J. Nonlinear Var. Anal. 7 (2023), No. 1, pp. 49-66 Available online at http://jnva.biemdas.com https://doi.org/10.23952/jnva.7.2023.1.04

SOME NEW q-HERMITE-HADAMARD-MERCER INEQUALITIES AND RELATED ESTIMATES IN QUANTUM CALCULUS

MUHAMMAD AAMIR ALI¹, ELISABETH KÖBIS^{2,*}

¹Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences,
Nanjing Normal University, Nanjing 210023, China

²Department of Mathematical Sciences,
Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract. In this paper, we establish a quantum version of the Hermite-Hadamard-Mercer inequalities using the well-known Jensen-Mercer inequality. Moreover, we derive some new q-midpoint and q-trapezoidal type inequalities for differentiable functions. The newly developed inequalities are also shown to be the extensions of preexisting inequalities in the literature.

Keywords. Convex functions; Hermite–Hadamard inequality; Jensen-Mercer inequality; q-calculus.

1. Introduction

The Hermite-Hadamard inequality, named after Charles Hermite and Jacques Hadamard, is commonly known as Hadamard's inequality, that is, if a function $f:[a,b] \to \mathbb{R}$ is convex, the following double inequality holds:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2}.\tag{1.1}$$

If f is a concave mapping, the above inequality holds in the opposite direction. Inequality (1.1) can be proved by using the Jensen inequality. There are numerous researches in the direction of Hermite-Hadamard for different kinds of convexities. For example, in [1, 2], the authors established some inequalities linked with midpoint and trapezoid formulas of numerical integration for convex functions.

In 2003, Mercer [3] proved another version of Jensen inequality, which is called Jensen-Mercer inequality and stated as follows.

Theorem 1.1. For a convex mapping $f : [a,b] \to \mathbb{R}$, the following inequality holds for each $x_i \in [a,b]$:

$$f\left(a+b-\sum_{j=i}^{n}u_{j}x_{j}\right) \leq f\left(a\right)+f\left(b\right)-\sum_{j=1}^{n}u_{j}f\left(x_{j}\right),$$

where $u_j \in [0,1]$ and $\sum_{j=1}^n u_j = 1$.

E-mail addresses: mahr.muhammad.aamir@gmail.com (M. A. Ali), elisabeth.kobis@ntnu.no (E. Köbis). Received June 17, 2022; Accepted August 25, 2022.

^{*}Corresponding author.

After that, in 2013, Kian et al. [4] used this new Jensen inequality and established the following new versions of Hermite-Hadamard inequality:

Theorem 1.2. For a convex mapping $f : [a,b] \to \mathbb{R}$, the following inequalities hold for all $x,y \in [a,b]$ and x < y:

$$f\left(a+b-\frac{x+y}{2}\right) \le f\left(a\right)+f\left(b\right)-\frac{1}{y-x}\int_{x}^{y}f\left(u\right)du \le f\left(a\right)+f\left(b\right)-f\left(\frac{x+y}{2}\right) \tag{1.2}$$

and

$$f\left(a+b-\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{a+b-y}^{a+b-x} f(u) du$$

$$\leq \frac{f(a+b-x)+f(a+b-y)}{2}$$

$$\leq f(a)+f(b)-\frac{f(x)+f(y)}{2}.$$
(1.3)

Remark 1.1. It is easy to see that inequality (1.3) becomes the traditional Hermite-Hadamard inequality (1.1) for convex functions by setting a = x and b = y.

For more recent inequalities related to (1.2) and (1.3), one can consult [5, 6, 7, 8, 9, 10].

On the other hand, quantum calculus is an important branch of calculus and it has a wide range of applications in the fields of mathematics and physics. Because of the numerous applications of quantum calculus (shortly, q-calculus) without limit calculus, many researchers began working on it and applying its concepts in various areas, such as differential equations, integral equalitions, mathematical modeling, and integral inequalities.

In [11, 12], two different versions of q-Hermite-Hadamard inequalities and some estimates were obtained based on q-derivatives and integrals (defined in Section 2). The q-Hermite-Hadamard inequalities are described as:

Theorem 1.3. [11, 12] For a convex mapping $f : [a,b] \to \mathbb{R}$, the following inequalities hold:

$$f\left(\frac{qa+b}{[2]_q}\right) \le \frac{1}{b-a} \int_a^b f(x) \,_a d_q x \le \frac{qf(a)+f(b)}{[2]_q},$$
 (1.4)

$$f\left(\frac{a+qb}{[2]_q}\right) \le \frac{1}{b-a} \int_a^b f(x) \, {}^b d_q x \le \frac{f(a)+qf(b)}{[2]_q}.$$
 (1.5)

Remark 1.2. It is easy to observe that by adding (1.4) and (1.5), we have following q-Hermite-Hadamard inequality (see [12]):

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{2(b-a)} \left[\int_{a}^{b} f(x) \, ad_{q}x + \int_{a}^{b} f(x) \, ^{b}d_{q}x \right] \le \frac{f(a)+f(b)}{2}. \tag{1.6}$$

Recently, Ali et al. [13] and Sitthiwirattham et al. [14] used new techniques to prove the following two different and new versions of Hermite-Hadamard type inequalities:

Theorem 1.4. [13, 14] For a convex mapping $f : [a,b] \to \mathbb{R}$, the following inequalities hold:

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \left[\int_{a}^{\frac{a+b}{2}} f(x)^{\frac{a+b}{2}} d_q x + \int_{\frac{a+b}{2}}^{b} f(x)^{\frac{a+b}{2}} d_q x \right] \leq \frac{f(a)+f(b)}{2}, \quad (1.7)$$

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \left[\int_{a}^{\frac{a+b}{2}} f(x) \,_{a} d_{q} x + \int_{\frac{a+b}{2}}^{b} f(x) \,^{b} d_{q} x \right] \leq \frac{f(a)+f(b)}{2}. \tag{1.8}$$

Remark 1.3. By setting the limit as $q \to 1^-$ in (1.4)-(1.8), we recapture the traditional Hermite-Hadamard inequality (1.1).

There has been much research done in the direction of q-integral inequalities for different kind of convexities. For example, in [15], some new midpoint and trapezoidal type inequalities for q-integrals and q-differentiable convex functions were established. The authors of [16, 17, 18, 19] used q-integral and established Simpson's type inequalities for q-differentiable convex and general convex functions. For more recent inequalities in q-calculus, one can consult [20, 21, 22, 23, 24, 25] and the references therein.

Inspired by these ongoing studies, we consider Jensen-Mercer inequality and establish *q*-Hermite-Hadamard inequalities using the left and right *q*-integrals. Moreover, we derive some midpoint and trapezoidal type inequalities using the Jensen-Mercer inequality. It is also shown that the newly established inequalities are the extension of some already existing inequalities.

2. Preliminaries of q-Calculus and Some Inequalities

We recall some basics of quantum calculus in this section. For the sake of brevity, let $q \in (0,1)$, and we use the following notation (see [26]):

$$[n]_q = \frac{1-q^n}{1-q} = 1+q+q^2+...+q^{n-1}.$$

Definition 2.1. [25] The left or q_a -derivative of $f:[a,b]\to\mathbb{R}$ at $x\in[a,b]$ is expressed as:

$$_{a}D_{q}f(x) = \frac{f(x) - f(qx + (1 - q)a)}{(1 - q)(x - a)}, x \neq a.$$
 (2.1)

Definition 2.2. [12] The right or q^b -derivative of $f:[a,b] \to \mathbb{R}$ at $x \in [a,b]$ is expressed as:

$${}^{b}D_{q}f(x) = \frac{f(qx + (1-q)b) - f(x)}{(1-q)(b-x)}, x \neq b.$$

Definition 2.3. [25] The left or q_a -integral of $f:[a,b]\to\mathbb{R}$ at $x\in[a,b]$ is defined as:

$$\int_{a}^{x} f(t) \, a d_{q}t = (1-q)(x-a) \sum_{n=0}^{\infty} q^{n} f(q^{n}x + (1-q^{n})a).$$

Definition 2.4. [11] The right or q^b -integral of $f:[a,b] \to \mathbb{R}$ at $x \in [a,b]$ is defined as:

$$\int_{x}^{b} f(t)^{-b} d_{q}t = (1-q)(b-x) \sum_{n=0}^{\infty} q^{n} f(q^{n} x + (1-q^{n})b).$$

Lemma 2.1. [18] For continuous functions $f,g:[a,b] \to \mathbb{R}$, the following equality is true:

$$\int_{0}^{c} g(t)^{b} D_{q} f(ta + (1-t)b) d_{q} t$$

$$= \frac{1}{b-a} \int_{0}^{c} D_{q} g(t) f(qta + (1-qt)b) d_{q} t - \frac{g(t) f(ta + (1-t)b)}{b-a} \Big|_{0}^{c}.$$

Lemma 2.2. [19] For continuous functions $f,g:[a,b]\to\mathbb{R}$, the following equality is true:

$$\int_{0}^{c} g(t) a D_{q} f(tb + (1-t)a) d_{q}t$$

$$= \frac{g(t) f(tb + (1-t)a)}{b-a} \Big|_{0}^{c} - \frac{1}{b-a} \int_{0}^{c} D_{q} g(t) f(qtb + (1-qt)a) d_{q}t.$$

3. q-Hermite-Hadamard-Merecer Inequalities

In this section, we prove two new and different Hermite-Hadamard-Mercer type inequalities.

Theorem 3.1. For a convex function $f : [a,b] \to \mathbb{R}$, the following inequalities hold:

$$f\left(a+b-\frac{x+y}{2}\right) \leq f(a)+f(b)-\frac{1}{y-x}\left[\int_{x}^{\frac{x+y}{2}}f(u) \,_{x}d_{q}u+\int_{\frac{x+y}{2}}^{y}f(u) \,_{y}d_{q}u\right]$$

$$\leq f(a)+f(b)-f\left(\frac{x+y}{2}\right)$$
(3.1)

and

$$f\left(a+b-\frac{x+y}{2}\right) \leq \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \Big|_{a+b-y} d_{q}u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \Big|_{a+b-x} d_{q}u \right] (3.2)$$

$$\leq \frac{f(a+b-x)+f(a+b-y)}{2}$$

$$\leq f(a)+f(b)-\frac{f(x)+f(y)}{2}$$

for all $x, y \in [a, b]$ and x < y.

Proof. From the Jensen-Mercer inequality, we have

$$f\left(a+b-\frac{u+v}{2}\right) \le f(a)+f(b)-\frac{1}{2}[f(u)+f(v)].$$
 (3.3)

By setting $u = \frac{t}{2}x + \frac{2-t}{2}y$ and $v = \frac{t}{2}y + \frac{2-t}{2}x$, we have

$$f\left(a+b-\frac{x+y}{2}\right) \le f(a)+f(b)-\frac{1}{2}\left[f\left(\frac{t}{2}x+\frac{2-t}{2}y\right)+f\left(\frac{t}{2}y+\frac{2-t}{2}x\right)\right].$$
 (3.4)

q-Integrating (3.4) with respect to t over [0,1] and using Definitions 2.3 and 2.4, we have

$$\begin{split} & f\left(a+b-\frac{x+y}{2}\right) \\ & \leq f(a)+f(b)-\frac{1}{2}\left[\int_{0}^{1}\left(f\left(\frac{t}{2}x+\frac{2-t}{2}y\right)+f\left(\frac{t}{2}y+\frac{2-t}{2}x\right)\right)d_{q}t\right] \\ & = f(a)+f(b)-\frac{1}{2}\left[\int_{0}^{1}\left(f\left(t\frac{x+y}{2}+(1-t)y\right)+f\left(t\frac{x+y}{2}+(1-t)x\right)\right)d_{q}t\right] \\ & = f(a)+f(b)-\frac{1}{y-x}\left[\int_{x}^{\frac{x+y}{2}}f(u)_{x}d_{q}u+\int_{\frac{x+y}{2}}^{y}f(u)_{y}d_{q}u\right]. \end{split}$$

Thus the first inequality in (3.1) is proved. To prove the second inequality, we use the inequality (1.8) to obtain

$$\frac{1}{y-x}\left[\int_{x}^{\frac{x+y}{2}}f\left(u\right) \,_{x}d_{q}u+\int_{\frac{x+y}{2}}^{y}f\left(u\right) \,^{y}d_{q}u\right]\geq f\left(\frac{x+y}{2}\right),$$

which implies that

$$f(a) + f(b) - \frac{1}{y - x} \left[\int_{x}^{\frac{x + y}{2}} f(u) \, dqu + \int_{\frac{x + y}{2}}^{y} f(u) \, dqu \right] \le f(a) + f(b) - f\left(\frac{x + y}{2}\right).$$

Thus the proof of inequality (3.1) is completed.

Now we prove the inequality (3.2). From the convexity, we have

$$f\left(a+b-\frac{u+v}{2}\right) = f\left(\frac{a+b-u+a+b-v}{2}\right)$$

$$\leq \frac{1}{2}\left[f\left(a+b-u\right)+f\left(a+b-v\right)\right].$$

By setting $u = \frac{t}{2}(a+b-y) + \frac{2-t}{2}(a+b-x)$ and $v = \frac{t}{2}(a+b-x) + \frac{2-t}{2}(a+b-y)$, we have

$$f\left(a+b-\frac{x+y}{2}\right) \leq \frac{1}{2} \left[f\left(\frac{t}{2}(a+b-y) + \frac{2-t}{2}(a+b-x)\right) + f\left(\frac{t}{2}(a+b-x) + \frac{2-t}{2}(a+b-y)\right) \right]. \tag{3.5}$$

q-Integrating (3.5) with respect to t over [0,1] and Definitions 2.3 and 2.4, we have

$$f\left(a+b-\frac{x+y}{2}\right) \leq \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f\left(u\right) \right._{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f\left(u\right) \right._{a+b-x} d_q u \right].$$

Thus the first inequality in (3.2) is proved. We re-use the convexity to prove the second inequality in (3.2) as follows:

$$f\left(\frac{t}{2}(a+b-y) + \frac{2-t}{2}(a+b-x)\right) \le \frac{t}{2}f(a+b-y) + \frac{2-t}{2}f(a+b-x)$$
 (3.6)

and

$$f\left(\frac{t}{2}(a+b-x)+\frac{2-t}{2}(a+b-y)\right) \le \frac{t}{2}f(a+b-x)+\frac{2-t}{2}f(a+b-y).$$
 (3.7)

By applying convexity after adding (3.6) and (3.7), we have

$$f\left(\frac{t}{2}(a+b-y) + \frac{2-t}{2}(a+b-x)\right) + f\left(\frac{t}{2}(a+b-x) + \frac{2-t}{2}(a+b-y)\right)$$
(3.8)

$$\leq f(a+b-x) + f(a+b-y)$$

$$\leq 2[f(a) + f(b)] - [f(x) + f(y)].$$

Thus we obtain the required inequality by q-integrating (3.8) with respect to t over [0,1] and from Definitions 2.3 and 2.4.

Remark 3.1. In Theorem 3.1, if we set the limit as $q \to 1^-$, then we recapture inequalities (1.2) and (1.3).

Remark 3.2. In Theorem 3.1, if we set x = a and y = b, then inequality (3.2) becomes inequality (1.8).

4. MIDPOINT INEQUALITIES

In this section, we establish some new midpoint type inequalities for differentiable functions that satisfy to Jensen-Mercer inequality:

Let us start with the following lemma.

Lemma 4.1. Let $f : [a,b] \to \mathbb{R}$ be a q-differentiable mapping. If ${}_aD_qf$, bD_qf are q-integrable and continuous, then the following equality holds, for all $x, y \in [a,b]$ and x < y,

$$\frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \,_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \,^{a+b-x} d_q u \right] - f\left(a+b-\frac{x+y}{2}\right) \\
= \frac{y-x}{4} \left[\int_0^1 qt \,^b D_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) d_q t \\
- \int_0^1 qt \,_{a} D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) d_q t \right].$$

Proof. From Lemma 2.1 and Definition 2.4, we have

$$\int_{0}^{1} qt \, {}^{b}D_{q}f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right)d_{q}t
= \int_{0}^{1} qt \, {}^{b}D_{q}f\left(t\left(a+b-\frac{x+y}{2}\right)+(1-t)(a+b-x)\right)d_{q}t
= -\frac{2q}{y-x}f\left(a+b-\frac{x+y}{2}\right)+\frac{2q}{y-x}\int_{0}^{1} f\left(qt\left(a+b-\frac{x+y}{2}\right)+(1-qt)(a+b-x)\right)d_{q}t
= -\frac{2q}{y-x}f\left(a+b-\frac{x+y}{2}\right)+\frac{2}{y-x}\left[(1-q)\sum_{n=0}^{\infty}q^{n}f(q^{n}\left(a+b-\frac{x+y}{2}\right)\right)
+(1-q^{n})(a+b-x))-(1-q)f\left(a+b-\frac{x+y}{2}\right)\right]
= \frac{4}{(y-x)^{2}}\int_{a+b-\frac{x+y}{2}}^{a+b-x}f(u) \, {}^{a+b-x}d_{q}u-\frac{2}{y-x}f\left(a+b-\frac{x+y}{2}\right). \tag{4.1}$$

Similarly, from Lemma 2.2 and Definition 2.3, we have

$$\int_{0}^{1} qt \,_{a}D_{q}f\left(t\left(a+b-\frac{x+y}{2}\right)+(1-t)\left(a+b-y\right)\right)d_{q}t \qquad (4.2)$$

$$= \frac{2}{y-x}f\left(a+b-\frac{x+y}{2}\right)-\frac{4}{(y-x)^{2}}\int_{a+b-y}^{a+b-\frac{x+y}{2}}f\left(u\right)_{a+b-y}d_{q}u.$$

Thus we obtain the required equality by subtracting (4.2) from (4.1).

Theorem 4.1. If the conditions of Lemma 4.1 hold and $|aD_q f|$, $|^bD_q f|$ are convex, then we have the following inequality:

$$\left| \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \,_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \,_{a+b-x} d_q u \right] - f\left(a+b-\frac{x+y}{2}\right) \right|$$

$$\leq \frac{y-x}{4} \left[\frac{q}{[2]_q} \left(\left| {}^b D_q f(a) \right| + \left| {}^b D_q f(b) \right| \right) - \left(\frac{q\left([3]_q + q^2\right)}{2 [2]_q [3]_q} \left| {}^b D_q f(x) \right| + \frac{q}{2 [3]_q} \left| {}^b D_q f(y) \right| \right) \right]$$

$$+ \frac{q}{[2]_q} \left(\left| {}_a D_q f(a) \right| + \left| {}_a D_q f(b) \right| \right) - \left(\frac{q\left([3]_q + q^2\right)}{2 [2]_q [3]_q} \left| {}_a D_q f(y) \right| + \frac{q}{2 [3]_q} \left| {}_a D_q f(x) \right| \right) \right].$$

Proof. From equality (4.1) and Jensen-Mercer inequality, we have

$$\begin{split} &\left|\frac{1}{y-x}\left[\int_{a+b-y}^{a+b-\frac{x+y}{2}}f\left(u\right) \ _{a+b-y}d_{q}u+\int_{a+b-\frac{x+y}{2}}^{a+b-x}f\left(u\right) \ _{a+b-x}d_{q}u\right]-f\left(a+b-\frac{x+y}{2}\right)\right|\\ &\leq \frac{y-x}{4}\left[\int_{0}^{1}qt \ \Big|^{b}D_{q}f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right)\Big| \ _{q}t\\ &+\int_{0}^{1}qt \ \Big|_{a}D_{q}f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right)\Big| \ _{q}t\right]\\ &\leq \frac{y-x}{4}\left[\int_{0}^{1}qt \left(\Big|^{b}D_{q}f\left(a\right)\Big|+\Big|^{b}D_{q}f\left(b\right)\Big|-\frac{2-t}{2}\Big|^{b}D_{q}f\left(x\right)\Big|-\frac{t}{2}\Big|^{b}D_{q}f\left(y\right)\Big|\right)\\ &+\int_{0}^{1}qt \left(\Big|_{a}D_{q}f\left(a\right)\Big|+\Big|_{a}D_{q}f\left(b\right)\Big|-\frac{2-t}{2}\Big|_{a}D_{q}f\left(y\right)\Big|-\frac{t}{2}\Big|_{a}D_{q}f\left(x\right)\Big|\right)\right]\\ &=\frac{y-x}{4}\left[\frac{q}{\left[2\right]_{q}}\left(\Big|^{b}D_{q}f\left(a\right)\Big|+\Big|^{b}D_{q}f\left(b\right)\Big|\right)-\left(\frac{q\left(\left[3\right]_{q}+q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}}\Big|^{b}D_{q}f\left(x\right)\Big|+\frac{q}{2\left[3\right]_{q}}\Big|^{b}D_{q}f\left(y\right)\Big|\right)\\ &+\frac{q}{\left[2\right]_{q}}\left(\Big|^{a}D_{q}f\left(a\right)\Big|+\Big|^{a}D_{q}f\left(b\right)\Big|\right)-\left(\frac{q\left(\left[3\right]_{q}+q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}}\Big|^{a}D_{q}f\left(y\right)\Big|+\frac{q}{2\left[3\right]_{q}}\Big|^{a}D_{q}f\left(x\right)\Big|\right)\right], \end{split}$$

which completes the proof.

Remark 4.1. In Theorem 4.1, if we set x = a and y = b, then we have the following inequality

$$\left| \frac{1}{b-a} \left[\int_{a}^{\frac{a+b}{2}} f(u) \,_{a} d_{q} u + \int_{\frac{a+b}{2}}^{b} f(u) \,^{b} d_{q} u \right] - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{b-a}{8} \left[\frac{q}{[3]_{q}} \left| {}^{b} D_{q} f(a) \right| + \frac{q\left([3]_{q} + q^{2}\right)}{[2]_{q}[3]_{q}} \left| {}^{b} D_{q} f(b) \right| + \left(\frac{q\left([3]_{q} + q^{2}\right)}{[2]_{q}[3]_{q}} \left| {}_{a} D_{q} f(a) \right| + \frac{q}{[3]_{q}} \left| {}_{a} D_{q} f(b) \right| \right) \right].$$

This was established by Ali et al. in [13].

Remark 4.2. If we take the limit as $q \to 1^-$, x = a, and y = b in Theorem 4.1, then Theorem 4.1 gives [1, Theorem 2.2].

Theorem 4.2. If the conditions of Lemma 4.1 hold and $|aD_q f|^s$, $|^bD_q f|^s$, $s \ge 1$ are convex, then we have the following inequality:

$$\left| \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right]_{a+b-y} d_{q}u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \right]_{a+b-x} d_{q}u \right] - f\left(a+b-\frac{x+y}{2}\right) \right| \\
\leq \frac{y-x}{4} \left(\frac{q}{[2]_{q}}\right)^{1-\frac{1}{s}} \left[\left(\frac{q}{[2]_{q}} \left(\left|^{b} D_{q} f(a)\right|^{s} + \left|^{b} D_{q} f(b)\right|^{s}\right) \right] \\
- \frac{q\left(\left[3\right]_{q} + q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}} \left|^{b} D_{q} f(x)\right|^{s} - \frac{q}{2\left[3\right]_{q}} \left|^{b} D_{q} f(y)\right|^{s}\right) \\
+ \left(\frac{q}{\left[2\right]_{q}} \left(\left|_{a} D_{q} f(a)\right|^{s} + \left|_{a} D_{q} f(b)\right|^{s}\right) - \frac{q\left(\left[3\right]_{q} + q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}} \left|_{a} D_{q} f(y)\right|^{s} - \frac{q}{2\left[3\right]_{q}} \left|_{a} D_{q} f(x)\right|^{s}\right) \\
= \frac{1}{s} \left[\frac{1}{s} \left(\left|_{a} D_{q} f(a)\right|^{s} + \left|_{a} D_{q} f(b)\right|^{s}\right) - \frac{q\left(\left[3\right]_{q} + q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}} \left|_{a} D_{q} f(y)\right|^{s} - \frac{q}{2\left[3\right]_{q}} \left|_{a} D_{q} f(x)\right|^{s}\right) \\
= \frac{1}{s} \left[\frac{1}{s} \left(\left|_{a} D_{q} f(a)\right|^{s} + \left|_{a} D_{q} f(b)\right|^{s}\right) - \frac{q\left(\left[3\right]_{q} + q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}} \left|_{a} D_{q} f(y)\right|^{s} - \frac{q}{2\left[3\right]_{q}} \left|_{a} D_{q} f(x)\right|^{s}\right] \\
= \frac{1}{s} \left[\frac{1}{s} \left(\left|_{a} D_{q} f(a)\right|^{s} + \left|_{a} D_{q} f(b)\right|^{s}\right) - \frac{1}{s} \left(\frac{1}{s} \left(\left|_{a} D_{q} f(y)\right|^{s}\right) - \frac{1}{s} \left(\left|_{a} D_$$

Proof. From equality (4.1) and the power mean inequality, we have

$$\begin{split} & \left| \frac{1}{y-x} \left[\int_{a+b-\frac{x+y}{2}}^{a+b-\frac{x+y}{2}} f\left(u\right) \right._{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f\left(u\right) \right._{a+b-x} d_q u \right] \right. \\ & \leq \frac{y-x}{4} \left[\int_0^1 qt \, \left| {}^b D_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) \right| d_q t \\ & + \int_0^1 qt \, \left| {}_a D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) \right| d_q t \right] \end{split}$$

$$\leq \frac{y-x}{4} \left(\int_0^1 qt d_q t \right)^{1-\frac{1}{s}} \left[\left(\int_0^1 qt \left| {}^b D_q f \left(a+b - \left(\frac{2-t}{2} x + \frac{t}{2} y \right) \right) \right|^s d_q t \right)^{\frac{1}{s}} + \left(\int_0^1 qt \left| {}^a D_q f \left(a+b - \left(\frac{2-t}{2} y + \frac{t}{2} x \right) \right) \right|^s d_q t \right)^{\frac{1}{s}} \right].$$

By the Jensen-Mercer inequality, we have

$$\begin{split} &\left|\frac{1}{y-x}\left[\int_{a+b-y}^{a+b-\frac{x+y}{2}}f\left(u\right) \right._{a+b-y}d_{q}u+\int_{a+b-\frac{x+y}{2}}^{a+b-x}f\left(u\right) \right._{a+b-x}d_{q}u\right]-f\left(a+b-\frac{x+y}{2}\right)\right|\\ &\leq &\left.\frac{y-x}{4}\left(\frac{q}{[2]_{q}}\right)^{1-\frac{1}{s}}\left[\left(\frac{q}{[2]_{q}}\left(\left|^{b}D_{q}f\left(a\right)\right|^{s}+\left|^{b}D_{q}f\left(b\right)\right|^{s}\right)\right.\\ &\left.-\frac{q\left(\left[3\right]_{q}+q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}}\left|^{b}D_{q}f\left(x\right)\right|^{s}-\frac{q}{2\left[3\right]_{q}}\left|^{b}D_{q}f\left(y\right)\right|^{s}\right)^{\frac{1}{s}}\\ &\left.+\left(\frac{q}{\left[2\right]_{q}}\left(\left|_{a}D_{q}f\left(a\right)\right|^{s}+\left|_{a}D_{q}f\left(b\right)\right|^{s}\right)\right.\\ &\left.-\frac{q\left(\left[3\right]_{q}+q^{2}\right)}{2\left[2\right]_{q}\left[3\right]_{q}}\left|_{a}D_{q}f\left(y\right)\right|^{s}-\frac{q}{2\left[3\right]_{q}}\left|_{a}D_{q}f\left(x\right)\right|^{s}\right)^{\frac{1}{s}}\right]. \end{split}$$

Hence, the proof is completed.

Remark 4.3. In Theorem 4.2, if we set x = a and y = b, then we have the following inequality

$$\left| \frac{1}{b-a} \left[\int_{a}^{\frac{a+b}{2}} f(u) \, _{a}d_{q}u + \int_{\frac{a+b}{2}}^{b} f(u) \, ^{b}d_{q}u \right] - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{q(b-a)}{4[2]_{q}} \left[\left(\frac{[2]_{q} \left| ^{b}D_{q}f(a) \right|^{s} + \left([3]_{q} + q^{2}\right) \left| ^{b}D_{q}f(b) \right|^{s}}{2[3]_{q}} \right)^{\frac{1}{s}} + \left(\frac{\left([3]_{q} + q^{2}\right) \left| _{a}D_{q}f(a) \right|^{s} + [2]_{q} \left| _{a}D_{q}f(b) \right|^{s}}{2[3]_{q}} \right)^{\frac{1}{s}} \right].$$

This was established by Ali et al. in [13].

Remark 4.4. In Theorem 4.3, if we set $q \to 1^-$, then Theorem 4.2 gives [5, Corollary 3.10].

Theorem 4.3. If the conditions of Lemma 4.1 hold and $|aD_q f|^s$, $|^bD_q f|^s$, s > 1 are convex, then we have the following inequality:

$$\left| \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \,_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \,_{a+b-x} d_q u \right] - f\left(a+b-\frac{x+y}{2}\right) \right|$$

$$\leq \frac{q(y-x)}{4} \left(\frac{1}{[r+1]_q} \right)^{\frac{1}{r}} \left[\left(\left| {}^b D_q f(a) \right|^s + \left| {}^b D_q f(b) \right|^s - \frac{\left([2]_q + q \right) \left| {}^b D_q f(x) \right|^s + \left| {}^b D_q f(y) \right|^s}{2 [2]_q} \right)^{\frac{1}{s}} + \left(\left| {}_a D_q f(a) \right|^s + \left| {}_a D_q f(b) \right|^s - \frac{\left([2]_q + q \right) \left| {}_a D_q f(y) \right|^s + \left| {}_a D_q f(x) \right|^s}{2 [2]_q} \right)^{\frac{1}{s}} \right],$$

where $r^{-1} + s^{-1} = 1$.

Proof. From equality (4.1) and the Hölder inequality, we have

$$\left| \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right]_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \right|_{a+b-x} d_q u \right] - f\left(a+b-\frac{x+y}{2}\right) \right|$$

$$\leq \frac{y-x}{4} \left[\int_0^1 qt \left| {}^b D_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) \right| d_q t \right]$$

$$+ \int_0^1 qt \left| {}_a D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) \right| d_q t \right]$$

$$\leq \frac{y-x}{4} \left(\int_0^1 (qt)^r d_q t \right)^{\frac{1}{r}} \left[\left(\int_0^1 \left| {}^b D_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) \right|^s d_q t \right)^{\frac{1}{s}}$$

$$+ \left(\int_0^1 \left| {}^a D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) \right|^s d_q t \right)^{\frac{1}{s}} \right].$$

By the Jensen-Mercer inequality, we have

$$\left| \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \,_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \,_{a+b-x} d_q u \right] - f\left(a+b-\frac{x+y}{2}\right) \right|$$

$$\leq \frac{q(y-x)}{4} \left(\frac{1}{[r+1]_q} \right)^{\frac{1}{r}} \left[\left(\left| {}^b D_q f(a) \right|^s + \left| {}^b D_q f(b) \right|^s \right.$$

$$\left. - \frac{\left([2]_q + q \right) \left| {}^b D_q f(x) \right|^s + \left| {}^b D_q f(y) \right|^s}{2 [2]_q} \right)^{\frac{1}{s}}$$

$$+ \left(\left| {}_a D_q f(a) \right|^s + \left| {}_a D_q f(b) \right|^s - \frac{\left([2]_q + q \right) \left| {}_a D_q f(y) \right|^s + \left| {}_a D_q f(x) \right|^s}{2 [2]_q} \right)^{\frac{1}{s}} \right].$$

Hence, the proof is completed.

Remark 4.5. In Theorem 4.2, if we set x = a and y = b, then we have the following inequality

$$\left| \frac{1}{b-a} \left[\int_{a}^{\frac{a+b}{2}} f(u) \, _{a}d_{q}u + \int_{\frac{a+b}{2}}^{b} f(u) \, ^{b}d_{q}u \right] - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{q(b-a)}{4\left([r+1]_{q}\right)^{\frac{1}{r}}} \left[\left(\frac{\left| {}^{b}D_{q}f(a) \right|^{s} + \left([2]_{q} + q\right) \left| {}^{b}D_{q}f(b) \right|^{s}}{2\left[2\right]_{q}} \right)^{\frac{1}{s}} + \left(\frac{\left([2]_{q} + q\right) \left| {}_{a}D_{q}f(a) \right|^{s} + \left| {}_{a}D_{q}f(b) \right|^{s}}{2\left[2\right]_{q}} \right)^{\frac{1}{s}} \right]$$

$$+ \left(\frac{\left([2]_{q} + q\right) \left| {}_{a}D_{q}f(a) \right|^{s} + \left| {}_{a}D_{q}f(b) \right|^{s}}{2\left[2\right]_{q}} \right)^{\frac{1}{s}} \right].$$

This was established by Ali et al. in [13].

Remark 4.6. In Theorem 4.3, if we set the limit as $q \to 1^-$, then Theorem 4.3 gives [5, Corollary 3.13].

5. TRAPEZOIDAL INEQUALITIES

In this section, we establish some new trapezoidal type inequalities for differentiable functions that satisfy to Jensen-Mercer inequality:

Let us start with the following lemma.

Lemma 5.1. Let $f:[a,b] \to \mathbb{R}$ be a q-differentiable mapping. If ${}_aD_qf$, bD_qf are q-integrable and continuous, then the following equality holds for all $x, y \in [a,b]$ and x < y:

$$\frac{f(a+b-x)+f(a+b-y)}{2} - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right]_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \right]_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \right]_{a+b-x} d_q u$$

$$= \frac{y-x}{4} \left[\int_0^1 (1-qt)^b D_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) d_q t \right]_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \right]_{a+b-x} d_q u$$

$$+ \int_0^1 (qt-1)^b D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) d_q t$$

$$+ \int_0^1 (qt-1)^b D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) d_q t$$

Proof. From Lemma 2.1 and Definition 2.4, we have

$$\int_{0}^{1} (1 - qt)^{b} D_{q} f\left(a + b - \left(\frac{2 - t}{2}x + \frac{t}{2}y\right)\right) d_{q} t \qquad (5.1)$$

$$= \int_{0}^{1} {}^{b} D_{q} f\left(a + b - \left(\frac{2 - t}{2}x + \frac{t}{2}y\right)\right) d_{q} t - \int_{0}^{1} q t^{b} D_{q} f\left(a + b - \left(\frac{2 - t}{2}x + \frac{t}{2}y\right)\right) d_{q} t$$

$$= \frac{2}{y - x} f(a + b - x) - \frac{4}{(y - x)^{2}} \int_{a + b - \frac{x + y}{2}}^{a + b - x} f(u)^{a + b - y} d_{q} u.$$

Similarly, from Lemma 2.2 and Definition 2.3, we have

$$\int_{0}^{1} (qt - 1) \,_{a}D_{q}f\left(a + b - \left(\frac{2 - t}{2}y + \frac{t}{2}x\right)\right) d_{q}t \qquad (5.2)$$

$$= \frac{2}{y - x}f(a + b - y) - \frac{4}{(y - x)^{2}} \int_{a + b - y}^{a + b - \frac{x + y}{2}} f(u) \,_{a + b - y}d_{q}u.$$

Hence, we obtain the resultant equality by adding (5.1) and (5.2).

Remark 5.1. In Lemma 5.1, if we set x = a and y = b, then we have the following equality:

$$\begin{split} &\frac{f\left(a\right)+f\left(b\right)}{2}-\frac{1}{y-x}\left[\int_{a}^{\frac{a+b}{2}}f\left(u\right)\;_{a}d_{q}u+\int_{\frac{a+b}{2}}^{b}f\left(u\right)\;^{b}d_{q}u\right]\\ &=\;\;\frac{b-a}{4}\left[\int_{0}^{1}\left(1-qt\right)\;^{b}D_{q}f\left(\frac{t}{2}a+\frac{2-t}{2}b\right)d_{q}t+\int_{0}^{1}\left(qt-1\right)\;_{a}D_{q}f\left(\frac{2-t}{2}a+\frac{t}{2}b\right)d_{q}t\right]. \end{split}$$

This was established by Ali et al. in [13].

Theorem 5.1. If the conditions of Lemma 5.1 hold and $|aD_q f|$, $|^bD_q f|$ are convex, then we have the following inequality:

$$\begin{split} &\left| \frac{f(a+b-x) + f(a+b-y)}{2} \right. \\ &\left. - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right. \left. \right| \right. \right| \right. \right. \right. \right. \right. \right. \right. \right. \right. \\ &\leq \left. \frac{y-x}{4} \left[\frac{1}{[2]_q} \left(\left| {}^bD_q f(a) \right| + \left| {}^bD_q f(b) \right| \right) \right. \\ &\left. - \left(\frac{2 \left[3 \right]_q - q^3}{2 \left[2 \right]_q \left[3 \right]_q} \left| {}^bD_q f(x) \right| + \frac{1}{2 \left(\left[4 \right]_q + q \left[2 \right]_q \right)} \left| {}^bD_q f(y) \right| \right. \right) \\ &\left. + \frac{1}{[2]_q} \left(\left| {}_aD_q f(a) \right| + \left| {}_aD_q f(b) \right| \right) \\ &\left. - \left(\frac{2 \left[3 \right]_q - q^3}{2 \left[2 \right]_q \left[3 \right]_q} \left| {}_aD_q f(y) \right| + \frac{1}{2 \left(\left[4 \right]_q + q \left[2 \right]_q \right)} \left| {}_aD_q f(x) \right| \right) \right]. \end{split}$$

Proof. From equality (5.1) and Jensen-Mercer inequality, we have

$$\begin{split} &\left|\frac{f(a+b-x)+f(a+b-y)}{2}\right| \\ &-\frac{1}{y-x}\left[\int_{a+b-y}^{a+b-\frac{x+y}{2}}f(u) \ _{a+b-y}d_{q}u + \int_{a+b-\frac{x+y}{2}}^{a+b-x}f(u) \ ^{a+b-x}d_{q}u\right] \\ &\leq \frac{y-x}{4}\left[\int_{0}^{1}(1-qt) \ \Big|^{b}D_{q}f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right)\Big| d_{q}t \\ &+\int_{0}^{1}(1-qt) \ \Big|^{a}D_{q}f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right)\Big| d_{q}t\right] \\ &\leq \frac{y-x}{4}\left[\int_{0}^{1}(1-qt) \left(\Big|^{b}D_{q}f(a)\Big|+\Big|^{b}D_{q}f(b)\Big|-\left(\frac{2-t}{2}\Big|^{b}D_{q}f(x)\Big|+\frac{t}{2}\Big|^{b}D_{q}f(y)\Big|\right)\right) d_{q}t \\ &+\int_{0}^{1}(1-qt) \left(\Big|^{a}D_{q}f(a)\Big|+\Big|^{a}D_{q}f(b)\Big|-\left(\frac{2-t}{2}\Big|^{a}D_{q}f(y)\Big|+\frac{t}{2}\Big|^{a}D_{q}f(x)\Big|\right)\right) d_{q}t \\ &=\frac{y-x}{4}\left[\frac{1}{[2]_{q}}\left(\Big|^{b}D_{q}f(a)\Big|+\Big|^{b}D_{q}f(b)\Big|\right) \\ &-\left(\frac{2[3]_{q}-q^{3}}{2[2]_{q}[3]_{q}}\Big|^{b}D_{q}f(x)\Big|+\frac{1}{2\left([4]_{q}+q[2]_{q}\right)}\Big|^{b}D_{q}f(y)\Big|\right) \\ &+\frac{1}{[2]_{q}}\left(|^{a}D_{q}f(a)\Big|+\Big|^{a}D_{q}f(b)\Big|\right) \\ &-\left(\frac{2[3]_{q}-q^{3}}{2[2]_{q}[3]_{q}}\Big|^{a}D_{q}f(y)\Big|+\frac{1}{2\left([4]_{q}+q[2]_{q}\right)}\Big|^{a}D_{q}f(x)\Big|\right)\right]. \end{split}$$

Thus the proof is completed.

Remark 5.2. In Theorem 5.1, if we set x = a and y = b, then we have the following inequality:

$$\begin{split} &\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \left[\int_{a}^{\frac{a + b}{2}} f(u) \,_{a} d_{q} u + \int_{\frac{a + b}{2}}^{b} f(u) \,^{b} d_{q} u \right] \right| \\ \leq & \frac{(b - a)}{8 \left[2 \right]_{q} \left[3 \right]_{q}} \left[\left| {}^{b} D_{q} f(a) \right| + \left(\left[3 \right]_{q} + q \left[2 \right]_{q} \right) \left| {}^{b} D_{q} f(b) \right| \right. \\ & \left. + \left(\left[3 \right]_{q} + q \left[2 \right]_{q} \right) \left| {}_{a} D_{q} f(a) \right| + \left| {}_{a} D_{q} f(b) \right| \right]. \end{split}$$

This was established by Ali et al. in [13].

Remark 5.3. If we take the limit as $q \to 1^-$, x = a and y = b, then Theorem 5.1 gives [2, Theorem 2.2].

Theorem 5.2. If the conditions of Lemma 5.1 hold and $|aD_q f|^s$, $|^bD_q f|^s$, $s \ge 1$ are convex, then we have the following inequality:

$$\left| \frac{f(a+b-x)+f(a+b-y)}{2} - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right]_{a+b-y}^{a+b-y} d_{q}u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \right]_{a+b-x}^{a+b-x} d_{q}u \right]$$

$$\leq \frac{y-x}{4} \left(\frac{1}{[2]_{q}} \right)^{1-\frac{1}{s}} \left[\left(\frac{1}{[2]_{q}} \left(\left| {}^{b}D_{q}f(a) \right|^{s} + \left| {}^{b}D_{q}f(b) \right|^{s} \right) \right]_{a}^{s}$$

$$- \left(\frac{2[3]_{q} - q^{3}}{2[2]_{q}[3]_{q}} \left| {}^{b}D_{q}f(x) \right|^{s} + \frac{1}{2([4]_{q} + q[2]_{q})} \left| {}^{b}D_{q}f(y) \right|^{s} \right) \right)^{\frac{1}{s}}$$

$$+ \left(\frac{1}{[2]_{q}} \left(\left| {}_{a}D_{q}f(a) \right|^{s} + \left| {}_{a}D_{q}f(b) \right|^{s} \right)$$

$$- \left(\frac{2[3]_{q} - q^{3}}{2[2]_{q}[3]_{q}} \left| {}_{a}D_{q}f(y) \right|^{s} + \frac{1}{2([4]_{q} + q[2]_{q})} \left| {}_{a}D_{q}f(x) \right|^{s} \right) \right)^{\frac{1}{s}} \right].$$

Proof. From equality (5.1) and the power mean inequality, we have

$$\left| \frac{f(a+b-x) + f(a+b-y)}{2} - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right]_{a+b-y}^{a+b-x} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \right]_{a+b-x}^{a+b-x} d_q u \right]$$

$$\leq \frac{y-x}{4} \left[\int_0^1 (1-qt) \left| {}^bD_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) \right| d_q t \right]$$

$$+ \int_0^1 (1-qt) \left| {}_aD_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) \right| d_q t \right]$$

$$\leq \frac{y-x}{4} \left(\int_0^1 (1-qt) d_q t \right)^{1-\frac{1}{s}} \left[\left(\int_0^1 (1-qt) \left| {}^bD_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) \right|^s d_q t \right)^{\frac{1}{s}} \right]$$

$$+ \left(\int_0^1 (1-qt) \left| {}_aD_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) \right|^s d_q t \right)^{\frac{1}{s}} \right] .$$

From the Jensen-Mercer inequality, we have

$$\left| \frac{f(a+b-x)+f(a+b-y)}{2} - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \Big|_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \Big|_{a+b-x} d_q u \right] \right|$$

$$\leq \frac{y-x}{4} \left(\frac{1}{[2]_q} \right)^{1-\frac{1}{s}} \left[\left(\frac{1}{[2]_q} \left(\left| {}^b D_q f(a) \right|^s + \left| {}^b D_q f(b) \right|^s \right) \right]$$

$$- \left(\frac{2[3]_q - q^3}{2[2]_q[3]_q} \left| {}^b D_q f(x) \right|^s + \frac{1}{2([4]_q + q[2]_q)} \left| {}^b D_q f(y) \right|^s \right) \right]$$

$$+ \left(\frac{1}{[2]_q} \left(\left| {}_a D_q f(a) \right|^s + \left| {}_a D_q f(b) \right|^s \right)$$

$$- \left(\frac{2[3]_q - q^3}{2[2]_q[3]_q} \left| {}_a D_q f(y) \right|^s + \frac{1}{2([4]_q + q[2]_q)} \left| {}_a D_q f(x) \right|^s \right) \right)^{\frac{1}{s}} \right].$$

Hence, the proof is completed.

Remark 5.4. In Theorem 5.2, if we set x = a and y = b, then we have the following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \left[\int_{a}^{\frac{a + b}{2}} f(u) \,_{a} d_{q} u + \int_{\frac{a + b}{2}}^{b} f(u) \,^{b} d_{q} u \right] \right|$$

$$\leq \frac{(b - a)}{4 [2]_{q}} \left[\left(\frac{\left| {}^{b} D_{q} f(a) \right|^{s} + \left([3]_{q} + q[2]_{q} \right) \left| {}^{b} D_{q} f(b) \right|^{s}}{2 [3]_{q}} \right)^{\frac{1}{s}} \right]$$

$$+ \left(\frac{\left([3]_{q} + q[2]_{q} \right) \left| {}_{a} D_{q} f(a) \right|^{s} + \left| {}_{a} D_{q} f(b) \right|^{s}}{2 [3]_{q}} \right)^{\frac{1}{s}} \right].$$

This was established by Ali et al. in [13].

Theorem 5.3. If the conditions of Lemma 5.1 hold and $|aD_q f|^s$, $|^bD_q f|^s$, s > 1 are convex, then we have the following inequality:

$$\begin{split} &\left| \frac{f(a+b-x) + f(a+b-y)}{2} \right. \\ &\left. - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right. \left. \left. \left. \left. \left. \left(a + b - y \right) \right| \right. \right. \right. \right. \\ &\leq \left. \frac{y-x}{4} \left(\int_{0}^{1} (1-qt)^{r} d_{q}t \right)^{\frac{1}{r}} \right. \\ &\times \left[\left. \left(\left| {}^{b}D_{q}f(a) \right|^{s} + \left| {}^{b}D_{q}f(b) \right|^{s} - \left(\frac{\left([2]_{q} + q \right) \left| {}^{b}D_{q}f(x) \right|^{s} + \left| {}^{b}D_{q}f(y) \right|^{s}}{2 \left[2 \right]_{q}} \right) \right)^{\frac{1}{s}} \right. \\ &+ \left. \left(\left| {}^{b}D_{q}f(a) \right|^{s} + \left| {}^{b}D_{q}f(b) \right|^{s} - \left(\frac{\left([2]_{q} + q \right) \left| {}_{a}D_{q}f(y) \right|^{s} + \left| {}_{a}D_{q}f(x) \right|^{s}}{2 \left[2 \right]_{q}} \right) \right)^{\frac{1}{s}} \right], \end{split}$$

where $s^{-1} + r^{-1} = 1$.

Proof. From equality (5.1) and the Hölder inequality, we have

$$\left| \frac{f(a+b-x) + f(a+b-y)}{2} - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \Big|_{a+b-y} d_q u + \int_{a+b-\frac{x+y}{2}}^{a+b-x} f(u) \Big|_{a+b-x} d_q u \right] \right|$$

$$\leq \frac{y-x}{4} \left[\int_{0}^{1} (1-qt) \Big|_{a} D_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) \Big|_{dqt} d_q t \right]$$

$$+ \int_{0}^{1} (1-qt) \Big|_{a} D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) \Big|_{dqt} d_q t \right]$$

$$\leq \frac{y-x}{4} \left(\int_{0}^{1} (1-qt)^r d_q t \right)^{\frac{1}{r}} \left[\left(\int_{0}^{1} \Big|_{b} D_q f\left(a+b-\left(\frac{2-t}{2}x+\frac{t}{2}y\right)\right) \Big|_{s}^{s} d_q t \right)^{\frac{1}{s}} \right]$$

$$+ \left(\int_{0}^{1} \Big|_{a} D_q f\left(a+b-\left(\frac{2-t}{2}y+\frac{t}{2}x\right)\right) \Big|_{s}^{s} d_q t \right)^{\frac{1}{s}} \right] .$$

After applying the Jensen-Mercer inequality, we have

$$\begin{split} &\left| \frac{f(a+b-x) + f(a+b-y)}{2} \right. \\ &\left. - \frac{1}{y-x} \left[\int_{a+b-y}^{a+b-\frac{x+y}{2}} f(u) \right. \left. \left. \left. \left. \left. \left. \left(a + b - x \right) \right| \right. \right. \right. \right] \\ &\leq \left. \frac{y-x}{4} \left(\int_{0}^{1} \left(1 - qt \right)^{r} d_{q}t \right)^{\frac{1}{r}} \right. \\ &\times \left[\left(\left| {}^{b}D_{q}f(a) \right|^{s} + \left| {}^{b}D_{q}f(b) \right|^{s} - \left(\frac{\left(\left[2 \right]_{q} + q \right) \left| {}^{b}D_{q}f(x) \right|^{s} + \left| {}^{b}D_{q}f(y) \right|^{s}}{2 \left[2 \right]_{q}} \right) \right)^{\frac{1}{s}} \right. \\ &+ \left(\left| {}_{a}D_{q}f(a) \right|^{s} + \left| {}_{a}D_{q}f(b) \right|^{s} - \left(\frac{\left(\left[2 \right]_{q} + q \right) \left| {}_{a}D_{q}f(y) \right|^{s} + \left| {}_{a}D_{q}f(x) \right|^{s}}{2 \left[2 \right]_{q}} \right) \right)^{\frac{1}{s}} \right]. \end{split}$$

Thus the proof is completed.

Remark 5.5. In Theorem 5.3, if we set x = a and y = b, then we have the following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \left[\int_{a}^{\frac{a + b}{2}} f(u) \, dq u + \int_{\frac{a + b}{2}}^{b} f(u) \, ^{b} dq u \right] \right| \\
\leq \frac{b - a}{4} \left(\int_{0}^{1} (1 - qt)^{r} \, dq t \right)^{\frac{1}{r}} \left[\left(\frac{\left| ^{b} D_{q} f(a) \right|^{s} + \left([2]_{q} + q \right) \left| ^{b} D_{q} f(b) \right|^{s}}{2 [2]_{q}} \right)^{\frac{1}{s}} \\
+ \left(\frac{\left([2]_{q} + q \right) \left| ^{a} D_{q} f(a) \right|^{s} + \left| ^{a} D_{q} f(b) \right|^{s}}{2 [2]_{q}} \right)^{\frac{1}{s}} \right].$$

This was established by Ali et al. in [13].

6. CONCLUSION

With the help of the well-known Jensen-Mercer inequality, we derived some new versions of the q-Hermite-Hadamard-Mercer inequalities. We also proved some q-midpoint and q-trapezoidal estimates for the differentiable functions to have the Jensen-Mercer inequality properties. It is an intriguing problem in which upcoming researchers can obtain similar inequalities for various types of convexities in their future work.

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (No. 11971241).

REFERENCES

- [1] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004), 137-146.
- [2] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), 91-95.
- [3] A. M. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math. 4 (2003), 73.
- [4] M. Kian, M.S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra 26 (2013), 742-753.
- [5] H. Öğülmüş, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat 35 (2021), 2425-2436.
- [6] H. Wang, J. Khan, M. A. Khan, S. Khalid, R. Khan, The Hermite-Hadamard-Jensen-Mercer type inequalities for Riemann–Liouville fractional integral, J. Math. 2021 (2021), 5516987.
- [7] T. Abdeljawad, M. A. Ali, P. O. Mohammed, A. Kashuri, On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals, AIMS Math. 6 (2021), 712-725.
- [8] E. Set, B. Çelik, M. E. Özdemir, M. Aslan, Some New results on Hermite-Hadamard-Mercer-type inequalities using a general family of fractional integral operators, Fractal Fract. 5 (2021), 68.
- [9] H. H. Chu, S. Rashid, Z. Hammouch, Y. M. Chu, New fractional estimates for Hermite-Hadamard-Mercer's type inequalities, Alex. Eng. J. 59 (2020), 3079-3089.
- [10] I. B. Sial, N. Patanarapeelert, M. A. Ali, H. Budak, T. Sitthiwirattham, On some new Ostrowski-Mercer-type inequalities for differentiable functions, Axioms 11 (2022), 132.
- [11] N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, *q*-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci. 30 (2018), 193-203.
- [12] S. Bermudo, P. Kórus, J. N. Valdés, On *q*-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hung. 162 (2020), 364-374.
- [13] M. A. Ali, H. Budak, M. Fečkon, S. Khan, A new version of *q*-Hermite-Hadamard's midpoint and trapezoid type inequalities for convex functions, Math. Slovaca, 2022, in press.
- [14] T. Sitthiwirattham, M. A. Ali, A. Ali, H. Budak, A new *q*-Hermite-Hadamard's inequality and estimates for midpoint type inequalities for convex functions, Miskolc Math. Notes 2022, in press.
- [15] H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199-215.
- [16] M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci. 44 (2021), 4515-4540.
- [17] H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci. 44 (2020), 378-390.
- [18] I. B. Sial, S. Mei, M. A. Ali, K. Nonlaopon, On some generalized Simpson's and Newton's inequalities for (α, m) -convex functions in quantum calculus, Math. 9 (2021), 3266.
- [19] J. Soontharanon, M. A. Ali, H. Budak, K. Nonlaopon, Z. Abdullah, Simpson's and Newton's Type Inequalities for (α, m) -convex functions via quantum calculus, Symmetry 14 (2022), 736.
- [20] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput. 251 (2015), 675-679.
- [21] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput. 269 (2015), 242-251.
- [22] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal. 9 (2015), 781-793.
- [23] H. Zhuang, W. Liu, J. Park, Some quantum estimates of Hermite-Hadmard inequalities for quasi-convex functions, Math. 7 (2019), 152.
- [24] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004), 281-300.
- [25] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ. 282 (2013), 1-19.
- [26] V. Kac, P. Cheung Quantum Calculus, Springer, New York, 2001.