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Abstract. In this paper, we establish a quantum version of the Hermite-Hadamard-Mercer inequali-
ties using the well-known Jensen-Mercer inequality. Moreover, we derive some new g-midpoint and
g-trapezoidal type inequalities for differentiable functions. The newly developed inequalities are also
shown to be the extensions of preexisting inequalities in the literature.
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1. INTRODUCTION

The Hermite-Hadamard inequality, named after Charles Hermite and Jacques Hadamard, is
commonly known as Hadamard’s inequality, that is, if a function f : [a,b] — R is convex, the
following double inequality holds:

f(a;b> Sbia/abf(”dxgw' (D

If f 1s a concave mapping, the above inequality holds in the opposite direction. Inequality (1.1)
can be proved by using the Jensen inequality. There are numerous researches in the direction of
Hermite-Hadamard for different kinds of convexities. For example, in [1, 2], the authors estab-
lished some inequalities linked with midpoint and trapezoid formulas of numerical integration
for convex functions.

In 2003, Mercer [3] proved another version of Jensen inequality, which is called Jensen-
Mercer inequality and stated as follows.

Theorem 1.1. For a convex mapping f : [a,b] — R, the following inequality holds for each
€ la,b):

f<a+b Z”JXJ> < f(a Zujf xj

J=i
where u; € [0,1] and ¥ _ju;=1.
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After that, in 2013, Kian et al. [4] used this new Jensen inequality and established the fol-
lowing new versions of Hermite-Hadamard inequality:

Theorem 1.2. For a convex mapping f : [a,b] — R, the following inequalities hold for all
x,y € la,bland x < y:

1
flaro-"32) <s@+ro- L [ rwans @ re-£(52)  a
and
f(ﬁb—ﬂ) < L v wdu (1.3)
2 Yy —XJatb—y
fla+b—x)+f(a+b—y)
= 2
0 +F0)

< fla)+f(b)-——
Remark 1.1. It is easy to see that inequality (1.3) becomes the traditional Hermite-Hadamard
inequality (1.1) for convex functions by setting @ =x and b = y.

For more recent inequalities related to (1.2) and (1.3), one can consult [5, 6, 7, 8, 9, 10].

On the other hand, quantum calculus is an important branch of calculus and it has a wide
range of applications in the fields of mathematics and physics. Because of the numerous ap-
plications of quantum calculus (shortly, g-calculus) without limit calculus, many researchers
began working on it and applying its concepts in various areas, such as differential equations,
integral equalitions, mathematical modeling, and integral inequalities.

In [11, 12], two different versions of g-Hermite-Hadamard inequalities and some estimates
were obtained based on g-derivatives and integrals (defined in Section 2) . The g-Hermite-
Hadamard inequalities are described as:

Theorem 1.3. [11, 12] For a convex mapping f : [a,b] — R, the following inequalities hold:

vasth af (@) + £ (b)
f(W) = bo a/f qx<T’ o

Remark 1.2. It is easy to observe that by adding (1.4) and (1.5), we have following g-Hermite-
Hadamard inequality (see [12]):

F(E0) < s [ 10 e [0 Pap] < HOEEL

Recently, Ali et al. [13] and Sitthiwirattham et al. [14] used new techniques to prove the
following two different and new versions of Hermite-Hadamard type inequalities:
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Theorem 1.4. [13, 14] For a convex mapping f : [a,b] — R, the following inequalities hold:

b 1 [ # a+b b b
1(457) = 55| e S [ s a;bdqx]swa )

2 —a
e b b
f(“;b) < bia @ adqx—l—/a;bf(x) bdqxlgw. (1.8)

Remark 1.3. By setting the limit as ¢ — 1~ in (1.4)-(1.8), we recapture the traditional Hermite-
Hadamard inequality (1.1).

There has been much research done in the direction of g-integral inequalities for different
kind of convexities. For example, in [15], some new midpoint and trapezoidal type inequalities
for g-integrals and g-differentiable convex functions were established. The authors of [16, 17,
18, 19] used g-integral and established Simpson’s type inequalities for g-differentiable convex
and general convex functions. For more recent inequalities in g-calculus, one can consult [20,
21, 22, 23, 24, 25] and the references therein.

Inspired by these ongoing studies, we consider Jensen-Mercer inequality and establish g-
Hermite-Hadamard inequalities using the left and right g-integrals. Moreover, we derive some
midpoint and trapezoidal type inequalities using the Jensen-Mercer inequality. It is also shown
that the newly established inequalities are the extension of some already existing inequalities.

2. PRELIMINARIES OF g-CALCULUS AND SOME INEQUALITIES

We recall some basics of quantum calculus in this section. For the sake of brevity, let g €
(0,1), and we use the following notation (see [26]):

1—-4"

—14qg+¢+...+4"".
1—¢q

], =

Definition 2.1. [25] The left or g,-derivative of f : [a,b] — R at x € [a, b] is expressed as:
fx)—flgx+(1—g)a)
(1-¢g)(x—a)
Definition 2.2. [12] The right or ¢’-derivative of f : [a,b] — R at x € |a, b] is expressed as:
flgx+(1-q)b) = f(x)
(1-g)(b—x)
Definition 2.3. [25] The left or g,-integral of f : [a,b] — R at x € [a, D] is defined as:

X

[70) . =0-0) =0 ¥ 7 @5+ -"a).

n=0

aqu (x) =

, X # a. (2.1)

PD,f (x) = , X # .

a

Definition 2.4. [11] The right or ¢’-integral of f : [a,b] — R at x € [a,b] is defined as:
b

[7@) P == 6=0) L 41 @5+ -4b).

n=0

X
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Lemma 2.1. [18] For continuous functions f,g : [a,b] — R, the following equality is true:

| 80 "Dyf (tat (1= 1))t

T b- a/ Dyg (1) qta+(1—qt)b)dqt—g(t)f(tZ:(ll—f)b) .

Lemma 2.2. [19] For continuous functions f,g : [a,b] — R, the following equality is true:

/g D,f tb—|—(1—t) a)dgt

gt)ftb+(1—t)a
b—a

e a/Dqg flgtb+(1—qgt)a)dyt.

3. g-HERMITE-HADAMARD-MERECER INEQUALITIES

In this section, we prove two new and different Hermite-Hadamard-Mercer type inequalities.

Theorem 3.1. For a convex function f : [a,b] — R, the following inequalities hold:

/Xﬂf du+/f ydu] 3.1)

< s@+r0)-r(*5?)

f( +b—’?> < fla)+/(b)

y X

and

a+b—)% a+b—x
/ f () ayp—ydy u~|—/ f(u) “+b_xdqu] (3.2)

f<a+b—x+y) < 1

2 y—x |Jatb—y +h—p
fla+b—x)+f(a+b—y)

- 2

< flay+ (o)~ LI

forall x,y € |a,b] and x < y.
Proof. From the Jensen-Mercer inequality, we have

Faro-"5") < 1@+ 70 5170+ O). 63)

By setting u = 2x+ “lyandv = 2y+ —x we have

f( +b—¥) gf(a)+f(b)—%[f(%x+?y) +f(%y+?x)} (3.4)
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g-Integrating (3.4) with respect to # over [0, 1] and using Definitions 2.3 and 2.4, we have

ty
(oro-3)

< fla)+/( )—%[/01 <f(%x+?y) +f<§y+?x))dqt}
= r@+r6) -5 [ [ (2400 )+f<r$+<1—r> ) )]

- f()+f<)—y%cl/xm qu+/ ) *dgu

Thus the first inequality in (3.1) is proved. To prove the second inequality, we use the inequality

(1.8) to obtain
1 x+\ X +
[/ du+/ ydu]>f( y)
Yy—X |Jx
which implies that

fla)+f(b l/f du+/ ydu]ﬁf(a)ﬂ(b)—f()?)-

Thus the proof of inequality (3.1) is completed.
Now we prove the inequality (3.2). From the convexity, we have

f(a+b—u+v) _ f<a+b—u+a+b—v>

2
< —[fla+b—u)+ f(a+b—V)].

By settingu =5 (a+b—y)+ %L (a+b—x) andv= "% (a+b—x)+ %= (a+b—y), we have

f(a—I—b—x;y < % {f (% (a+b—y)+?(a+b—x))
+f(%(a+b—x)—|—2;t(a+b—y))}. (3.5)
]

g-Integrating (3.5) with respect to # over [0, 1] and Definitions 2.3 and 2.4, we have

a b—— a+b—x
f(a-l-b—x;y) < 1 [/ i S (u) avb—ydy M+/ ’ f(u) a+b_xdq”]-

y—Xx |Jat+b—y +b—52

Thus the first inequality in (3.2) is proved. We re-use the convexity to prove the second inequal-

ity in (3.2) as follows:
t 2—t 4 2—t
f (E (a+b—y)+T(a+b—x)) < 5f(a+b—y)+7f(a—l—b—x) (36)

and

f(a+b—x)+?f(a+b—y). (3.7)

SRS

f(%(ﬂH—b—x)—l-?(a—kb—y)) <
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By applying convexity after adding (3.6) and (3.7), we have

f(%(a+b—y)+?(a+b—x))+f( (atb— x)+%(a+b y)> (3.8)
< fla+b—x)+f(a+b—Yy)
< 2[f(a)+f(b)]—[f (x)+f()].

Thus we obtain the required inequality by g-integrating (3.8) with respect to 7 over [0, 1] and
from Definitions 2.3 and 2.4. UJ

Remark 3.1. In Theorem 3.1, if we set the limit as ¢ — 17, then we recapture inequalities (1.2)
and (1.3).

Remark 3.2. In Theorem 3.1, if we set x = a and y = b, then inequality (3.2) becomes inequality

(1.8).
4. MIDPOINT INEQUALITIES

In this section, we establish some new midpoint type inequalities for differentiable functions
that satisfy to Jensen-Mercer inequality:
Let us start with the following lemma.

Lemma 4.1. Let f : [a,b] — R be a g-differentiable mapping. If ,Dyf, quf are q-integrable
and continuous, then the following equality holds, for all x,y € |a,b] and x < y,

1 a+b—232 a+b—x +
_[/ 2 f( )a+b yd u+/ (I/t) a+bxdqu] _f(a+b_u>
y—Xx 2
y

a+b—y +b— x+y

— 1 —
= Tx{/o qthqf<a+b—(%x+§y)>dqt
1 _

Proof. From Lemma 2.1 and Definition 2.4, we have

1 7 _
/()qthqf(a—f—b—(Ttx—F%y))dqt
1
:/0 qthqf<t< b——;y)+(1—t)(a+b—x))dqt
2 2q (!
=—quxf( +b—¥)+y—qx/ f(qt (a+b—¥>+(1—qt)(a+b—X))dqf
. 2q xX+y n +y
- (el Bty (o)

+(1_qn)(“+b_x))—(1—(1)f<a+b—x+y)}

2
4 a+b—x 2
= / f(u) “+b_xdqu——f<a+b—x+y>.
a y—x

(v —x)* Jarb-rp 2

4.1)
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Similarly, from Lemma 2.2 and Definition 2.3, we have

1 X+
/0 qtaqu(t (a-l—b—Ty)—I—(l—t)(a-l—b—y))dqt 4.2)
2 x+y> 4 atb—25"
= a+b— — / u _ydgu.
y_xf< D) (y_x)z by f( )a+b ytg
Thus we obtain the required equality by subtracting (4.2) from (4.1). 0

Theorem 4.1. If the conditions of Lemma 4.1 hold and ‘aDq f |,
have the following inequality:

atb—"5" a+b—x
L[/ J (1) avb—ydy u-i-/ f(u )“+b_"dqu] —f(a+b_ﬂ)‘

qu f ! are convex, then we

y—x |Jatb—y by 2
q\[Bl,+4
<7 | (Par@l+[our @) - (W”M@)Jr%]q%ﬂy))

q(Bb+qﬂ

‘ DCIf ’""‘ D61f )D (mlaqu(Y)} 2[3] |a qf( ))]

Proof. From equality (4.1) and Jensen-Mercer inequality, we have

at+b—*2 atbex
= [/ P00 vt [ S >d] —f(a+b_’ﬂ)‘

[ g

y—x (Jat+b—y +b—

_ 1 2y
< [ o (e (e )
1 _
+ 0 qt aqu <a+b— (%y#—%x)) dql‘}
y x[ [ b b b L p
) {/0 qt( Dyf (a ’+‘qu }—_)qu —E‘qu()’)‘)

1
q

=

_|_
S

(1uas @]+ 1Dt 0] =25 Dy )] - 5 oDur )]

q\Bl,+4
ﬁ(!”qu a)|+ "Dy 0)]) - (W%qﬂxwﬁ%ﬂy))

'\<

q(BL+qﬂ
i ([aDaf (@) +[Dgf (B)]) = (‘7{@T—§r—‘bleTyN 20, D qf())]

which completes the proof. U
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Remark 4.1. In Theorem 4.1, if we set x = a and y = b, then we have the following inequality

b—al| g q<[3]q+q2>
< 8 @‘bD‘If( )’+ [Z]q[3]q ’ DQf(b)
q(B3l,+) q ]
+ [2]q [3]q |a qf(a)‘ + [3]q ‘a qf(b)’ |

This was established by Ali et al. in [13].

Remark 4.2. If we take the limit as ¢ — 17, x = a, and y = b in Theorem 4.1, then Theorem
4.1 gives [1, Theorem 2.2].

Theorem 4.2. If the conditions of Lemma 4.1 hold and |aD *, s> 1 are convex, then

we have the following inequality:

o _% a+b—x
L[/ W) ato- ydu+/ (u)“H’_xdqu] —f( b_m)‘

y—x | Jatb—y +h—5EY 2
1-4

y=—x{ ¢ q s
S (@) [(@()b’)gf )| +[our @)

Q<[3]q+q2) N q S
—m ’quf(x)‘ - m ’quf()’)

) oalBl e '

+ (ﬁ(‘aqu(aﬂ +}aqu(b)‘ ) Wﬂ qf( )‘ [ ]q ‘a qf( )‘

(4.3)
Proof. From equality (4.1) and the power mean inequality, we have

x+y

1 a+b—=> a+b—x
yTx[/ F (1) avpydg u+/ f(u) “+b_xdqu] —f(a—kb—ﬂ)‘

a+b—y +h—2 2

_ 1 2
< 4x[/0 qt quf(aer—(Tterzy))
1

aqu<a+b (T)H—;x)) dqt]

<

dgt

+ qt

S—
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_ 1 -5 1 5 N
§¥<A qtdqt> [(/O qt ”qu(a+b—<7tx+2y>) dqt)
! 2—t ¢ * g
+(/O qt aqu(a+b—<Ty—l—§x)> dqt> ]

By the Jensen-Mercer inequality, we have

x+y

a+b—x

_1 e a+b—x xX+y
y—x [/¢l+b—y f()a+b ydu+/+b x+) (u) dqu —f a+b_T

1-1 \
<2 (i) (& Govol oo

q(8),+4¢ s ‘%
—W ‘quf(x)) - %3](1 ‘quf(y)

N

(o 4oy o)

q

q([3]q+q2) q %

—m |Dof (V)] — m [aDgf (x)[

Hence, the proof is completed. U

Remark 4.3. In Theorem 4.2, if we set x = a and y = b, then we have the following inequality

bia[/aa du—l—/ u) bd u]—f<a;b)

g(b-a) | [2l"Paf @[ + (Bl +42) 'Dyf B
= 203

1
s

This was established by Ali et al. in [13].

Remark 4.4. In Theorem 4.3, if we set ¢ — 1, then Theorem 4.2 gives [5, Corollary 3.10].
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Theorem 4.3. If the conditions of Lemma 4.1 hold and |aD
we have the following inequality:

N
, s > 1 are convex, then

1 a+bf— atbx o o
y—x [/Hby () ato-y qLH—/ b x+y T dgu —f(a+b—T>
a9 (1 o (ol ([2]q+q) "Daf @'+ "Daf O)[) *
< P () | (el poures o

([2] +q>‘ aDqf (y) ‘ +’ aDgf (x )‘ %

202, ’

+ | faDaf @] +[aDof B)[ —

where r~ 1 +s 1 =1.

Proof. From equality (4.1) and the Holder inequality, we have

a b_f a+b—x
L[/JF f () atp—ydg M—l—/Jr f(u) “*bxdqu] _f(a+b_m)

Y—X | Ja+b—y +b x+y 2
_ 1 9 _
)%{/0 qt quf(a—i-b—(Ttx-l—%y))
1 2—t t
+/0 qt aqu <a+b— (Ty—i— EX)> dqt:|
_ 1 . % 1 2 _¢ t
%(/0 (qt) dqt) [(/O quf<a+b—(Tx+§y))
+/1Dfa+b—£+x sdt%
0 a=q 2 y 2 q .

By the Jensen-Mercer inequality, we have

a—O—b—m a+b—x
L[/ J () avb—ydg u-i-/ f(u )“*b_"dqu] —f(a_H,_M)

y—X | Jat+b—y +b—2
1

< o ([Hlﬂ) (Pur @

(121, +4) "Dof @) + D 0]\

IN

dgt

IN

N
dqt>

+°D,f (b)

1

2),+4) [aDaf 0)[" + Dy ()"
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Hence, the proof is completed. U

Remark 4.5. In Theorem 4.2, if we set x = a and y = b, then we have the following inequality

[ ] (23

This was established by Ali et al. in [13].

Remark 4.6. In Theorem 4.3, if we set the limit as ¢ — 1™, then Theorem 4.3 gives [5, Corol-
lary 3.13].

5. TRAPEZOIDAL INEQUALITIES

In this section, we establish some new trapezoidal type inequalities for differentiable func-
tions that satisfy to Jensen-Mercer inequality:
Let us start with the following lemma.

Lemma 5.1. Let f : [a,b] — R be a g-differentiable mapping. If ,Dyf, qu f are g-integrable
and continuous, then the following equality holds for all x,y € [a,b] and x < y:

a+b—x

— — a+ —%
flatb=x)tflatb=y) 1 [/a f(u) arp— ydu+/

2 Y—X |Jatb—y

1
y—x b 2—t t
L o (s (B ) )
1 2—t t
+/O (gt —1) oDgf | a+b— Ty—l—Ex dgt| .
Proof. From Lemma 2.1 and Defnition 2.4, we have
1 2—t t
/(l—qt) quf<a+b—(Tx+§y)>dqt (5.1)
0

= /1 "Dof (a+b— Ex—i—£ dt—/l t'Df(a+b— E}H—E dgt
B 0 1 2 2y a ()q q 2 2y q

= b [

yx (=07 Jaso-zp

(u) a-l—b—xdqu]

+h— x+y
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Similarly, from Lemma 2.2 and Definition 2.3, we have

1 2—t 1t
/ (gt —1) oDyf la+b— | ——y+=zx | |dgt (5.2)
0 2 2
2 4 atb—5"
= —fla+b—y)— / f(u) qip_ydgu.
s/ ) P Jusss () atb—ydg
Hence, we obtain the resultant equality by adding (5.1) and (5.2). 0J

Remark 5.1. In Lemma 5.1, if we set x = a and y = b, then we have the following equality:

a+

L du+/ b%4
_ b;"[/olu—qt) qf<_a+ ) qH/ (?cﬂr%b)dqt].

This was established by Ali et al. in [13].

fla+r®) 1

2 y—x

Theorem 5.1. If the conditions of Lemma 5.1 hold and ’aDq f |,
have the following inequality:

qu f { are convex, then we

‘f(a+b—X)+f(a+b—y)

2
L L [ / +:”ﬂ s Zb f; (u) “*“dqu]
[ o o)
(2B ‘bD f(x))+ : )bD f(y))
0.0, > 2 (14, +402),)

+ﬁ(\aaqf<a>\+\wqf<b>\)

23], - ¢ 1
- (m oDy f ()| + 2([4]q+q 2q> |aDgf (x))|
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Proof. From equality (5.1) and Jensen-Mercer inequality, we have

'f(a—i—b—x)+f(a+b—y)
2

1 a—i—b—m a+b—x b
[T wdgit [ )

y—x +b—y +h—2

/1(1—qt) quf<a+b—<2;x+£y))
0 2 2
aDqf (a-l—b— (?y-i—%x)) dql‘:|
/01(1—C]f)(‘quf ‘+‘quf ‘ _‘quf ( 2‘bD"f D)dqt
+/01 1—qt) (| aDgf (@)| +|aDyf (b ( ‘qu \+ Do ( )|>>qu}

(
- [ (ool o)
[

23], -4’ 1
- (quq "our 9]+ 2 (14, +4q12),) ‘quf(y)‘)

dyt

IN
<
|
=
—

IN

(2Bl,-4 1 .
(2[2]q 3, |aqu(y)|+2([4]q+q[2]q) aDaf ”)} '

Thus the proof is completed. U

Remark 5.2. In Theorem 5.1, if we set x = a and y = b, then we have the following inequality:

a+h
/ ad, u+/ bd u]
a

"Dyt (@] + (B3], +q[21q) "Dyt (b)]

‘f(a)Jrf(b)_ 1
2 b—a
(b—a)

= 8[2][3]

q[q

+(Bly+4l2,) Do (@)] + [Daf )]
This was established by Ali et al. in [13].

Remark 5.3. If we take the limit as ¢ — 17, x = a and y = b, then Theorem 5.1 gives [2,
Theorem 2.2].
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Theorem 5.2. If the conditions of Lemma 5.1 hold and |aDq f ‘S, ‘qu f ’s, s > 1 are convex, then
we have the following inequality:

'f(a+b—x)+f(a+b—y)

([23 (P« sy

q

[

- 1
2([4L,+q[21q

y—x +b—y +h—2
1 s s
+(2— D, @]+ D))

2
1 a+h—% a+b—x
-—— [/a [ () atp—ydg u+/ f(u) a+b_xdq”]
-t
< yx( L
4\ 2],
2[3]q b b
213, 1 ARE
|aDgf )]+ [aDgf ()] :
(2% ' 2 (@, +al2,)
Proof. From equality (5.1) and the power mean inequality, we have

(S

'f(a+b—x)+f(a+b—y)

2
L s ]
< )%C[/O](l—qt) quf(a+b—<ZTx+§y)> dyt
—1—/01(1—qt) aqu(cH—b— (?H%x)) dqt]
I T )

([ a-an o sdqt)il-

of (a+b— (?y—l—%x))
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From the Jensen-Mercer inequality, we have

’f(a—i—b—x)+f(a+b—y)

50

@ =

’quf »)

2
_L [/aa—i—b—zf( ) . yd u+/a+b X (u) “‘H’_xdqu]
g 2([4]q+q[2]q>
1
(W DS @ + DS )

y—x |Jatb—y +h—2
({21](] <‘bDQf
q

11
_ _(L) |
- 4 \[2
B 2[3]q—q3 s 1 X * %
(z[z]q A, 1P+ O +z(wq+q[2]q) Duf ) )) ] |
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Hence, the proof is completed. 0

Remark 5.4. In Theorem 5.2, if we set x = a and y = b, then we have the following inequality:

This was established by Ali et al. in [13].
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N
, s > 1 are convex, then

Theorem 5.3. If the conditions of Lemma 5.1 hold and |aD
we have the following inequality:

2
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where s '+ r 1 =1.

Proof. From equality (5.1) and the Holder inequality, we have
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After applying the Jensen-Mercer inequality, we have

‘f(a+b—x)+f(a+b—y)
2

1 a—o—b—% a+b—x b
- /a f(u) avp—ydy u—l—/ f(u) 7 dgu

y—X +b—y +h—2

< ? (/Ol(l—qt)rdqt) r

< |\ ['as @] +[Pour )] - (Rly+0) 1"Dus O+ Paf )
q q

2[2]

q

<[2 +‘1>‘ aDgf (v ‘ +| aDgf (x )’
+ |qu |+‘D‘1f )‘ 2[2]

q

Thus the proof is completed. 0

Remark 5.5. In Theorem 5.3, if we set x = a and y = b, then we have the following inequality:

u+b b
f( )+f b a[/ f dqu_*—/a;rbf(u) bdqu

2

This was established by Ali et al. in [13].

6. CONCLUSION

With the help of the well-known Jensen-Mercer inequality, we derived some new versions
of the g-Hermite-Hadamard-Mercer inequalities. We also proved some g-midpoint and g-
trapezoidal estimates for the differentiable functions to have the Jensen-Mercer inequality prop-
erties. It is an intriguing problem in which upcoming researchers can obtain similar inequalities
for various types of convexities in their future work.
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