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MULTIPLICITY OF POSITIVE RADIAL SOLUTIONS FOR SEMILINEAR
ELLIPTIC EQUATION WITH LOCALLY CONCAVE-CONVEX VARIABLE

EXPONENT

CHANGMU CHU∗, YING YU

School of Preparatory Education, Guizhou Minzu University, Guizhou 550025, China

Abstract. This paper is concerned with the following semilinear elliptic equation
−∆u = uq(x)−1, in B,
u > 0, in B,
u = 0, in ∂B,

where B is the unit ball in RN(N ≥ 3), q(x) = q(|x|) is a continuous radial function satifying 1 <
minx∈B q(x) = q− < 2 < q+ = maxx∈B q(x)< 2∗ = 2N

N−2 , and q(0)> 2. By means of variational methods
and a priori estimate, we obtain that the problem above has at least two positive radial solutions.
Keywords. A priori estimate; Semilinear elliptic equation; Variable exponent; Variational methods.

1. INTRODUCTION AND MAIN RESULT

In recent years, the following nonlinear elliptic equation{
−∆p(x)u = f (x,u), in Ω,

u = 0, on ∂Ω,
(1.1)

received considerable attention due to the fact that it can be applied to fluid mechanics and the
field of image processing (see [1, 2, 3]), where Ω⊂RN is a smooth bounded domain, p : Ω→R
is a continuous function satisfying 1 < p− = minx∈Ω

p(x) ≤ p(x) ≤ maxx∈Ω
p(x) = p+ < N,

∆p(x)u = div(|∇u|p(x)−2∇u), and f : Ω×R→ R is a suitable function.
In 2003, Fan and Zhang in [4] gave several sufficient conditions for the existence and mul-

tiplicity of nontrivial solutions of problem (1.1). These conditions include either the sublin-
ear growth condition | f (x, t)| ≤ C

(
1+ |t|p−

)
for x ∈ Ω and t ∈ R or Ambrosetti-Rabinowitz

type growth condition ((AR)-condition, for short) f (x, t)t ≥ θF(x, t) > 0 for all x ∈ Ω and
|t| sufficiently large, where C > 0, θ > p+, F(x, t) =

∫ t
0 f (x,s)ds, and | f (x, t)t| ≤C(1+ |t|p∗(x))

with p∗ = N p(x)
N−p(x) .

∗Corresponding author.
E-mail address: gzmychuchangmu@sina.com (C. Chu)
Received April 19, 2022; Accepted August 16, 2022.

c©2023 Journal of Nonlinear and Variational Analysis

35



36 C. CHU, Y. YU

Subsequently, the case f (x,u) = λ |u|q(x)−2u of problem (1.1) were considered by Fan, Zhang
and Zhao in [5], and Mihăilescu and Rădulescu in [6]. More precisely, they studied the follow-
ing nonhomogeneous eigenvalue problem{

−∆p(x)u = λ |u|q(x)−2u, in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary, λ > 0 is a real number,
and p and q are continuous on Ω. For the case p(x) = q(x), the authors in [5] established
the existence of a sequence of eigenvalues of problem (1.2) by the Ljustemik-Schnirelmann
critical point theory. Denoting by Λ the set of all nonnegative eigenvalues, they proved that
supΛ =+∞ and pointed out that infΛ > 0 only under additional assumptions. For the case 1 <
minx∈Ω

q(x) < minx∈Ω
p(x) < maxx∈Ω

q(x), Mihăilescu and Rădulescu in [6] proved that any
λ > 0 sufficiently small is an eigenvalue of problem (1.2) under the assumptions maxx∈Ω

p(x)<
N and q(x)< N p(x)

N−p(x) for all x ∈Ω. In fact, their method was Ekeland’s variation principle, and
the constraint λ > 0 sufficiently small played a major role. Moreover, they pointed out that the
corresponding functional Jλ of problem (1.2) neither satisfies (AR)-condition nor is coercive.
Therefore, they were not able to obtain a critical point of the functional Jλ by using the mountain
pass theorem (see [7]) or a result as the Theorem 1.2 in Struwe [8].

Obviously, the assumption 1 < minx∈Ω
q(x) < minx∈Ω

p(x) < maxx∈Ω
q(x) does not exist in

the elliptic equation with constant exponent. For fixed λ > 0, as mentioned above, it is still an
interesting subject to study the solvability of problem (1.2). Unlike the concave-convex nonlin-
earities, the main difference of problem (1.2) is that the nonlinearity has both local superlinearity
and local sublinearity. It is difficult to prove the boundedness of Palais-Smale sequence of the
Euler-Lagrange functional. To the best of our knowledge, even for the case p(x) = 2, there are
no results.

Let B be the unit ball in RN(N ≥ 3). Some scholars considered the following semilinear
elliptic equation with variable exponent in [9] and [10] −∆u = uq(x)−1, in B,

u > 0, in B,
u = 0, in ∂B.

(1.3)

They obtained the existence or multiplicity of the nontrivial radial solutions of problem (1.3)
with critical or supercritical exponent. In this paper, we consider multiple positive radial solu-
tions of problem (1.3) involving local superlinearity and local sublinearity.

Denote D0 = {x ∈ B|q(x) = 2}, D− = {x ∈ B|q(x) < 2}, and D+ = {x ∈ B|q(x) > 2}, and
assume

(Q1) q(x) = q(|x|) ∈C(B);
(Q2) 1 < minx∈B q(x)< 2 < maxx∈B q(x)< 2∗, q(0)> 2;
(Q3) S−1

N |D0|
2
N < 1, with SN is the Sobolev embedding constant.

The main results of this paper reals as follows.

Theorem 1.1. Let (Q1), (Q2), and (Q3) hold. Then there exists a constant Λ0 > 0 such that
problem (1.2) has at least two positive radial symmetric solutions with |D−|< Λ0.
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Remark 1.1. Conditions (Q1) and (Q2) mean that D− and D+ are positive measurable sets.
Moreover, the conditions of Theorem 1.1 are different from those of other elliptic equations
involving local superlinearity and sublinearity (see [11, 12, 13, 14]).

To end this section, we describe the basic ideas in the proof of Theorem 1.1. Note that
q(x) ≤ 2 for some x ∈ B. Inspired by [15], we first modify the nonlinear term to guarantee the
boundedness of Palais-Smale sequence of the corresponding functional. Subsequently, we use
the Moser iteration to prove that the positive solution of auxiliary problem is indeed a positive
solution of original problem (1.3).

Throughout this paper, we use ‖ · ‖ to denote the usual norms of H1
0 (B) and set H1

0,r(B) ={
u ∈ H1

0 (B) | u(x) = u(|x|)
}

. The letter C stands for positive constant which may take different
values at different places.

2. THE MODIFIED PROBLEM

According to q− < 2, it seems to be difficult to confirm whether the energy function I cor-
responding to (1.3) satisfies the Palais-Smale condition or not. To apply the mountain pass
theorem, the first step in proving Theorem 1.1 is to modify the nonlinear term. Since q(x) is a
continuous function, 1 < q− < 2 < q+ < 2∗, and q(0) > 2, we see that there exist δ0 ∈ (0, 1

4)
and r > 0 such that

q(x)≥ 2+ r, x ∈ B2δ0 ; q++ r < 2∗, x ∈ B. (2.1)

Let ψ(t) ∈ C∞
0 (R, [0,1]) be a smooth even function with the following properties: ψ(t) = 1

for |t| ≤ 1, ψ(t) = 0 for |t| ≥ 2, and ψ(t) is monotonically decreasing on the interval (0,+∞).

Define bµ(t) = ψ(µt) and mµ(t) =
∫ t

0
bµ(τ)dτ for µ ∈ (0,1], and set

Q(x) =
{

1, if x ∈ D0
⋃

D−,
0, if x ∈ D+,

P(x) = 1−Q(x).

Consider the perturbated problem
−∆u = Q(x)uq(x)−1 +P(x)

(
u

mµ (u)

)r
uq(x)−1, in B,

u > 0, in B,
u = 0, in ∂B.

(2.2)

The corresponding functional is

Iµ(u) =
1
2

∫
B
|∇u|2 dx−

∫
B

Q(x)
q(x)

(u+)q(x) dx−
∫

B
P(x)Kµ(x,u+)dx,

where u ∈ H1
0 (B), u+ = max{u,0}, kµ(x, t) = ( t

mµ (t)
)rtq(x)−1 for t > 0, kµ(x, t) = 0 for t = 0,

and Kµ(x, t) =
∫ t

0 kµ(x,τ)dτ .

Theorem 2.1. Let (Q1), (Q2), and (Q3) hold. Then, for any µ ∈ (0,1], there exists L > 0
independent of µ and Λ0 > 0 such that problem (2.2) has at least two positive radial symmetric
solutions u

′
µ and u

′′
µ satisfying Iµ(u

′
µ)< 0 < Iµ(u

′′
µ)< L for |D−|< Λ0.
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Lemma 2.1. The function Kµ(x, t) defined above satisfies the following inequalities:

Kµ(x, t)≤
1

q(x)
tkµ(x, t), Kµ(x, t)≤

1
q(x)+ r

tkµ(x, t)+Cµ ,

for t > 0, where Cµ > 0 is a positive constant.

Proof. Since bµ(t) is a monotonically decreasing on the interval (0,+∞), we have

d
dt

(
t

mµ(t)

)
=

mµ(t)− tbµ(t)
m2

µ(t)
=

t(bµ(ξ )−bµ(t))
m2

µ(t)
≥ 0,

for t > 0, where ξ ∈ (0, t). Therefore, t
mµ (t)

is monotonically increasing on the interval (0,+∞).

Hence, kµ (x,t)
tq(x)−1 =

(
t

mµ (t)

)r
is also monotonically increasing on (0,+∞). It follows that

Kµ(x, t) =
∫ t

0
kµ(x,τ)dτ ≤

∫ t

0

kµ(x, t)
tq(x)−1

τ
q(x)−1dτ =

1
q(x)

tkµ(x, t),

for t > 0. By definition of the function mµ , we have mµ(t) = A
µ

for t ≥ 2
µ

, where A = 1+∫ 2
1 ψ(τ)dτ . For t > 2

µ
, one has

Kµ(x, t) =
∫ 2

µ

0
kµ(x,τ)dτ +

∫ t

2
µ

(
µ

A

)r
τ

q(x)+r−1 dτ

=
∫ 2

µ

0

(
kµ(x,τ)−

(
µ

A

)r
τ

q(x)+r−1
)

dτ +
∫ t

0

(
µ

A

)r
τ

q(x)+r−1 dτ

≤Cµ +
tkµ(x, t)
q(x)+ r

. (2.3)

It implies from (2.3) that

Kµ(x, t)≤
1

q(x)+ r
tkµ(x, t)+Cµ ,

for t > 0. This completes the proof. �

Lemma 2.2. Let (Q1), (Q2) and (Q3) hold. Then, for any µ ∈ (0,1], Iµ satisfies the (PS)
condition.

Proof. Let {un} be a (PS) sequence of Iµ in H1
0,r(B). This means that there exists C > 0 such

that
|Iµ(un)| ≤C, I

′
µ(un)→ 0 as n→ ∞. (2.4)

From (2.1), Lemma 2.1, the Hölder inequality, and the Sobolev embedding theorem, we derive
that

Iµ(un)−
1

2+ r
〈I
′
µ(un),un〉

=

(
1
2
− 1

2+ r

)(∫
B
|∇un|2dx−

∫
D0

u2
ndx
)
−
∫

D−

(
1

q(x)
− 1

2+ r

)
(u+n )

q(x)dx

+
∫

D+

(
1

2+ r
u+n kµ(x,u+n )−Kµ(x,u+n )

)
dx

≥
(

1
2
− 1

2+ r

)
(1−S−1

N |D0|
2
N )
∫

B
|∇un|2dx−Cµ −

∫
D−

(u+n )
q(x)dx. (2.5)
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For δ > 0, denote Eδ = {x ∈ B|2−δ < q(x)< 2}, and choose δ small enough such that

2S−1
N |Eδ |

2
N ≤ σ :=

(
1
2
− 1

2+ r

)
(1−S−1

N |D0|
2
N ). (2.6)

It follows that∫
D−

(u+n )
q(x)dx ≤

∫
Eδ

|un|q(x)dx+
∫

D−\Eδ

|un|q(x)dx

≤
∫

Eδ

(u2
n + |un|2−δ )dx+

∫
D−\Eδ

(|un|2−δ + |un|q−)dx

≤ S−1
N |Eδ |

2
N ‖un‖2 +C1(‖un‖2−δ +‖un‖q−). (2.7)

By (2.4), (2.5), (2.6), and (2.7), we have

C+1≥ 1
2

σ‖un‖2−C1(‖un‖2−δ +‖un‖q−)−Cµ . (2.8)

According to (2.8), we obtain {un} is bounded in H1
0,r(B). Up to a subsequence, we may assume

that {
un ⇀ u, in H1

0,r(B),
un→ u, in Ls(B), 1≤ s < 2∗.

For any integer pair (i, j), one has

‖ui−u j‖2 = 〈I
′
µ(ui)− I

′
µ(u j),ui−u j〉+

∫
B

P(x)
(

kµ(x,u+i )− kµ(x,u+j )
)
(ui−u j)dx

+
∫

B
Q(x)

(
(u+i )

q(x)−1− (u+j )
q(x)−1

)
(ui−u j)dx.

It follows from (2.4) that

〈I
′
µ(ui)− I

′
µ(u j),ui−u j〉 → 0, as i, j→+∞. (2.9)

According to the proof of Lemma 2.1, it is easy to see that

|kµ(x, t)| ≤ |t|q(x)−1 +
(

µ

A

)r
|t|q(x)+r−1.

By the Hölder inequality, we obtain∣∣∣∣∫B
P(x)(kµ(x,u+i )− kµ(x,u+j ))(ui−u j)dx

∣∣∣∣
=

∫
D+

(kµ(x,u+i )− kµ(x,u+j ))(ui−u j)dx

≤ C2

∫
B

(
|ui|+ |u j|+ |ui|q++r−1 + |u j|q++r−1) |ui−u j|dx→ 0, (2.10)

and ∣∣∣∣∫B
Q(x)((u+i )

q(x)−1− (u+j )
q(x)−1)(ui−u j)dx

∣∣∣∣
=

∫
D0
⋃

D−
((u+i )

q(x)−1− (u+j )
q(x)−1)(ui−u j)dx

≤ C3

∫
B

(
2+ |ui|+ |u j|

)
|ui−u j|dx→ 0 (2.11)
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as i and j tend to +∞. From (2.9)-(2.11), we have ‖ui−u j‖ → 0 as i, j→ +∞, which implies
that {un} contains a strongly convergent subsequence in H1

0,r(B). Hence Iµ satisfies the (PS)
condition. This completes the proof. �

In the following lemma, we verify that Iµ possesses the mountain pass geometry.

Lemma 2.3. Let (Q1), (Q2) and (Q3) hold. Then (1) there exist positive constants Λ0, ρ , and
m independent of µ such that Iµ(u) ≥ m > 0 with ‖u‖ = ρ for |D−| < Λ0; (2) there exists
u0 ∈ H1

0,r(B) such that ‖u0‖> ρ and Iµ(u0)< 0.

Proof. According to Lemma 2.1, we have∫
D+

Kµ(x,u+)dt ≤
∫

D+

u+kµ(x,u+)dx

≤
∫

D+

(1+ |u|r)|u|q(x)dx

≤
∫

D+

|u|q(x)dx+C
∫

D+

|u|r(u2 + |u|q+)dx

≤
∫

D+

|u|q(x)dx+C(‖u‖2+r +‖u‖q++r). (2.12)

For δ > 0, set Fδ = {x ∈ B|2 < q(x)< 2+δ}, and choose δ < r such that

σ1 = 1−S−1
N (|D0|

2
N +2|Fδ |

2
N )> 0. (2.13)

Then ∫
D+

|u|q(x)dx =
∫

Fδ

|u|q(x)dx+
∫

D+\Fδ

|u|q(x)dx

≤
∫

Fδ

(u2 + |u|2+δ )dx+
∫

D+\Fδ

(|u|2+δ + |u|q+)dx

≤ S−1
N |Fδ |

2
N ‖u‖2 +C(‖u‖2+δ +‖u‖q+). (2.14)

Define

Jµ(u) =
1
2

∫
B
|∇u|2dx− 1

2

∫
D0

u2dx−
∫

D+

Kµ(x,u+)dx.

By (2.12), (2.13) and (2.14), we obtain

Jµ(u) ≥
1
2

(
1−S−1

N (|D0|
2
N +2|Fδ |

2
N )
)∫

B
|∇u|2dx−C(‖u‖2+δ +‖u‖q++r)

≥ 1
2

σ1‖u‖2−C(‖u‖2+δ +‖u‖q++r).

If we choose ρ > 0 such that C(ρ2+δ +ρq++r)≤ 1
4σ1ρ2, then

Jµ(u) ≥
1
2

σ1ρ
2−C(ρ2+δ +ρ

q++r)≥ 1
4

σ1ρ
2 (2.15)
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for ‖u‖= ρ . By the Hölder inequality and the Sobolev imbedding theorem, we have∫
D−

1
q(x)
|u+|q(x)dx ≤

∫
D−

(u2 + |u|q−)dx

≤ |D−|
2
N |u|22∗+ |D−|

2∗−q
2∗ |u|q2∗

≤ C4(‖u‖2|D−|
2
N +‖u‖q|D−|

2∗−q
2∗ ), (2.16)

where | · |2∗ =
(∫

Ω
| · |2∗dx

) 1
2∗ . Choose Λ0 > 0 such that C4(ρ

2Λ
2
N
0 +ρqΛ

2∗−q
2∗

0 )≤ 1
8σ1ρ2, which

together with (2.15) and (2.16) implies that

Iµ(u) = Jµ(u)−
∫

D−

1
q(x)

(u+)q(x)dx≥ 1
8

σ1ρ
2 := m

with ‖u‖ = ρ for |D−| < Λ0. By definition of the function kµ , we obtain kµ(x, t) ≥ |t|q(x)−1.
According to (Q2), we know that there exists a positive measurable set U ⊂ D+ such that
q(x)≥ 2+q+

2 for any x ∈U. Fix a nonnegative radial function v0 ∈C∞
0 (U)\{0}. Then, for t > 0

sufficiently large, we obtain

Iµ(tv0)≤
t2

2

∫
U
|∇v0|2dx− t

2+q+
2

∫
U

|v0|q(x)

q(x)
dx < 0. (2.17)

Choosing u0 = t0v0 with t0 > 0 large enough, we have ‖u0‖> ρ and Iµ(u0)< 0. �

Now we are in a position to prove the main result of this section.

Proof of Theorem 2.1. According to the condition (Q2), we know that there exist σ2 > 0 and
a positive measurable set Ω⊂D−, such that q− ≤ q(x)≤ 2−σ2 for x ∈Ω. Fix a radial function
ϕ ∈C∞

0 (Ω)\{0}. For s > 0 sufficiently small, we have

Iµ(sϕ) =
1
2

s2
∫

B
|∇ϕ|2dx−

∫
B

1
q(x)
|sϕ|q(x)dx

≤ 1
2

s2
∫

Ω

|∇ϕ|2dx− s2−σ2

2−σ2

∫
Ω

|ϕ|q(x)dx

< 0.

Thus, we deduce that
c∗ = inf

u∈Bρ(0)

Iµ(u)< 0 < inf
u∈∂Bρ(0)

Iµ(u).

By app1ying the Ekeland’s variational principle in Bρ(0) (see [16]), we obtain that problem
(2.2) has a solution u

′
µ satisfying Iµ(u

′
µ) = c∗ < 0. From Lemmas 2.2 and 2.3 we see that the

functional Iµ satisfies the (PS) condition and has the mountain pass geometry. Define

Γ = {γ ∈C([0,1],H1
0,r(B))| γ(0) = 0, γ(1) = u0}, c∗ = inf

γ∈Γ
max

t∈[0,1]
Iµ(γ(t)).

By the mountain pass theorem (see [7]), we obtain that problem (2.2) has a solution u
′′
µ satisfying

Iµ(u
′′
µ) = c∗ > 0. Let uµ be a nontrivial critical of Iµ . After a direct calculation, we derive that

‖u−µ ‖2 = 〈I′µ(uµ),u−µ 〉= 0, which implies that u−µ = 0. Hence, uµ ≥ 0. Since Iµ(uµ) 6= 0 = I(0),
we have uµ 6= 0. By the Strong Maximum Principle (see [17]), we obtain uµ is a positive
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solution of problem (2.2). Since Iµ(u
′
µ)< 0 < Iµ(u

′′
µ), we know that u

′
µ and u

′′
µ are two positive

solutions to problem (2.2). It follows from (2.17) that

c∗ ≤ max
t∈[0,1]

Iµ(tu0)≤ max
t∈[0,1]

(t2

2

∫
B
|∇u0|2dx− t2+q+

q+

∫
U
|u0|q(x) dx

)
= L.

Therefore, c∗ is uniformly bounded. That is, we have

Iµ(u
′
µ)< 0 < Iµ(u

′′
µ)< L.

�

3. A PRIORI ESTIMATE AND THE PROOF OF THEOREM 1.1

In this section, we prove that radial symmetric solutions of auxiliary problem (2.2) suffi-
ciently small µ are indeed solutions of original problem (1.3). For this purpose, we need the
following uniform L∞-estimate for critical points of the functional Iµ .

Lemma 3.1. If v is a positive radial symmetric solution to problem (2.2), then v(x) is decreasing
about |x|.

Proof. Set ρ = |x|. Since v is positive radially symmetric, one has

− 1
ρN−1

d
dρ

(
ρ

N−1 dv
dρ

)
= (1−Q(ρ))

(
v

mµ(v)

)ρ

vq(ρ)−1 +Q(ρ)vq(ρ)−1 ≥ 0,

which implies that d
dρ

(
ρN−1 dv

dρ

)
≤ 0. In view of ρN−1 dv

dρ
|ρ=0 = 0, we have ρN−1 dv

dρ
≤ 0. That

is, dv
dρ
≤ 0. Therefore, v(x) is decreasing about |x|. �

Lemma 3.2. Let (Q1), (Q2) and (Q3) hold. Assume that v ∈ H1
0,r(B) is a positive radial sym-

metric solution to problem (2.2) satisfying Iµ(v) 6 L. Then there exists a constant M0 > 0
independent of µ such that

∫
B |∇v|2dx≤M0.

Proof. Since q(0)> 2, we have ρ > 0 and σ > 0 such that

q(y)≥ 2+2σ , f or y ∈ Bρ(0). (3.1)

Without loss of generality, we assume

4ρ ≤ R = d(0) = dist(0,D0),

and

2 < q(y)≤ 2+σ , f or y ∈ Dρ = {y ∈ D+|d(y) = dist(y,D0)≤ ρ}. (3.2)

Letting x ∈ D0
⋂

Dρ , y ∈ Bρ(x), y = y− x ∈ Bρ(0), we have

|y| ≥ |x|− |y| ≥ R−ρ ≥ ρ ≥ |y|. (3.3)

By (3.3) and Lemma 3.1, we have v(y)≤ v(y) for y∈ Bρ(x) and y = y−x∈ Bρ(0). On the other
hand, (3.1) and (3.2) yield that q(y) ≤ 2+σ ≤ 2+ 2σ ≤ q(y) for y ∈ Bρ(x), y ∈ Bρ(0). Note
that if v(y)≤ 1, µ ∈ (0,1], then

v(y)kµ(y,v(y)) =
(

v(y)
mµ(v(y))

)r

v(y)q(y) = v(y)q(y) ≤ 1. (3.4)
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Note that
(

t
mµ (t)

)r
is monotonically increasing on the interval (0,+∞). If v(y)≥ 1, then

v(y)kµ(y,v(y)) =

(
v(y)

mµ(v(y))

)r

v(y)q(y) ≤
(

v(y)
mµ(v(y))

)r

v(y)q(y)

≤
(

v(y)
mµ(v(y))

)r

v(y)q(y) = v(y)kµ(y,v(y)). (3.5)

For x ∈ D0
⋂

Dρ , one concludes from (3.4) and (3.5) that∫
Bρ (x)

vkµ(y,v)dy≤
∫

Bρ (x)
dy+

∫
Bρ (0)

vkµ(y,v)dy. (3.6)

By Lemma 2.1, we have

L ≥ Iµ(v)−
1
2
〈I
′
µ(v),v〉

=
∫

D+

(
1
2

vkµ(x,v)−Kµ(x,v)
)

dx−
∫

D−

(
1

q(x)
− 1

2

)
vq(x)dx

≥
∫

D+

(
1
2
− 1

q(x)

)
vkµ(x,v)dx−C

∫
D−

vq(x)dx. (3.7)

By (3.7), we obtain ∫
Bρ (0)

vkµ(x,v)dx≤C
(

1+
∫

D−
vq(x)dx

)
. (3.8)

Obviously, the family of open sets {Bρ(x)|x ∈ D0
⋂

Dρ} is an open cover of the close set D 1
2 ρ

.

Therefore, there exists a finite number of sets Bρ(x1),...,Bρ(xk) such that D 1
2 ρ
⊂
⋃k

i=1 Bρ(xi),

where xi ∈ D0
⋂

Dρ , i = 1,2, ...,k. By (3.6) and (3.8), we have∫
D 1

2 ρ

vkµ(x,v)dx ≤
k

∑
i=1

∫
Bρ (xi)

vkµ(x,v)dx

≤
k

∑
i=1

(∫
Bρ (xi)

dy+
∫

Bρ (0)
vkµ(y,v)dy

)
≤ C

(
1+

∫
D−

vq(x)dx
)
. (3.9)

Since v is a positive solution to problem (2.2), we have∫
B
|∇v|2dx =

∫
D+

vkµ(x,v)dx+
∫

D0

v2dx+
∫

D−
vq(x)dx. (3.10)

By (3.7) and (3.9), we deduce from (Q1) that∫
D+

vkµ(x,v)dx =
∫

D 1
2 ρ

vkµ(x,v)dx+
∫

D+\D 1
2 ρ

vkµ(x,v)dx≤C
(

1+
∫

D−
vq(x)dx

)
. (3.11)

It follows from (3.10) and (3.11) that
∫

B |∇v|2dx ≤ C +
∫

D0
v2dx+C5

∫
D− vq(x)dx. For δ > 0,

denote Eδ ={x ∈ B| 2−δ < q(x)< 2}. We can choose δ small enough such that

S−1
N (|D0|

2
N +C5|Eδ |

2
N )< 1. (3.12)
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Then ∫
D−

vq(x)dx =
∫

Eδ

vq(x)dx+
∫

D−\Eδ

vq(x)dx

≤
∫

Eδ

(v2 + v2−δ )dx+
∫

D−\Eδ

(v2−δ + vq−)dx

≤
∫

Eδ

v2dx+C(‖v‖2−δ +‖v‖q−). (3.13)

By (3.12) and (3.13), we have∫
B
|∇v|2dx ≤ C+

∫
D0

v2dx+C5

∫
Eδ

v2dx+C6(‖v‖2−δ +‖v‖q−)

≤ (|D0|
2
N +C5|Eδ |

2
N )|v|22∗+C7(1+‖v‖2−δ +‖v‖q−)

≤ S−1
N (|D0|

2
N +C5|Eδ |

2
N )‖v‖2 +C7(1+‖v‖2−δ +‖v‖q−).

Since S−1
N (|D0|

2
N +C5|Eδ |

2
N )< 1, q− < 2, we obtain that there exists M0 > 0 independent of µ

such that
∫

B |∇v|2dx≤M0. This completes the proof. �

Lemma 3.3. Let (Q1), (Q2), and (Q3) hold. If v is a positive radial symmetric critical point of
Iµ with Iµ(v)≤ L, then there exists a positive constant M independent of µ such that ‖v‖L∞(B) ≤
M.

Proof. Let α > 2, B δ

2
(0)⊂ D+, and ζ ∈C∞

0 (B δ

2
(0),R). By the Young inequality, we have

−
∫

B δ
2
(0)

ζ
2vα−1

∆vdx = (α−1)
∫

B δ
2
(0)

ζ
2vα−2|∇v|2dx+2

∫
B δ

2
(0)

ζ vα−1
∇v ·∇ζ dx

=
4(α−1)

α2

∫
B δ

2
(0)

ζ
2|∇v

α

2 |2dx+2
∫

B δ
2
(0)

ζ v
α

2 ∇v
α

2 ·∇ζ dx

≥ 2(α−1)
α2

∫
B δ

2
(0)

ζ
2|∇v

α

2 |2dx− α2

2(α−1)

∫
B δ

2
(0)

vα |∇ζ |2dx

≥ 1
α

∫
B δ

2
(0)

ζ
2|∇v

α

2 |2dx−α

∫
B δ

2
(0)

vα |∇ζ |2dx. (3.14)

On the other hand, one has∫
B δ

2
(0)

(
P(x)

(
v

mµ(v)

)r

vq(x)−1 +Q(x)vq(x)−1
)

vα−1
ζ

2dx

=
∫

B δ
2
(0)

(
v

mµ(v)

)r

vq(x)+α−2
ζ

2dx

≤
∫

B δ
2
(0)

vα
ζ

2dx+
∫

B δ
2
(0)

vq++r+α−2
ζ

2dx. (3.15)
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Combining (3.14) with (3.15), and noticing that v is a solution to problem (2.2), we obtain

∫
B δ

2
(0)

ζ
2|∇v

α

2 |2dx

≤ α

α

∫
B δ

2
(0)

vα |∇ζ |2dx+
∫

B δ
2
(0)

vα
ζ

2dx+
∫

B δ
2
(0)

vq++r+α−2
ζ

2dx

 . (3.16)

Suppose that δk =
δ

4

(
1+ 1

2k

)
and ζk ∈C∞

0 (Bδk
(0),R) has the following properties: 0≤ ζk ≤ 1,

δk = 1 for x ∈ Bδk+1
(0), and |∇ζk| ≤ 1

4(δk−δk+1)
= 2k+1

δ
. B δ

2
(0) and ζ are taken to be Bδk

(0) and
ζk in inequality (3.16), respectively. Using the Hölder inequality, we have

(∫
Bδk+1

(0)
v

2∗α

2 dx

) 2
2∗

≤

(∫
Bδk

(0)

(
ζkv

α

2

)2∗

dx

) 2
2∗

≤C
∫

Bδk
(0)
|∇(ζkv

α

2 )|2dx

≤C

(∫
Bδk

(0)
ζ

2
k |∇v

α

2 |2dx+
∫

Bδk
(0)

vα |∇ζk|2dx

)

≤Cα

((
α +

1
α

)∫
Bδk

(0)
vα |∇ζk|2dx+

∫
Bδk

(0)
vα

ζ
2
k dx+

∫
Bδk

(0)
vq++r+α−2

ζ
2
k dx

)

≤Cα

(((
α +

1
α

)
4k+1

δ 2 +1
)∫

Bδk
(0)

vαdx+
∫

Bδk
(0)

vq++r+α−2dx

)

≤Cα

α4k+2

δ 2 |Bδk(0)|
q++r−2

2∗ +

(∫
Bδk

(0)
v2∗dx

) q++r−2
2∗
(∫

Bδk
(0)

v
2∗α

2∗−q+−r+2 dx

) 2∗−q+−r+2
2∗

.

By the Sobolev embedding theorem and Lemma 3.2, we obtain

(∫
Bδk

(0)
v2∗dx

) q++r−2
2∗

≤ C

(∫
Bδk

(0)
(|∇v|2 + v2)dx

) q++r−2
2

≤ C8

(∫
B
|∇v|2dx

) q++r−2
2

≤ C8M
q++r−2

2
0 .
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According to the above two inequalities, we have(∫
Bδk+1

(0)
v

2∗α

2 dx

) 2
2∗

≤Cα

(
α4k+2

δ 2 |Bδk
(0)|

q++r−2
2∗ +C8M

q++r−2
2

0

)(∫
Bδk

(0)
v

2∗α

2∗−q++r+2 dx

) 2∗−q++r+2
2∗

≤Cα
24k+1

(∫
Bδk

(0)
v

2∗α

2∗−q+−r+2 dx

) 2∗−q+−r+2
2∗

.

It implies that

‖v‖
L

2∗α
2 (Bδk+1

(0))
≤
(

Cα
24k+1

) 1
α ‖v‖

L
2∗α

2∗−q+−r+2 (Bδk
(0))

. (3.17)

Now we carry out an iteration process. Set βk = 2
(2∗−q+−r+2

2

)k
α for k = 0,1, · · · . Then

2∗
2∗−q+−r+2βk+1 =

2∗
2 βk. By (3.17), we have

‖v‖L2∗βk+1(Bδk+1(0)
)
≤
(

Cβ
2
k+14k+2

) 1
2βk+1 ‖v‖L2∗βk (Bδk(0)

)
.

This implies that

‖v‖L2∗βk (Bδk(0)
)
≤C

∑
k
j=1

1
2β j ·Πk

j=1β

1
β j
j ·4

∑
k
j=1

j+1
β j ‖v‖

L2∗
(

B δ
2 (0)

)

≤C
1
2 ∑

k
j=1 β

− j
1 ·β ∑

k
j=1 jβ− j

1
1 ·4∑

k
j=1( j+1)β− j

1 ‖v‖
L2∗
(

B δ
2 (0)

).

Since β1 > 2, the series
∞

∑
j=1

β
− j
1 and

∞

∑
j=1

jβ− j
1 are convergent. Letting k→∞, we conclude from

Lemma 3.2 that

‖v‖
L∞

(
B δ

4
(0)
) ≤C‖v‖

L2∗
(

B δ
2
(0)
) ≤C

∫
B δ

2
(0)
(|∇v|2 + v2)dx

 1
2

≤C9

(∫
B
|∇v|2dx

) 1
2

≤M.

By Lemma 3.1, we obtain
‖v‖L∞(B) ≤ ‖v‖

L∞

(
B δ

4 (0)

) ≤M.

The proof is complete. �

Proof of Theorem 1.1. By definition of mµ , we have mµ(t) = t for t ≤ 1
µ

. It is easy to see
that problem (2.2) reduces to problem (1.3) for |u| ≤ 1

µ
. Let µ > 1

M . We see that two positive

radial symmetric solutions u
′
µ and u

′′
µ of problem (2.2) are indeed two positive radial symmetric

solution to problem (1.3). �
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