = ‖(I−Uk)(vk +(1−λ )ωk)− (I−Uk)x‖2

≤ 2αk〈ωk+1,vk− x+(1−λ )ωk〉
≤ 2α〈ωk+1,vk− x+(1−λ )ωk〉

and
‖xk+1− x‖2 = ‖vk−λωk+1− x‖2

= ‖vk− x‖2−2λ 〈vk− x,ωk+1〉+λ
2‖ωk+1‖2.

Hence,

‖xk+1− x‖2 +λ‖ωk+1‖2

=‖vk− x‖2−2λ 〈vk− x,ωk+1〉+λ
2‖ωk+1‖2 +λ‖ωk+1‖2

=‖vk− x‖2−2λ 〈vk− x,ωk+1〉+
λ

α
‖ωk+1‖2−λ (

1
α
−λ −1)‖ωk+1‖2

≤‖vk− x‖2−2λ 〈vk− x,ωk+1〉+2λ 〈ωk+1,vk− x+(1−λ )ωk〉−λ (
1
α
−λ −1)‖ωk+1‖2

=‖vk− x‖2 +2λ (1−λ )〈ωk+1,ωk〉−λ (
1
α
−λ −1)‖ωk+1‖2.

Since
2λ (1−λ )〈ωk+1,ωk〉= λ (1−λ )(‖ωk+1‖2 +‖ωk‖2−‖ωk+1−ωk‖2),
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we obtain

‖xk+1− x‖2 +λ‖ωk+1‖2

≤‖vk− x‖2 +λ (1−λ )‖ωk+1‖2 +λ (1−λ )‖ωk‖2

−λ (1−λ )‖ωk+1−ωk‖2−λ (
1
α
−λ −1)‖ωk+1‖2

=‖vk− x‖2 +λ (1−λ )‖ωk‖2−λ (1−λ )‖ωk+1−ωk‖2−λ (
1
α
−2)‖ωk+1‖2.

(3.4)

Since

〈yk− x,A∗(I−Tk)Ayk〉= 〈Ayk−Ax,(I−Tk)Ayk〉 ≥
1

2βk
‖(I−Tk)Ayk‖2 ≥ 1

2β
‖(I−Tk)Ayk‖2,

we have

‖vk− x‖2 =‖yk− γkA∗(I−Tk)Ayk− x‖2

=‖yk− x‖2−2γk〈yk− x,A∗(I−Tk)Ayk〉+ γ
2
k ‖A∗(I−Tk)Ayk‖2

≤‖yk− x‖2− γk

β
‖(I−Tk)Ayk‖2 + γ

2
k ‖A∗(I−Tk)Ayk‖2

=‖yk− x‖2− γk(
1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2).

(3.5)

It follows from Algorithm 3.1 that

‖yk− x‖2 =‖xk +ak(xk− xk−1)− x‖2

=‖(1+ak)(xk− x)−ak(xk−1− x)‖2

=(1+ak)‖xk− x‖2−ak‖xk−1− x‖2 +ak(1+ak)‖xk− xk−1‖2.

Hence, we have

‖vk− x‖2 ≤(1+ak)‖xk− x‖2−ak‖xk−1− x‖2 +ak(1+ak)‖xk− xk−1‖2

− γk(
1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2).

(3.6)

From (3.4) and (3.6), we obtain

‖xk+1− x‖2 +λ‖ωk+1‖2

≤(1+ak)‖xk− x‖2−ak‖xk−1− x‖2 +ak(1+ak)‖xk− xk−1‖2 +λ (1−λ )‖ωk‖2

−λ (1−λ )‖ωk+1−ωk‖2−λ (
1
α
−2)‖ωk+1‖2− γk(

1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2)

≤‖xk− x‖2 +λ‖ωk‖2 +ak(‖xk− x‖2−‖xk−1− x‖2)+ak(1+ak)‖xk− xk−1‖2

−λ
2‖ωk‖2− γk(

1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2).

Let ck = ‖xk− x‖2 +λ‖ωk‖2. It follows that

ck+1 ≤ck +ak(‖xk− x‖2−‖xk−1− x‖2)+ak(1+ak)‖xk− xk−1‖2

−λ
2‖ωk‖2− γk(

1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2),
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which implies that
ck+1− ck

≤ak(‖xk− x‖2 +λ‖ωk‖2−‖xk−1− x‖2−λ‖ωk−1‖2)+akλ‖ωk−1‖2 +ak(1+ak)‖xk− xk−1‖2

−λ
2‖ωk‖2− γk(

1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2)

≤ak(ck− ck−1)+2ak(‖xk− xk−1‖2 +‖ωk−1‖2)

−λ
2‖ωk‖2− γk(

1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2).

(3.7)

For the case (I−Tk)Ayk = 0, we have

ck+1− ck ≤ak(ck− ck−1)+2ak(‖xk− xk−1‖2 +‖ωk−1‖2)−λ
2‖ωk‖2

≤ak(ck− ck−1)+2ak(‖xk− xk−1‖2 +‖ωk−1‖2).
(3.8)

Otherwise, we deduce from (3.2) and (3.7) that

ck+1− ck ≤ak(ck− ck−1)+2ak(‖xk− xk−1‖2 +‖ωk−1‖2)

−λ
2‖ωk‖2−ρk(

1
β
−ρk)

‖(I−Tk)Ayk‖4

‖A∗(I−Tk)Ayk‖2 .
(3.9)

By the assumption conditions on ρk and λ , and (3.8)–(3.9), we see that

ck+1− ck ≤ ak(ck− ck−1)+2ak(‖xk− xk−1‖2 +‖ωk−1‖2). (3.10)

Let φk = ck, θk = ak, and δk = 2ak(‖xk− xk−1‖2 +‖ωk−1‖2). It follows from (3.3) that

Σ
∞
k=12ak(‖xk− xk−1‖2 +‖ωk−1‖2)< ∞.

Applying Lemma 2.2 to (3.10), we obtain that limk→∞ ck exists. Thus it implies that {ck} is
bounded and {xk} is bounded. From (3.8)-(3.9), we also have

λ
2‖ωk‖2 ≤ ak(ck− ck−1)− (ck+1− ck)+2ak(‖xk− xk−1‖2 +‖ωk−1‖2),

which indicates that
lim
k→∞
‖ωk‖= 0 (3.11)

by taking into account that λ > 0, the convergence of {ck}, and δk→ 0 as k→∞. So limk→∞ ‖xk−
x‖2 = limk→∞(ck−λ‖ωk‖2) = limk→∞ ck exists.

Step 2. We prove limk→∞ ‖(I− Tk)Ayk‖ = 0. Moreover, we have that {xk} and {Axk} are
asymptotically regular.

When (I−Tk)Ayk = 0, it is clear that yk− vk = γkA∗(I−Tk)Ayk = 0. Otherwise, it follows
from (3.9) that

ρk(
1
β
−ρk)

‖(I−Tk)Ayk‖4

‖A∗(I−Tk)Ayk‖2

≤ ak(ck− ck−1)− (ck+1− ck)+2ak(‖xk− xk−1‖2 +‖ωk−1‖2)−λ
2‖ωk‖2,

which implies that

lim
k→∞

‖(I−Tk)Ayk‖4

‖A∗(I−Tk)Ayk‖2 = 0.
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Further, we obtain

lim
k→∞

‖(I−Tk)Ayk‖2

‖A∗(I−Tk)Ayk‖
= 0. (3.12)

Since A is a bounded linear operator, we obtain

‖A∗(I−Tk)Ayk‖ ≤ ‖A‖‖(I−Tk)Ayk‖.

Hence, we have

1
‖A‖
‖(I−Tk)Ayk‖=

‖(I−Tk)Ayk‖2

‖A‖‖(I−Tk)Ayk‖
≤ ‖(I−Tk)Ayk‖2

‖A∗(I−Tk)Ayk‖
(3.13)

by taking into account that A 6= 0. From (3.12) and (3.13), we obtain limk→∞ ‖(I−Tk)Ayk‖= 0.
It follows from the definitions of yk, vk, γk, and (3.12) that

lim
k→∞
‖yk− vk‖= lim

k→∞
‖γkA∗(I−Tk)Ayk‖= lim

k→∞
ρk
‖(I−Tk)Ayk‖2

‖A∗(I−Tk)Ayk‖
= 0.

By the above two cases, we obtain

lim
k→∞
‖(I−Tk)Ayk‖= lim

k→∞
‖yk− vk‖= 0. (3.14)

In view of xk+1 = vk−λωk+1, we have

lim
k→∞
‖xk+1− vk‖= lim

k→∞
λ‖ωk+1‖= 0. (3.15)

It follows from (3.3) that limk→∞ ak(‖xk−xk−1‖2+‖ωk−1‖2)= 0, which implies limk→∞ ak‖xk−
xk−1‖2 = 0. Since a2

k‖xk−xk−1‖2 ≤ ak‖xk−xk−1‖2, it turns out that limk→∞ ak‖xk−xk−1‖= 0,
and hence

lim
k→∞
‖yk− xk‖= lim

k→∞
ak‖xk− xk−1‖= 0. (3.16)

From (3.14) and (3.16), we have

lim
k→∞
‖xk− vk‖= 0. (3.17)

By (3.15) and (3.17), we have limk→∞ ‖xk+1− xk‖ = 0, which deduces that {xk} is asymptoti-
cally regular. So, {Axk} is asymptotically regular, i.e., limk→∞ ‖Axk+1−Axk‖= 0.

Step 3. We prove that ωw(xk)⊂ Γ.
Assume that x̂ ∈ ωw(xk), i.e., there exists a subsequence {xkl} of {xk} such that xkl ⇀ x̂ as

l→∞. At the same time, it follows from (3.16) that ykl ⇀ x̂ and Aykl ⇀ Ax̂ as l→∞. By (3.11)
and (3.17), we have vkl +(1−λ )ωkl ⇀ x̂ as l→ ∞. Noting that the pool of indexes is finite and
{xk} is asymptotically regular, for any 1 ≤ i ≤ p, we can choose a subsequence {kim} ⊂ {k}
such that xkim

⇀ x̂, vkim
+(1−λ )ωkim

⇀ x̂ as m→ ∞, and [kim]1 = i for all m. It turns out that

lim
m→∞
‖(I−Ui)(vkim

+(1−λ )ωkim
)‖= lim

m→∞
‖(I−U[kim ]1

)(vkim
+(1−λ )ωkim

)‖

= lim
m→∞

1
αkim

‖(I−Ukim
)(vkim

+(1−λ )ωkim
)‖

= lim
m→∞

1
αkim

‖ωkim+1‖

=0.

(3.18)
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Likewise, for any 1≤ j ≤ r, we can choose a subsequence {k jn} ⊂ {k} such that Ayk jn
⇀ Ax̂ as

n→ ∞ and [k jn]2 = j for all n. It turns out that

lim
n→∞
‖(I−Tj)Ayk jn

‖= lim
n→∞
‖(I−T[k jn ]2

)Ayk jn
‖

= lim
n→∞

1
βk jn

‖(I−Tk jn
)Ayk jn

‖

=0.

(3.19)

Since I−Ui (1 ≤ i ≤ p) and I−Tj (1 ≤ j ≤ r) are demiclosed at origin, it follows from (3.18)
and (3.19) that x̂ ∈ ∩p

i=1F(Ui),Ax̂ ∈ ∩r
j=1F(Tj). Hence x̂ ∈ Γ. This proves ωw(xk) ⊂ Γ. Using

Lemma 2.3, we have xk ⇀ x∗ as k→ ∞, where x∗ is a solution to the MSCFP. Thus it follows
from ωk→ 0 that (xk,ωk)⇀ (x∗,0) as k→ ∞. �

Remark 3.3. (i) When λ = 1, Algorithm 3.1 becomes the following self-adaptive inertial cyclic
iterative algorithm for solving the MSCFP of quasi-nonexpansive operators:{

yk = xk +ak(xk− xk−1),

xk+1 =Uk(yk− γkA∗(I−Tk)Ayk),
(3.20)

where 0≤ ak ≤ āk, āk is chosen in the following way:

āk :=

{
min{η , εk

‖xk−xk−1‖2}, if xk 6= xk−1,

η , otherwise,
(3.21)

and γk is chosen by (3.2).
(ii) When ak ≡ 0, Algorithm 3.1 becomes the following self-adaptive primal-dual cyclic iter-

ative algorithm for solving the MSCFP of quasi-nonexpansive operators:{
ωk = (I−Uk)(xk− γkA∗(I−Tk)Axk +(1−λ )ωk),

xk+1 = xk− γkA∗(I−Tk)Axk−λωk+1,
(3.22)

where γk is chosen by

γk :=

{
ρk‖(I−Tk)Axk‖2

‖A∗(I−Tk)Axk‖2 , (I−Tk)Axk 6= 0,
γ, (I−Tk)Axk = 0.

(3.23)

(iii) When λ = 1 and ak ≡ 0, Algorithm 3.1 becomes the following self-adaptive cyclic iter-
ative algorithm for solving the MSCFP of quasi-nonexpansive operators:

xk+1 =Uk(xk− γkA∗(I−Tk)Axk), (3.24)

where γk is chosen by (3.23).

It is well known that the projection operator PC on the nonempty closed convex subset C is
firmly nonexpansive. Thus the projection operator is demisclosed at the origin. Suppose that
the solution set of the MSFP is nonempty. Based on Remark 2.1, we take αk ≡ 1

2 and βk ≡ 1
2 in

Theorem 3.1, the following results can be obtained easily.
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Corollary 3.1. Assume that 0 < λ ≤ 1 and 0 < liminfk→∞ ρk ≤ limsupk→∞ ρk < 2. Let the
sequence {(xk,ωk)} be arised by

arbitrarily chosing x0, x1, ω0 ∈ H1,

set ω1 = ω0,

yk = xk +ak(xk− xk−1),

vk = yk− γkA∗(I−PQ[k]2
)Ayk),

ωk+1 = (I−PC[k]1
)(vk +(1−λ )ωk),

xk+1 = vk−λωk+1,

(3.25)

where 0 ≤ ak ≤ āk, āk is chosen by (3.1) with η ∈ [0,1) and ∑
∞
k=1 εk < ∞, and γk is chosen in

the following way that

γk :=


ρk‖(I−PQ[k]2

)Ayk‖2

‖A∗(I−PQ[k]2
)Ayk‖2 , (I−PQ[k]2

)Ayk 6= 0,

γ, (I−PQ[k]2
)Ayk = 0

(3.26)

with 0 < γ < 1. Then the sequence {xk} converges weakly to a point x∗, where x∗ is a solution
to the MSFP, and the sequence {(xk,ωk)} converges weakly to (x∗,0).

Remark 3.4. (i) When λ = 1, algorithm (3.25) becomes the following self-adaptive inertial
cyclic iterative algorithm for solving the MSFP:{

yk = xk +ak(xk− xk−1),

xk+1 = PC[k]1
(yk− γkA∗(I−PQ[k]2

)Ayk),
(3.27)

where 0≤ ak ≤ āk, āk is chosen by (3.21) and γk is chosen by (3.26).
(ii) When ak ≡ 0, algorithm (3.25) becomes the following self-adaptive primal-dual cyclic

iterative algorithm for solving the MSFP:{
ωk = (I−PC[k]1

)(xk− γkA∗(I−PQ[k]2
)Axk +(1−λ )ωk),

xk+1 = xk− γkA∗(I−PQ[k]2
)Axk−λωk+1,

(3.28)

where γk is chosen by the following way that

γk :=


ρk‖(I−PQ[k]2

)Axk‖2

‖A∗(I−PQ[k]2
)Axk‖2 , (I−PQ[k]2

)Axk 6= 0,

γ, (I−PQ[k]2
)Axk = 0.

(3.29)

(iii) When λ = 1 and ak ≡ 0, algorithm (3.25) becomes the following self-adaptive cyclic
iterative algorithm for solving the MSFP:

xk+1 = PC[k]1
(xk− γkA∗(I−PQ[k]2

)Axk), (3.30)

where γk is chosen by (3.29).



ACCELERATED CYCLIC ITERATIVE ALGORITHMS 13

4. THE STRONG CONVERGENCE

In this section, we modify Algorithm 3.1 so that it has strong convergence. Let us denote the
product space G := H1×H1 with the inner product

〈(u1,v1),(u2,v2)〉= 〈u1,u2〉+ 〈v1,v2〉

for (u1,v1), (u2,v2) ∈G. Let F = {(x,0) : x ∈ Γ} ⊂G, where Γ is the nonempty closed convex
solution set of the MSCFP. Then F is a nonempty closed convex subset in G.

Algorithm 4.1. (Self-adaptive inertial cyclic iterative algorithm (II))
Initialization: Choose two sequences {ρk}∞

k=1 ⊂ [0,+∞) and {ak}∞
k=1 ⊂ [0,+∞) satisfying

limsup
k→∞

ak ≤ a <+∞

where a is positive constant. Select arbitrary starting points x0, x1, ω0 ∈ H1, λ ∈ (0,1], γ > 0,
and set ω1 = ω0
Iterative step: For k ≥ 1, given the iterates xk−1, xk, ωk. Compute

yk = xk +ak(xk− xk−1),

v̄k = yk− γkA∗(I−Tk)Ayk,

ω̄k = (I−Uk)(v̄k +(1−λ )ωk),

x̄k = v̄k−λω̄k,

Ck = {(u,v) ∈ G : ‖x̄k−u‖2 +λ‖ω̄k− v‖2 ≤ ‖yk−u‖2 +λ‖ωk− v‖2},
Qk = {(u,v) ∈ G : 〈(xk,ωk)− (u,v),(x1,ω1)− (xk,ωk)〉 ≥ 0},
(xk+1,ωk+1) = PCk∩Qk(x1,ω1),

where the stepsize γk is chosen by (3.2).

Theorem 4.1. Let {(xk,ωk)} be the sequence generated by Algorithm 4.1. Assume the following
conditions hold:

(i) I−Ui and I−Tj are demiclosed at origin for 1≤ i≤ p and 1≤ j ≤ r;

(ii) 0 < liminfk→∞ αk ≤ αk ≤ α ≤ 1
2 and 0 < liminfk→∞ βk ≤ βk ≤ β < 1;

(iii) 0 < liminfk→∞ ρk ≤ limsupk→∞ ρk <
1
β

.

Then the sequence {(xk,ωk)} converges strongly to (x∗,0), where (x∗,0) = PF(x1,ω1).

Proof. Step 1. Ck∩Qk is closed and convex for all k ≥ 1.
According to the definitions of Ck and Qk, we have that Ck is closed and Qk is closed and

convex for all k ≥ 1. Note that the inequality in Ck is equivalent to the inequality

2〈yk− x̄k,u〉+2λ 〈ωk− ω̄k,v〉 ≤ ‖yk‖2−‖x̄k‖2 +λ‖ωk‖2−λ‖ω̄k‖2,

that is,
2〈(yk− x̄k,λ (ωk− ω̄k),(u,v)〉 ≤ ‖yk‖2−‖x̄k‖2 +λ‖ωk‖2−λ‖ω̄k‖2.

It is seen easily that Ck is convex for all k≥ 1. Hence Ck∩Qk is closed and convex for all k≥ 1.
Step 2. F ⊂Ck∩Qk for all k ≥ 1.
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Taking (x,0)∈F , we have x∈Γ. It follows from (3.4)-(3.5), Algorithm 4.1 and the conditions
on {αk} that

‖x̄k− x‖2 +λ‖ω̄k‖2

≤‖yk− x‖2 +λ (1−λ )‖ωk‖2−λ (1−λ )‖ω̄k−ωk‖2

−λ (
1
α
−2)‖ω̄k‖2− γk(

1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2)

≤‖yk− x‖2 +λ‖ωk‖2−λ
2‖ωk‖2− γk(

1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2),

(4.1)

which implies that ‖x̄k−x‖2 +λ‖ω̄k−0‖2 ≤ ‖yk−x‖2 +λ‖ωk−0‖2. Hence (x,0) ∈Ck for all
k ≥ 1.

Next, we prove that F ⊂Qk for all k≥ 1. Here, we use the mathematical induction. For k = 1,
we have F ⊂ G = Q1. Assume that F ⊂ Qk for some k > 1. Then F ⊂Ck ∩Qk. Thus Ck ∩Qk
is nonempty, closed, and convex subset in G. Hence, there exists unique element (xk+1,ωk+1)
such that (xk+1,ωk+1) = PCk∩Qk(x1,ω1). We have

〈(xk+1,ωk+1)− (u,v),(x1,ω1)− (xk+1,ωk+1)〉 ≥ 0, ∀(u,v) ∈Ck∩Qk.

By the induction assumption, for any (x,0) ∈ F , we have

〈(xk+1,ωk+1)− (x,0),(x1,ω1)− (xk+1,ωk+1)〉 ≥ 0,

which implies that (x,0) ∈ Qk+1. Therefore, F ⊂ Qk+1. By the principle of mathematical
induction, we obtain F ⊂ Qk and F ⊂Ck∩Qk for all k ≥ 1. This illustrates that Algorithm 4.1
is well-defined.

Step 3. limk→∞ ‖(xk,ωk)−(x1,ω1)‖2 exists and {(xk,ωk)} is bounded. Moreover, {(xk+1,ωk+1)}
is asymptotically regular.

From Algorithm 4.1, we can obtain (xk,ωk)=PQk(x1,ω1) and (xk+1,ωk+1)=PCk∩Qk(x1,ω1)∈
Qk. It follows from Lemma 2.5 (iii) that, for all k ≥ 1,

‖(x1,ω1)− (xk,ωk)‖2 ≤ ‖(x1,ω1)− (xk+1,ωk+1)‖2−‖(xk+1,ωk+1)− (xk,ωk)‖2, (4.2)

which implies that, for all ≥ 1,

‖(x1,ω1)− (xk,ωk)‖2 ≤ ‖(x1,ω1)− (xk+1,ωk+1)‖2,∀k ≥ 1.

Hence, we obtain that {‖(xk,ωk)− (x1,ω1)‖2} is nondecreasing. Since (x∗,0) = PF(x1,ω1) ∈
F ⊂ Qk and (xk,ωk) = PQk(x1,ω1), we have

‖(x1,ω1)− (xk,ωk)‖2 ≤ ‖(x1,ω1)− (x,0)‖2,

which implies that {‖(xk,ωk)−(x1,ω1)‖2} is bounded. Therefore, limk→∞ ‖(xk,ωk)−(x1,ω1)‖2

exists and {(xk,ωk)} is bounded. From (4.2), we obtain

‖(xk+1,ωk+1)− (xk,ωk)‖2 ≤ ‖(x1,ω1)− (xk+1,ωk+1)‖2−‖(x1,ω1)− (xk,ωk)‖2

and limk→∞ ‖(xk+1,ωk+1)− (xk,ωk)‖2 = 0, which implies that

lim
k→∞
‖xk+1− xk‖2 = lim

k→∞
‖ωk+1−ωk‖2 = 0. (4.3)

Step 4. ωk→ 0, (I−Tk)Ayk→ 0 as k→ ∞ and ωw(xk,ωk)⊂ F .
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Since {ak} is bounded and yk− xk = ak(xk− xk−1), it follows from (4.3) that
lim
k→∞
‖yk− xk‖= 0 (4.4)

and
lim
k→∞
‖xk+1− yk‖= 0. (4.5)

Due to (xk+1,ωk+1) ∈Ck, we have

‖x̄k− xk+1‖2 +λ‖ω̄k−ωk+1‖2 ≤ ‖yk− xk+1‖2 +λ‖ωk−ωk+1‖2. (4.6)

From λ > 0, (4.3), (4.5), and (4.6), we obtain
lim
k→∞
‖x̄k− xk+1‖= lim

k→∞
‖ω̄k−ωk+1‖= 0, (4.7)

which implies that
lim
k→∞
‖x̄k− yk‖= lim

k→∞
‖ω̄k−ωk‖= 0. (4.8)

According to (4.1) and

‖x̄k− x‖2 +λ‖ω̄k‖2

=‖x̄k− yk + yk− x‖2 +λ‖ω̄k−ωk +ωk‖2

=‖x̄k− yk‖2 +2〈x̄k− yk,yk− x〉+‖yk− x‖2 +λ‖ω̄k−ωk‖2 +2λ 〈ω̄k−ωk,ωk〉+λ‖ωk‖2,
(4.9)

we have
λ

2‖ωk‖ ≤ ‖yk− x‖2 +λ‖ωk‖2−‖x̄k− x‖2−λ‖ω̄k‖2

≤ 2〈yk− x̄k,yk− x〉−‖x̄k− yk‖2 +2λ 〈ωk− ω̄k,ωk〉−λ‖ω̄k−ωk‖2

≤ 2‖yk− x̄k‖ · ‖yk− x‖−‖x̄k− yk‖2 +2λ‖ωk− ω̄k‖ · ‖ωk‖−λ‖ω̄k−ωk‖2.

Because of the boundedness of {(xk,ωk)}, we see that {xk}, {ωk}, and {yk} are bounded.
Moreover, we have

lim
k→∞
‖ωk‖= 0 (4.10)

by taking into account (4.8). Similarly, it follows from (4.1), (4.8), and (4.9) that

lim
k→∞

γk(
1
β
‖(I−Tk)Ayk‖2− γk‖A∗(I−Tk)Ayk‖2) = 0. (4.11)

When (I−Tk)Ayk = 0, it is obvious that yk− v̄k = γA∗(I−Tk)Ayk = 0. Otherwise, it follows
from (3.2) and (4.11) that

lim
k→∞

ρk(
1
β
−ρk)

‖(I−Tk)Ayk‖4

‖A∗(I−Tk)Ayk‖2 = 0. (4.12)

From the condition on ρk and (4.12), we have

lim
k→∞

‖(I−Tk)Ayk‖2

‖A∗(I−Tk)Ayk‖
= 0.

Similar to the proof of the Theorem 3.1, we can obtain

lim
k→∞
‖yk− v̄k‖= lim

k→∞
‖(I−Tk)Ayk‖= 0. (4.13)

From (4.4) and (4.13), we have

lim
k→∞
‖xk− v̄k‖= 0. (4.14)
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Next, we show ωw(xk,ωk)⊂ F . Indeed, we need to show ωw(xk)⊂ Γ from ωk→ 0 as k→∞.
According to (4.7) and (4.10), we see that

lim
k→∞
‖ω̄k‖= lim

k→∞
‖(I−Uk)(v̄k +(1−λ )ωk)‖= 0. (4.15)

Similar to the proof of Theorem 3.1, it follows from (4.4), (4.10), (4.13), (4.14), and (4.15) that
ωw(xk)⊂ Γ. Therefore, we have ωw(xk,ωk)⊂ F .

Step 5. (xk,ωk)→ (x∗,0) ∈ F as k→ ∞, where (x∗,0) = PF(x1,ω1).
Since {(xk,ωk)} is bounded, there exists a subsequence {(xk j ,ωk j)} ⊂ {(xk,ωk)} such that

(xk j ,ωk j) ⇀ (z,v) as j→ ∞. Therefore, we have (z,v) ∈ F by Step 4. Moreover, z ∈ Γ and
v = 0. According to (xk+1,ωk+1) ∈ Qk and (xk,ωk) = PQk(x1,ω1), we can obtain

‖(x1,ω1)− (xk,ωk)‖2 ≤ ‖(x1,ω1)− (xk+1,ωk+1)‖2. (4.16)

By (x∗,0) = PF(x1,ω1) ∈ F ⊂Ck∩Qk and (xk+1,ωk+1) = PCk∩Qk(x1,ω1), we have

‖(x1,ω1)− (xk+1,ωk+1)‖2 ≤ ‖(x1,ω1)− (x∗,0)‖2. (4.17)

It follows from (4.16) and (4.17) that

‖(x∗,0)− (xk j ,ωk j)‖
2

= ‖(x∗,0)− (x1,ω1)+(x1,ω1)− (xk j ,ωk j)‖
2

= ‖(x∗,0)− (x1,ω1)‖2 +2〈(x∗,0)− (x1,ω1),(x1,ω1)− (xk j ,ωk j)〉+‖(x1,ω1)− (xk j ,ωk j)‖
2

≤ ‖(x∗,0)− (x1,ω1)‖2 +‖(x1,ω1)− (x∗,0)‖2 +2〈(x∗,0)− (x1,ω1),(x1,ω1)

− (x∗,0)+(x∗,0)− (xk j ,ωk j)〉
= 2〈(x∗,0)− (x1,ω1),(x∗,0)− (xk j ,ωk j)〉,

(4.18)
which indicates that

limsup
k→∞

‖(x∗,0)− (xk j ,ωk j)‖
2 ≤ limsup

k→∞

2〈(x∗,0)− (x1,ω1),(x∗,0)− (xk j ,ωk j)〉

=2〈(x∗,0)− (x1,ω1),(x∗,0)− (z,0)〉 ≤ 0

by taking into account that (x∗,0) =PF(x1,ω1)∈F and (z,0)∈F . Hence, (xk j ,ωk j)→ (x∗,0) =
PF(x1,ω1) as j→ ∞. Moreover, we have that the weak limit point of {(xk,ωk)} is unique. So,
(xk,ωk)⇀ (x∗,0) = PF(x1,ω1) as k→ ∞. From (4.18), we have

‖(x∗,0)− (xk,ωk)‖2 ≤ 2〈(x∗,0)− (x1,ω1),(x∗,0)− (xk,ωk)〉 → 0

as k → ∞. We obtain (xk,ωk) → (x∗,0) = PF(x1,ω1) ∈ F as k → ∞. So, xk → x∗ ∈ Γ as
k→ ∞. �

Remark 4.1. (i) When λ = 1, Algorithm 4.1 becomes the following self-adaptive inertial cyclic
iterative algorithm for solving the MSCFP of quasi-nonexpansive operators:

yk = xk +ak(xk− xk−1),

x̄k =Uk(yk− γkA∗(I−Tk)Ayk),

Ck = {u ∈ G : ‖x̄k−u‖2 ≤ ‖yk−u‖2},
Qk = {u ∈ G : 〈xk−u,x1− xk〉 ≥ 0},
xk+1 = PCk∩Qkx1,
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where ak ⊂ [0,+∞) with limsupk→∞ ak ≤ a <+∞ and γk is chosen by (3.2).
(ii) When ak ≡ 0, Algorithm 4.1 becomes the following self-adaptive primal-dual cyclic iter-

ative algorithm for solving the MSCFP of quasi-nonexpansive operators:

ω̄k = (I−Uk)(xk− γkA∗(I−Tk)Axk +(1−λ )ωk),

x̄k = xk− γkA∗(I−Tk)Axk−λω̄k,

Ck = {(u,v) ∈ G : ‖x̄k−u‖2 +λ‖ω̄k− v‖2 ≤ ‖xk−u‖2 +λ‖ωk− v‖2},
Qk = {(u,v) ∈ G : 〈(xk,ωk)− (u,v),(x1,ω1)− (xk,ωk)〉 ≥ 0},
(xk+1,ωk+1) = PCk∩Qk(x1,ω1),

where γk is chosen by (3.23).
(iii) When λ = 1 and ak ≡ 0, Algorithm 4.1 becomes the following self-adaptive cyclic iter-

ative algorithm for solving the MSCFP of quasi-nonexpansive operators:
x̄k =Uk(xk− γkA∗(I−Tk)Axk),

Ck = {u ∈ G : ‖x̄k−u‖2 ≤ ‖xk−u‖2},
Qk = {u ∈ G : 〈xk−u,x1− xk〉 ≥ 0},
xk+1 = PCk∩Qkx1,

where γk is chosen by (3.23).

Corollary 4.1. Assume that 0 < λ ≤ 1, ak ⊂ [0,+∞), limsupk→∞ ak ≤ a < +∞, and 0 <
liminfk→∞ ρk ≤ limsupk→∞ ρk < 2. Let the sequence {(xk,ωk)} be defined by

arbitrarily chosing x0, x1, ω0 ∈ H1 and set ω1 = ω0,

yk = xk +ak(xk− xk−1),

v̄k = yk− γkA∗(I−PQ[k]2
)Ayk),

ω̄k = (I−PC[k]1
)(vk +(1−λ )ωk),

x̄k = vk−λω̄k,

Ck = {(u,v) ∈ G : ‖x̄k−u‖2 +λ‖ω̄k− v‖2 ≤ ‖yk−u‖2 +λ‖ωk− v‖2},
Qk = {(u,v) ∈ G : 〈(xk,ωk)− (u,v),(x1,ω1)− (xk,ωk)〉 ≥ 0},
(xk+1,ωk+1) = PCk∩Qk(x1,ω1),

(4.19)

where the stepsize γk is chosen by (3.26). Then {(xk,ωk)} converges strongly to (x∗,0), where
x∗ is a solution of the MSFP.

Remark 4.2. (i) When λ = 1, algorithm (4.19) becomes the following self-adaptive inertial
cyclic iterative algorithm for solving the MSFP:

yk = xk +ak(xk− xk−1),

x̄k = PC[k]1
(yk− γkA∗(I−PQ[k]2

)Ayk),

Ck = {u ∈ G : ‖x̄k−u‖2 ≤ ‖yk−u‖2},
Qk = {u ∈ G : 〈(xk−u,x1− xk〉 ≥ 0},
xk+1 = PCk∩Qkx1,

where ak ⊂ [0,+∞) with limsupk→∞ ak ≤ a <+∞ and γk is chosen by (3.26).
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(ii) When ak ≡ 0, algorithm (4.19) becomes the following self-adaptive primal-dual cyclic
iterative algorithm for solving the MSFP :

ω̄k = (I−PC[k]1
)(xk− γkA∗(I−PQ[k]2

)Axk)+(1−λ )ωk),

x̄k = xk− γkA∗(I−PQ[k]2
)Axk)−λω̄k,

Ck = {(u,v) ∈ G : ‖x̄k−u‖2 +λ‖ω̄k− v‖2 ≤ ‖xk−u‖2 +λ‖ωk− v‖2},
Qk = {(u,v) ∈ G : 〈(xk,ωk)− (u,v),(x1,ω1)− (xk,ωk)〉 ≥ 0},
(xk+1,ωk+1) = PCk∩Qk(x1,ω1),

where γk is chosen by (3.29).
(iii) When λ = 1 and ak ≡ 0, algorithm (4.19) becomes the following self-adaptive cyclic

iterative algorithm for solving the MSFP:
x̄k = PC[k]1

(xk− γkA∗(I−PQ[k]2
)Axk),

Ck = {u ∈ G : ‖x̄k−u‖2 ≤ ‖xk−u‖2},
Qk = {u ∈ G : 〈(xk−u,x1− xk〉 ≥ 0},
xk+1 = PCk∩Qkx1,

where γk is chosen by (3.29).

5. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of the proposed Algorithm 3.1 by using it to
solve the MSFP. All the codes are written in MATLAB and are performed on a personal Lenovo
computer with Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz and RAM 4.00GB.
For sake of convenience, we denote e0 = (0,0, · · · ,0)T and e1 = (1,1, · · · ,1)T . In all tables,
‘Iter’ denotes the number of iteration and ‘CPU’ denotes the time of iteration.

Example 5.1. Let A = (ai j)N×M be a random matrix, where ai j ∈ [100,200] and N, M are
two positive integers. Take Ci = {x ∈ RM|∑M

l=1 x2
l ≤ r2

i }, and Q j = {x ∈ RN |x ≤ b j}, where
1≤ i≤ p, 1≤ j ≤ r and p = r. For 1≤ i≤ p, given a random M-dimensional negative vector
(each component is negative) zi, ri = ‖zi‖. Then, for 1≤ j ≤ r, take b j = Az j. Find x ∈

⋂p
i=1Ci

such that Ax ∈
⋂r

j=1 Q j. We take experiment paramaters p = r = 10, η = 0.9, λ = 0.5, εk =
1
k2 ,

and ρk = 1 for all k ≥ 1. We define the function p(x) by

p(x) =
p

∑
i=1

1
p
‖x−PCi(x)‖

2 +
r

∑
j=1

1
r
‖Ax−PQ j(Ax)‖2

and use the stopping rule p(x)< ε = 10−20.

Applying algorithm (3.25) to solve Example 5.1, we can take inertial extrapolation factor
ak ∈ [0, āk]. Letting ak = σ āk, we can choose different inertial extrapolation factors by adjusting
parameter σ ∈ [0,1]. When σ = 0, i.e., ak ≡ 0, algorithm (3.25) becomes the primal-dual
cyclic iterative algorithm (3.28) for solving the MSFP. Letting x0 = 5e1, x1 = 30e1, and ω0 =
−20e1, we make a comparison for different inertial extrapolation factors of the algorithm (3.25)
with different dimension spaces. Table 1 demonstrates iteration numbers and CPU time of
algorithm (3.25) with dimensions (N,M) = (20,30), (50,40), and (50,50). Further, Figure 1
presents error value versus the iteration numbers with dimensions (N,M) = (20,30), (50,40),
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TABLE 1. Numerical results with different ak, where ak = σ āk.

Initial point x0 = 5e1 x1 = 30e1 ω0 =−20e1

N=20,M=30 N=50,M=40 N=50,M=50

Iter CPU(s) Iter CPU(s) Iter CPU(s)

algo (3.28) 287 0.0161 294 0.0186 302 0.0214

σ = 0.1 249 0.0148 254 0.0204 272 0.0207

σ = 0.2 217 0.0151 214 0.0166 232 0.0144

σ = 0.3 177 0.0113 176 0.0125 193 0.0118

σ = 0.4 138 0.0109 137 0.0124 153 0.0129

σ = 0.5 90 0.0060 94 0.0061 112 0.0068

σ = 0.6 20 0.0010 19 0.0010 39 0.0023

σ = 0.7 19 0.0009 16 0.0009 34 0.0030

σ = 0.8 18 0.0009 15 0.0008 26 0.0029

σ = 0.9 18 0.0009 15 0.0008 24 0.0029

σ = 1.0 18 0.0009 15 0.0008 23 0.0029
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FIGURE 1. Comparison of the iteration number of different inertial extrapola-
tion factors of algorithm (3.25) with different N and M

and (50,50). From Table 1 and Figure 1, we can see that algorithm (3.25) is more effective for
solving Example 5.1 with different dimensions and different inertial extrapolation factors. The
computation results demonstrate that algorithm (3.25) has better performance with adjusting
parameter σ = 1 for different dimensions.

Next, we use Algorithm 3.1 to solve the following example by regarding projection operators
as quasi-nonexpansive operators.
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Example 5.2. For 1≤ i≤ p and 1≤ j≤ r, we choose Ci ⊂RM and Q j ⊂RN , which are defined
by Ci := {x ∈ RM|〈aC

i ,x〉 ≤ bC
i } and Q j := {x ∈ RN |〈aQ

j ,x〉 ≤ bQ
j }, where aC

i ∈ RM, aQ
j ∈ RN ,

and bC
i ,b

Q
j ∈ R. For 1 ≤ i ≤ p and 1 ≤ j ≤ r, the elements of aC

i , aQ
j are randomly generated

in the closed interval [1,3] and bC
i , bQ

j ∈ R are randomly generated in the closed interval [2,4],
and A = (ai j)N×M is a bounded linear operator, where ai j is randomly generated in the closed
interval [20,120]. Further, we define the function p(x) by

p(x) =
p

∑
i=1

1
p
‖x−PCi(x)‖

2 +
r

∑
j=1

1
r
‖Ax−PQ j(Ax)‖2,

and use the stopping rule p(x)< ε = 10−20. Set p = r = 10, η = 0.9, αk = βk ≡ 1
2 , εk =

1
k2 , and

ρk = 1.95 for all k ≥ 1.

Applying Algorithm 3.1 to solve Example 5.2, we can take inertial extrapolation factor ak ∈
[0, āk]. Letting ak = σ āk, we can choose different inertial extrapolation factors by adjusting
parameter σ ∈ [0,1]. When σ = 0, i.e., ak ≡ 0, Algorithm 3.1 becomes the primal-dual cyclic
iterative algorithm (3.22) for solving the MSCFP. When λ = 1, Algorithm 3.1 becomes cyclic
iterative algorithm (3.20) with only inertial technique for solving the MSCFP. When σ = 0 and
λ = 1, Algorithm 3.1 becomes cyclic iterative algorithm (3.24) for solving the MSCFP. Letting

TABLE 2. Numerical results with different ak and λ , where ak = σ āk.

N = 10 M = 15

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 1

λ = 1 Iter 286 256 216 176 127 6

algo (3.20) CPU(s) 0.0737 0.0658 0.0483 0.0368 0.0283 0.0015

λ = 0.93 Iter 246 216 186 147 116 3

Alg 3.1 CPU(s) 0.0714 0.0577 0.0480 0.0311 0.0237 0.0005

x0 =−5e1, x1 = 10e1, and ω0 = 10e1, we make a comparison for different inertial extrapolation
factors and different value of λ of Algorithm 3.1 with different dimension spaces. Table 2 and
Table 3 demonstrate iteration numbers and CPU time of Algorithm 3.1 for σ = 0, 0.1, 0.2, 0.3,
0.4, and 1 when dimensions (N,M) = (10,15) and (N,M) = (50,50), respectively. Further,
The behavior of error is depicted in Figure 2. Figure 2(a) reports the behavior of λ = 1 and
λ = 0.93 for σ = 0.1 and (N,M) = (10,15). And Figure 2(b) reports the behavior of λ = 1 and
λ = 0.9572 for σ = 0.2 and (N,M) = (50,50). From Table 2, Table 3 and Figure 2, it can be
seen easily that Algorithm 3.1 is faster than algorithm (3.20), algorithm (3.22), and algorithm
(3.24) in the speed of convergence for different dimensions. The computation results show that
Algorithm 3.1 has better performance with adjusting parameter σ = 1 for different dimensions
and different value of λ .
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TABLE 3. Numerical results with different ak and λ , where ak = σ āk.

N = 50 M = 50

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 1

λ = 1 Iter 290 260 220 180 140 8

algo (3.20) CPU(s) 0.0968 0.0634 0.0480 0.0372 0.0300 0.0017

λ = 0.9572 Iter 230 200 170 132 100 3

Algo 3.1 CPU(s) 0.0767 0.0407 0.0364 0.0321 0.0193 0.0005
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FIGURE 2. Comparison of the iteration number of different value of λ of Al-
gorithm 3.1 with different N and M
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