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Abstract. In this paper, we derive a new projection algorithm by incorporating inertial effects for solving
a split feasibility problem in real Hilbert spaces. We then establish a weak convergence theorem under
some suitable conditions. As an application, we apply our result to image restoration.
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1. INTRODUCTION

The main objective of this paper is to present a new projection algorithm for solving the split
feasibility problem (SFP), which was introduced by Censor and Elfving [1] and modeled as
seeking a point x∗ such that x∗ ∈ C and Ax∗ ∈ Q, where C and Q are nonempty, closed, and
convex subsets of real Hilbert spaces H1 and H2, respectively, and A is a bounded linear operator
from H1 to H2. The split feasibility problem appears in various fields of science and technology,
such as signal processing, image reconstruction, and intensity-modulated radiation therapy; see,
e.g., [2, 3, 4, 5] and the references therein.

For solving the SFP, many methods were developed, such as the CQ algorithm proposed by
Byrne [2], the relaxed CQ algorithm proposed by Yang [6], the half space relaxation projection
method proposed by Qu and Xiu [7]. One refers to [8, 9, 10, 11, 12] for recent various methods.
Set F(x) = A∗(I−PQ)Ax, x ∈ H1, where A∗ is an adjoint operator of A. In 2002, Byrne [2]
introduced the following iterative procedure for the SFP:

xn+1 = PC(xn +βnF(xn)),

where βn ∈ (0,2/L), L is the largest eigenvalue of the matrix A∗A, and PC and PQ are the
metric projections onto C and Q, respectively. Later, Yang [6] replaced these projections by the
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projections onto half spaces. Nevertheless, the stepsize of the proposed algorithms depend on
the operator norm which is not simple to compute in general.

In 2012, Zhao et al. [13] introduced the modified projection method for the SFP. Let x1 ∈ H1,
γ0 > 0, ` ∈ (0,1), µ ∈ (0,1), ρ ∈ (0,1), and let yn = PC(xn−βnF(xn)), where βn is chosen to
be the largest β ∈ {γn,γn`,γn`

2, ...} satisfying β‖F(xn)−F(yn)‖ ≤ µ‖xn− yn‖. Define

xn+1 = PC(yn−βn(F(yn)−F(xn))).

If βn‖F(xn+1)−F(xn)‖ ≤ ρ‖xn+1− xn‖, then set γn = γ0. Otherwise, set γn = βn.
Recently, Dong et al. [14] presented an optimal choice of the step length of the projection

and contraction methods for solving the SFP. Choose γ > 0, ` ∈ (0,1), t ∈ (0,2), and µ ∈ (0,1).
Take x1 ∈H1 and let yn = PC(xn−βnF(xn)), where βn = γ`mn and mn is the smallest nonnegative
integer such that βn‖F(xn)−F(yn)‖ ≤ µ‖xn− yn‖. Define

xn+1 = xn− tρnd(xn,yn),

where d(xn,yn) = (xn− yn)−βn(F(xn)−F(yn)) and

ρn =
〈xn− yn,d(xn,yn)〉+βn‖(I−PQ)A(yn)‖2

‖d(xn,yn)‖2 .

In 2017, Dang et al. [15] introduced double projection algorithms for solving the SFP, which
do not require the fixed stepsize and do not employ the same projection region at different
projection steps. Let x1 ∈ H1 be arbitrarily and γ > 0, ` ∈ (0,1), λ > 1, and t ∈ (0,2). Define

yn = PC(xn−βnF(xn)),

where βn = γ`mn and mn is the smallest nonnegative integer such that

〈F(xn),xn− yn〉 ≥ λ 〈F(xn)−F(yn),xn− yn〉.

Compute
xn+1 = PC(xn− tαnF(yn)),

where

αn =
〈F(yn),xn− yn〉
‖F(yn)‖2 .

In 1964, Polyak [16] introduced an inertial extrapolation for solving the smooth convex mini-
mization problem. Later, Nesterov [17] introduced a method of solving a convex programming
problem with convergence rate O(1/k2). Let x0,x1 ∈ H be arbitrarily and 0≤ θn < 1. Define{

yn = xn +θn(xn− xn−1),

xn+1 = yn +β∇ f (yn),

where β is a positive constant and the term θn(xn− xn−1) is called the inertial term. Since the
inertial term in the method speeds up the convergence, many inertial methods were extensively
studied; see, e.g., [18, 19, 20, 21, 22] and the references therein.

In this paper, motivated and inspired by the previous works, we propose a new projection
algorithm for solving the SFP and prove the weak convergence theorems under some suitable
assumptions in real Hilbert spaces. As applications, we apply our main result to an image
restoration.
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2. PRELIMINARIES

In this section, we collect some basic definitions and lemmas which are used in the sequel.
Let H1 and H2 be real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. In what follows, we
use the following notations:
• the symbols ⇀ stands for the weak convergence.
• the symbols→ stands for the strong convergence.
Recall that a mapping T : H1→ H1 is said to be
(1) nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈ H1.
(2) firmly-nonexpansive if 〈T x−Ty,x− y〉 ≥ ‖T x−Ty‖2, ∀x,y ∈ H1.
We note that if T is firmly-nonexpansive, then I−T is also firmly-nonexpansive. In a real

Hilbert space H1, we know the following relations:

〈x,y〉= 1
2
‖x‖2 +

1
2
‖y‖2− 1

2
‖x− y‖2, ∀x,y ∈ H1

and

‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2, ∀x,y ∈ H1 and ∀α ∈ [0,1].

A differentiable function f is convex if and only if there holds the inequality: f (z) ≥ f (x)+
〈∇ f (x),z− x〉 for all z ∈ H1. An element g ∈ H1 is called a subgradient of f : H1→ R at x if
f (z)≥ f (x)+〈g,z−x〉 for all z∈H1, which is called the subdifferentiable inequality. A function
f : H1→ R is said to be subdifferentiable at x if it has at least one subgradient at x. The set of
subgradients of f at the point x is called the subdifferentiable of f at x, which is denoted by
∂ f (x). A function f is said to be subdifferentiable if it is subdifferentiable at all x ∈ H1. If a
function f is differentiable and convex, then its gradient and subgradient coincide. A function
f : H1→ R is said to be weakly lower semi-continuous (shortly, w-lsc) at x if xn ⇀ x implies
f (x)≤ liminfn→∞ f (xn). We know that the orthogonal projection PC from H1 onto a nonempty
closed convex subset C ⊂ H1 is a typical example of a firmly nonexpansive mapping, which is
defined by PCx = argminy∈C ‖x− y‖2 for all x ∈ H1.

Lemma 2.1. [23] Let C be a closed, convex, and nonempty subset of a real Hilbert space H1.
Then, for any x ∈ H1, the following assertions hold:

(1) 〈x−PCx,z−PCx〉 ≤ 0 for all z ∈C;
(2) ‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 for all x,y ∈ H1;
(3) ‖PCx− z‖2 ≤ ‖x− z‖2−‖PCx− x‖2 for all z ∈C.

From Lemma 2.1, the operator I−PC is also firmly nonexpansive, where I denotes the identity
operator, i.e., for any x,y ∈ H1, 〈(I−PC)x− (I−PC)y,x− y〉 ≥ ‖(I−PC)x− (I−PC)y‖2.

Lemma 2.2. [24] Let {an}, {bn}, and {cn} be positive real sequences such that an+1 ≤ (1+
cn)an +bn, n≥ 1. If Σ∞

n=1cn <+∞ and Σ∞
n=1bn <+∞, then limn→+∞ an exists.

Lemma 2.3. [25] Let {an} and {θn} be positive real sequences such that an+1 ≤ (1+θn)an +
θnan−1, n≥ 1. Then, an+1 ≤ K ·∏n

i=1(1+2θi), where K = max{a1,a2}. Moreover, if ∑
∞
n=1 θn <

+∞, then {an} is bounded.

Lemma 2.4. [26] Let F be a mapping from a Hilbert space H1 to H1. For any x ∈H1 and α ≥ 0,
define x(α) = PC(x−αF(x)) and e(x,α) = x− x(α). Then, min{1,α}‖e(x,1)‖ ≤ ‖e(x,α)‖ ≤
max{1,α}‖e(x,1)‖.
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Lemma 2.5. [27] Let S be a nonempty subset of a real Hilbert space H1, and let {xn} be a
sequence in H1 that satisfies the following properties:

(i) limn→∞ ‖xn− x‖ exists for each x ∈ S;
(ii) every sequential weak limit point of {xn} is in S.
Then {xn} converges weakly to a point in S.

Lemma 2.6. [28] Let C and Q be closed and convex subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1→ H2 be a bounded linear operator. Let f (x) = 1

2‖(I−PQ)Ax‖2, x ∈ H1.
Then ∇ f is ‖A‖2-Lipschitz continuous.

3. THE DOUBLE PROJECTION ALGORITHM

In this section, we present our new algorithm with the aid of the inertial technique. Assume
that the solution set of the split feasibility problem is nonempty and we denote by Γ. We define
the function F : H1→ H1 as F(x) = A∗(I−PQ)Ax, x ∈ H1.

Algorithm 3.1. Select a point x1 ∈ H1 arbitrarily, and choose γ > 0, ` ∈ (0,1), λ > 1, and
t ∈ (0,2). Let {θn}n∈N be a nonnegative sequence. Define

wn = xn +θn(xn− xn−1), (3.1)

yn = PC(wn−βnF(wn)),

where βn = γ`mn and mn is the smallest nonnegative integer such that

〈F(wn),wn− yn〉 ≥ λ 〈F(wn)−F(yn),wn− yn〉. (3.2)

Compute
xn+1 = PC(wn− tαnF(yn)),

where

αn =
〈F(yn),wn− yn〉
‖F(yn)‖2 .

The following lemmas were proved in [15].

Lemma 3.1. There exists a nonnegative number mn satisfying (3.2) for all n≥ 1.

Lemma 3.2. `
λ (‖A‖2+1) < βn ≤ γ for all n≥ 1.

Theorem 3.1. Let {xn} be a sequence generated by Algorithm 3.1. If ∑
∞
n=1 θn < ∞, then {xn}n∈N

converges weakly to a solution in Γ.

Proof. Let z ∈ Γ. Then z = PC(z) and Az = PQ(Az). It follows that F(z) = 0. Using Lemma 2.1
(2), we see that

〈F(yn),yn− z〉 = 〈F(yn)−F(z),yn− z〉
= 〈A∗(I−PQ)Ayn−A∗(I−PQ)Az,yn− z〉
≥ ‖(I−PQ)Ayn‖2,

which implies that

〈F(yn),wn− z〉 = 〈F(yn),wn− yn〉+ 〈F(yn),yn− z〉
≥ 〈F(yn),wn− yn〉. (3.3)
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By (3.2), we see that

〈F(yn),wn− yn〉 = −〈F(wn)−F(yn),wn− yn〉+ 〈F(wn),wn− yn〉

≥ − 1
λ
〈F(wn),wn− yn〉+ 〈F(wn),wn− yn〉

=

(
1− 1

λ

)
〈F(wn),wn− yn〉. (3.4)

From definition of yn and Lemma 2.1 (1), we have

〈F(wn),wn− yn〉 =
1
βn
〈βnF(wn)−wn + yn +wn− yn,wn− yn〉

=
1
βn

[〈yn− (wn−βnF(wn)),wn− yn〉+ 〈wn− yn,wn− yn〉]

=
1
βn

[〈PC(wn−βnF(wn))− (wn−βnF(wn)),wn−PC(wn−βnF(wn))〉

+〈wn− yn,wn− yn〉]

≥ 1
βn
‖wn− yn‖2. (3.5)

Using (3.3) and Lemma 2.1 (3), we obtain

‖xn+1− z‖2 ≤ ‖wn− z− tαnF(yn)‖2−‖xn+1−wn + tαnF(yn)‖2

= ‖wn− z‖2−2tαn〈F(yn),wn− z〉+ t2
α

2
n‖F(yn)‖2

−‖xn+1−wn + tαnF(yn)‖2

≤ ‖wn− z‖2−2tαn〈F(yn),wn− yn〉+ t2
α

2
n‖F(yn)‖2

−‖xn+1−wn + tαnF(yn)‖2.

Note that

〈xn− z,xn− xn−1〉=
1
2
‖xn− z‖2 +

1
2
‖xn− xn−1‖2− 1

2
‖xn−1− z‖2.

Combining (3.4), (3.5), and Lemma 3.2, we obtain

‖xn+1− z‖2

≤ ‖wn− z‖2− 2t〈F(yn),wn− yn〉2

‖F(yn)‖2 +
t2〈F(yn),wn− yn〉2

‖F(yn)‖2 −‖xn+1−wn + tαnF(yn)‖2

= ‖wn− z‖2− t(2− t)
〈F(yn),wn− yn〉2

‖F(yn)‖2 −‖xn+1−wn + tαnF(yn)‖2

≤ ‖wn− z‖2− t(2− t)
(

1− 1
λ

)2 1
γ2
‖wn− yn‖4

‖F(yn)‖2 −‖xn+1−wn + tαnF(yn)‖2. (3.6)

It follows that ‖xn+1− z‖ ≤ ‖wn− z‖. On the other hand, we have

‖xn+1− z‖ ≤ ‖wn− z‖
≤ ‖xn− z‖+θn‖xn− xn−1‖
≤ (1+θn)‖xn− z‖+θn‖xn−1− z‖. (3.7)
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By Lemma 2.3, we obtain ‖xn+1−z‖≤∏
n
i=1(1+2θi), where K =max{‖x1−z‖,‖x2−z‖}. Thus

{xn} is bounded. Since ∑
∞
n=1 θn <+∞ and {xn} is bounded, we have ∑

∞
n=1 θn‖xn−xn−1‖<+∞.

By Lemma 2.2 and (3.7), we obtain limn→∞ ‖xn− z‖ exists. From definition of wn, we have

‖wn− z‖2 = ‖xn− z‖2 +2θn〈xn− z,xn− xn−1〉+θ
2
n ‖xn− xn−1‖2

≤ ‖xn− z‖2 +2θn‖xn− z‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2. (3.8)

From (3.6) and (3.8), we conclude

‖xn+1− z‖2 ≤ ‖xn− z‖2 +2θn‖xn− z‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2 (3.9)

−t(2− t)
(

1− 1
λ

)2 1
γ2
‖wn− yn‖4

‖F(yn)‖2 −‖xn+1−wn + tαnF(yn)‖2.

From (3.9), it follows that

lim
n→∞

t(2− t)
(

1− 1
λ

)2 1
γ2
‖wn− yn‖4

‖F(yn)‖2 = 0.

Using the assumptions, we have

lim
n→∞

‖wn− yn‖4

‖F(yn)‖2 = 0.

Using Lemma 2.6, we know that {‖F(yn)‖} is bounded. Hence, it implies that

lim
n→∞
‖wn− yn‖= 0. (3.10)

Furthermore, from (3.9) we obtain

lim
n→∞
‖xn+1−wn + tαnF(yn)‖= 0 (3.11)

and

αn‖F(yn)‖ =
〈F(yn),wn− yn〉
‖F(yn)‖

≤ ‖wn− yn‖→ 0 as n→ ∞. (3.12)

From (3.11) and (3.12), we obtain

lim
n→∞
‖xn+1−wn‖= 0. (3.13)

From (3.1), we have
lim
n→∞
‖wn− xn‖= 0. (3.14)

From (3.13) and (3.14), we have ‖xn+1−xn‖ ≤ ‖xn+1−wn‖+‖wn−xn‖→ 0 as n→∞. In view
of (3.10) and (3.13), we conclude that ‖xn+1− yn‖ ≤ ‖xn+1−wn‖+‖wn− yn‖→ 0 as n→ ∞.
Since {xn} is bounded, there is a point x∗ of {xn} with a subsequence {xnk} converging to x∗. It
follows that {xnk+1} also converges to x∗.

Now, we prove that x∗ is in Γ. From (3.13) and (3.12), we have

‖xnk+1−PC(xnk+1)‖ = ‖PC(wnk− tnkαnkF(ynk))−PC(xnk+1)‖
≤ ‖wnk− tnkαnkF(ynk)− xnk+1‖
≤ ‖wnk− xnk+1‖+ tnkαnk‖F(ynk)‖
→ 0 as k→ ∞,

which indicates that x∗ ∈C by the demiclosedness of PC.
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Next, we prove that Ax∗ ∈ Q. Define enk(w,µ) = w−PC(wnk−µF(wnk)). From Lemma 2.4,
the definition of βn, and (3.14), we have

lim
k→∞
‖enk(wnk ,1)‖ ≤ lim

k→∞

‖wnk− ynk‖
min{1,βnk}

≤ lim
k→∞

‖wnk− ynk‖
min{1,β}

= 0, (3.15)

where β = 1
λ (‖A‖2+1) . Using Lemma 2.1 (1) and noting that x∗ ∈C, we have, for all k = 1,2, ...,

〈wnk−F(wnk)−PC(wnk−F(wnk)),x
∗−PC(wnk−F(wnk))〉 ≤ 0.

Thus 〈enk(wnk ,1)−F(wnk),wnk− x∗− enk(wnk ,1)〉 ≥ 0, which implies from Lemma 2.1 (1) that,
for all k = 1,2, ...,

〈wnk− x∗,enk(wnk ,1)〉
≥ ‖enk(wnk ,1)‖

2−〈F(wnk),enk(wnk ,1)〉+ 〈F(wnk),wnk− x∗〉
= ‖enk(wnk ,1)‖

2−〈F(wnk),enk(wnk ,1)〉+ 〈(I−PQ)Awnk− (I−PQ)Ax∗,Awnk−Ax∗〉
≥ ‖enk(wnk ,1)‖

2−〈F(wnk),enk(wnk ,1)〉+‖(I−PQ)Awnk− (I−PQ)Ax∗‖2

= ‖enk(wnk ,1)‖
2−〈F(wnk),enk(wnk ,1)〉+‖(I−PQ)Awnk‖

2. (3.16)

Since {wnk} is bounded, one asserts that {‖F(wnk)‖} is also bounded. From (3.15) and (3.16), we
obtain that limk→∞ ‖(I−PQ)Awnk‖= 0. Hence, Awnk ⇀ Ax∗. Furthermore, we obtain Ax∗ ∈ Q.
Finally, we conclude that the sequence {xn} converges weakly to a point in Γ by Lemma 2.5.
This completes the proof. �

Remark 3.1. From the viewpoint of convergence speed, our algorithm, which is based on the
inertial technique, mainly improves those of Zhao et al. [13], Dong et al. [14], and Dang et al.
[15].

4. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to an image debluring. Let C = [0,255]D

such that D = M×N, where M is the pixels of width and N is the pixels of height of color
image. Consider the minimization problem: minx∈C ‖Ax− y‖2. This problem can be solved via
the SFP when Q = {y} and C = [0,255]D. We compare the following methods with x0 = x1 =
(1,1,1, ...,1) ∈ RN .

Method 1: The algorithm of Zhao et al. [13] with γ0 = 1, `= 0.8, µ = 0.1, and ρ = 0.5;
Method 2: The algorithm of Dong et al. [14] with γ = 1, `= 0.8, µ = 0.1, and t = 1.9;
Method 3: The algorithm of Dang et al. [15] with γ = 1, `= 0.8, λ = 1.2, and t = 1.9;
Method 4: The algorithm 3.1 with γ = 1, `= 0.8, λ = 1.2, and t = 1.9.
We consider three blur types with the images size 268×201 for RGB images as follows:
(i) Motion blur with motion length of 45 pixels and motion orientation 180◦.
(ii) Gaussian blur of filter size 5×5 with standard deviation 5.
(iii) Out of focus with radius 7.
To measure the restored images, we use the Peak-signal-to-noise ratio (PSNR) [29] defined by

PSNR = 10log10

(
2552

MSE

)
,
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where MSE= ‖xn− x‖2 such that x is an original image. We also use Structural Similarity Index
Measure (SSIM) [30] for measuring the similarity between two images. From the definitions, it
is clear that the high PSNR and SSIM values show the quality of restored images. All codes are
written in Matlab (version R2020b) on MacBook Pro M1 with ram 8 GB.

We obtain numerical results as follows:

TABLE 1. The comparison of PSNR and SSIM of the restored images

Methods
Motion blur Gaussian blur Out of focus

PSNR SSIM PSNR SSIM PSNR SSIM
Method 1 30.4787 0.8688 39.6649 0.9722 33.0624 0.8948
Method 2 31.9010 0.9016 41.1588 0.9793 34.7088 0.9188
Method 3 25.7223 0.7487 36.4745 0.9467 29.8484 0.8234
Method 4 40.3784 0.9817 47.4718 0.9939 40.6514 0.9703

From Table 1, it appears that our algorithm (Method 4) is more efficient than the others
(Methods 1, 2, 3) because the PSNR and SSIM values of our algorithm takes the highest number
in the experiment for maximum 1,500 iterations. The following original RGB image was tested.

FIGURE 1. The original of RGB image

We next demonstrate the figures of blurred images and restored images.

5. CONCLUSIONS

In this paper, we proposed a new double projection algorithm with the inertial effects. Under
suitable conditions, a weak convergence theorem of the proposed algorithm was established.
Numerical experiments in an image restoration demonstrated that our algorithm has a higher
efficiency than other methods in terms PSNR and SSIM.
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(a) Motion blurred image (b) PSNR=30.4787 (c) PSNR=31.9010 (d) PSNR=25.7223 (e) PSNR=40.3784

(f) Gaussian blurred image (g) PSNR=39.6649 (h) PSNR=41.1588 (i) PSNR=36.4745 (j) PSNR=47.4718

(k) Out of focus image (l) PSNR=33.0624 (m) PSNR=34.7088 (n) PSNR=29.8484 (o) PSNR=40.6514

FIGURE 2. The restored images with PSNR values for each blurs using Methods
1,2,3, and 4 from left to right
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(a) PSNR plotting of Motion blur (b) SSIM plotting of Motion blur

(c) PSNR plotting of Gaussian blur (d) SSIM plotting of Gaussian blur

(e) PSNR plotting of Out of focus (f) SSIM plotting of Out of focus

FIGURE 3. Graphs of PSNR and SSIM plotting for each blurs and methods
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