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FRACTIONAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING UPPER
CRITICAL EXPONENT AND GENERAL NONLINEARITY

XUE YU, YANBIN SANG∗, ZHILING HAN

School of Mathematics, North University of China, Taiyuan 030051, China

Abstract. In this paper, we mainly investigate the Kirchhoff-Choquard problem with upper critical
exponent and general nonlinearity. Some appropriate restrictions are imposed on parameters. Further-
more, when the nonlinearity satisfies subcritical growth conditions, the existence of global minimizers
and mountain pass type solutions of the problem are established by using the variational properties and
fibbing maps.
Keywords. Choquard equation; Kirchhoff type problems; Nonlinearity; Upper critical exponent; Varia-
tional methods.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the following critical Kirchhoff-Choquard problem
(

a+b
∫

Q

|u(x)−u(y)|2

|x− y|N+2s dxdy
)
(−∆)su =

( ∫
Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−2u+λ f (x,u) in Ω,

u = 0 in RN \Ω,
(1.1)

where Ω ⊂ RN is a bounded domain, a and b are positive real numbers, s ∈ (0,1), N > 4s,
µ > 4s, 2∗µ,s =

2N−µ

N−2s is the upper critical exponent in the Hardy-Littlewood-Sobolev inequality,
λ is a positive parameter, f is a subcritical Carathéodory function, and (−∆)s is the fractional
Laplacian operator.

The fractional Laplacian in (1.1) is defined as

(−∆)su(x) := KN,s lim
ε→0+

∫
RN\Bε (0)

u(x)−u(y)
|x− y|N+2s dy,

where
1

KN,s
:=
∫
RN

1− cosζ1

|ζ |N+2s dζ .

In recent years, the research on the Kirchhoff-Choquard equation become significant due to
its application in physics; see, e.g., [1, 2, 3, 4, 5] for more details. In the local case, Goel and
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Sreenadh [6] studied the following equation
K u = λ f (x)|u|q−2u+

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u in Ω,

u = 0 on ∂Ω,

(1.2)

where K u =−

(
a+ ε p

(∫
Ω

|∇u|2dx
)θ−1

)
∆u with a > 0, p > N−2 (N ≥ 3) and θ ∈ [1,2∗µ).

Here 0 < µ < N, 1 < q ≤ 2, and λ is a positive parameter. The function f (x) is a continuous
sign changing function. The authors established the existence of two positive solutions for the
problem (1.2). When 1 < q < 2, the authors applied minimization argument on the Nehari sub-
manifolds to obtain the first solution. When q = 2, they used the mountain pass lemma to obtain
the second solution. Further, Luo et al. [7] studied the problem (1.2) with p = 1 and θ = 2. The
multiplicity and nonexistence of solutions were established for the above problem. Similarly,
Liang et al. [8] used the Kajikiya new version of the symmetric mountain pass theorem to
investigate the following Kirchhoff-Choquard type equation

− (a+b
∫
RN
|∇u|2dx)∆u = ak(x)|u|q−2u+

( ∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u, x ∈ RN , (1.3)

where a > 0, b ≥ 0, 0 < µ < N, N ≥ 3, α and β are two positive real parameters, 2∗µ = 2N−µ

N−2 ,
k ∈ Lr(RN) with r = 2∗

2∗−q if 1 < q < 2∗, and r =∞ if q > 2∗. The authors proved the multiplicity
of solutions for problem (1.3). More results on the Kirchhoff-Choquard problems can been
found in [9, 10, 11, 12].

In the nonlocal case, fractional Kirchhoff-Choquard equation is also a hot topic of research.
Applying Krasnoselskii’s genus theory, Wang and Xiang [13] studied the following Kirchhoff-
Choquard equation

(a+b[u]ps,p)(−∆)s
pu =

( ∫
RN

|u(y)|p
∗
µ,s

|x− y|µ
dy

)
|u|p

∗
µ,s−2u+λh(x)|u|q−2u in RN , (1.4)

where [u]ps,p =
(∫

RN

∫
RN

|u(x)−u(y)|p

|x− y|N+sp dxdy
) 1

p

, a≥ 0, b > 0, s ∈
(

0,min{1, N
2p}
)

, 2sp≤ µ <

N, λ > 0, p∗µ,s =
(N− µ

2 )p
N−sp , 1 < q < p∗s = N p

N−sp , and h ∈ L
p∗s

p∗s−q (RN). The authors showed the
multiplicity of nontrivial solutions for problem (1.4). Meanwhile, by using the concentration-
compactness principle, Chen et al. [14] obtained the existence of a positive weak solution for
the nonlocal fractional Kirchhoff-Choquard type equation. For some related results, we refer
the readers to [15, 16, 17, 18, 19, 20]. For the general nonlinearity, Liang and Rǎdulescu [21]
considered the following Kirchhoff-type Schrödinger-Choquard equation

M(‖u‖p
s )[(−∆)s

pu+V (x)|u|p−2u] = λ f (x,u)+(|x|−µ ∗ |u|p
∗
µ,s)|u|p

∗
µ,s−2u in RN , (1.5)

where ‖u‖s =

(∫∫
R2N

|u(x)−u(y)|p

|x− y|N+sp dxdy
) 1

p

, p∗µ,s =
(N− µ

2 )p
N−sp , and f :RN×R→ R is a Carathéo

dory function. The authors obtained the existence of infinitely many solutions for problem (1.5)



FRACTIONAL KIRCHHOFF-CHOQUARD EQUATIONS 69

by using variational methods. For more work on the nonlocal fractional equation involving
general nonlinearity, we refer to [22, 23, 24, 25, 26] and the references therein.

Recently, Appolloin et al. [27] obtained some new results for the following problem
(

a+b
∫
Q

|u(x)−u(y)|2

|x− y|N+2s dxdy
)
(−∆)su = |u|2∗s−2u+λg(x,u) in Ω,

u = 0 in RN \Ω,

(1.6)

where (−∆)s is the fractional Laplacian operator, s ∈ (0,1), N > 4s, a > 0, b > 0, 2∗s =
2N

N−2s , λ

is a parameter, and g is a Carathéodory function. By using variational and topological nature,
the authors proved the weak lower semicontinuity, Palais-Smale condition, the convexity and
existence of global minimizers, local minimizers, and mountain pass type solutions to (1.6). In
[28], Faraci and Silva studied problem (1.6) with s = 1 and they proved some similar conclu-
sions.

Motivated by above discussions, we extend problem (1.6) to the fractional Kirchhoff-Choquard
problem. In the present paper, coupled with the Hardy-Littlewood-Sobolev critical exponent
and general nonlinearity, problem (1.1) is studied. The presence of the upper critical exponent
will prevent us from using the variational methods in a standard way. Therefore, the key point
is to overcome the lack of compactness, the main tool adopted in our proof is concentration-
compactness principle of a nonlocal fractional problem with Choquard type term. Moreover,
some new estimates on cut-off function will be reestablished. In fact, our general nonlinearity
includes and generalizes subcritical terms in problems (1.2), (1.3), and (1.4).

Let

MN,s,µ :=
(

µ−4s
2N +4s−2µ

) 4s−µ

µ−2s−N
(

2N−µ

2N +4s−2µ

) N−2s
µ−2s−N

S
2N−µ

µ−2s−N
H,L ,

NN,s,µ :=
(

µ−4s
N +2s−µ

) 4s−µ

µ−2s−N
(

N−2s
N +2s−µ

) N−2s
µ−2s−N

S
2N−µ

µ−2s−N
H,L ,

and

QN,s,µ :=
(

µ−4s
N +2s−µ

) 4s−µ

µ−2s−N
(

(N−2s)2

(N +2s−µ)(2s+3N−2µ)

) N−2s
µ−2s−N

S
2N−µ

µ−2s−N
H,L ,

where SH,L is defined by (2.1).
Our results are the following theorems.

Theorem 1.1. The following results hold:

(i) If a
4s−µ

µ−2s−N b ≥MN,s,µ , then he energy functional Ia,b is sequentially weakly lower semi-
continuous on X s

0(Ω);

(ii) If a
4s−µ

µ−2s−N b ≥ NN,s,µ , then he energy functional Ia,b satisfies the compactness Palais-
Smale condition at level c ∈ R;

(iii) If a
4s−µ

µ−2s−N b≥QN,s,µ , then the energy functional Ia,b is convex on X s
0(Ω).

Theorem 1.2. Let a,b ∈ R+ such that a
4s−µ

µ−2s−N b≥MN,s,µ , and set

Rs
λ

:= inf
{

I λ
a,b(u) | u ∈ X s

0(Ω)\{0}
}
, f or any λ > 0.
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Then there exists λ
s
0 ≥ 0 such that, for any λ > λ

s
0, we have us

λ
∈ X s

0(Ω)\{0} such that
I λ

a,b(u
s
λ
) = Rs

λ
< 0.

Theorem 1.3. Let λ = λ
s
0. Then the following results hold:

(i) If a
4s−µ

µ−2s−N b > MN,s,µ , then there exists us
λ

s
0
∈ X s

0(Ω)\{0} such that I
λ

s
0

a,b = Rs
λ

s
0
= 0;

(ii) If a
4s−µ

µ−2s−N b = MN,s,µ , then u = 0 in the only minimizer for Rs
λ

s
0
.

Theorem 1.4. Let ((ak)k,(bk)k) be a sequence and (ak)k > 0, (bk)k > 0 such that ak → a,

bk → b and a
4s−µ

µ−2s−N
k bk ↘MN,s,µ . Setting λk := λ

s
0(ak,bk), then λk → 0 as k → ∞. And if

(uk)k ⊂ X s
0(Ω)\{0} such that λk := λ s

0(uk), then uk ⇀ 0, and

‖uk‖2

(
∫

Ω

∫
Ω

|uk(x)
2∗µ,s ||uk(y)

2∗µ,s |
|x−y|µ dxdy)

1
2∗µ,s

→ SH,L.

Theorem 1.5. If λ ≥ λ
s
0, then there exists a vs

λ
∈ X s

0(Ω)\{0} such that I λ
a,b(v

s
λ
) = cs

λ
and(

I λ
a,b

)′
(vs

λ
) = 0, where cs

λ
:= inf

g∈Γs
λ

max
ζ∈[0,1]

I λ
a,b(g(ζ )), and

Γ
s
λ

:=
{

g ∈C([0,1], X s
0(Ω)) | g(0) = 0, g(1) = us

λ
s
0

}
.

Theorem 1.6. Let R̂s
λ

:= inf
{

I λ
a,b(u) | u ∈ X s

0(Ω), ‖u‖ ≥ r
}
, for any r > 0. Then there exist

δ , r > 0 such that, for each λ
s
0−δ < λ < λ

s
0, the value R̂s

λ
is achieved at a function ws

λ
∈X s

0(Ω)
satisfying ‖ws

λ
‖> r.

Theorem 1.7. For each λ
s
0−δ < λ < λ

s
0, there exists a vs

λ
∈ X s

0(Ω)\{0} such that I λ
a,b(v

s
λ
) =

cs
λ

and (I λ
a,b)

′
(vs

λ
) = 0, where cs

λ
:= inf

g∈Γs
λ

max
ζ∈[0,1]

I λ
a,b(g(ζ )), and

Γ
s
λ

:=
{

g ∈C([0,1], X s
0(Ω)) | g(0) = 0, g(1) = ws

λ

}
.

Theorem 1.8. Assume that (H1)-(H5) hold. Then there exists λ
s

:= λ
s
(a,b) ∈ (0,λ s

0) such that
if λ ∈ (0,λ

s
), then (1.1) has no non-trivial solutions.

Our article is organized as follows. In Section 2, in the case of f (x,u) = 0, we prove the
weak lower semicontinuity, the validity of the Palais-Smale condition, and the convexity under
appropriate restrictions on the parameters a and b. In Section 3, under the perturbation of
function f (x,u), we prove the existence of global minimizers and mountain pass type solutions
with λ ≥ λ

s
0, and local minimizers and mountain pass type solutions with λ < λ

s
0. And, when

the nonlinear term f is strengthened, we prove the nonexistence result. In Appendix A, we
obtain some more accurate estimates about the cut-off function.

2. PRELIMINARIES AND THE PROOF OF THEOREM 1.1

In this section, we state some preliminaries on fractional Sobolev spaces and Choquard equa-
tions, which can be found in [16, 20, 29, 30].
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Let

X :=

{
u | u : RN → R is measurable : u |Ω∈ L2(Ω) and

u(x)−u(y)

|x− y|N2 +s
∈ L2(Q)

}
,

where Q = R2N\(C Ω×C Ω) and C Ω = RN\Ω. The space X is endowed with the norm

‖u‖X = ‖u‖L2(Ω)+

(∫
Q

|u(x)−u(y)|2

|x− y|N+2s dxdy
) 1

2

.

Define X s
0(Ω) := {u ∈ X : u = 0 a.e. in RN\Ω} and the best Sobolev constant as

SN,s := inf
u∈X s

0(Ω)\{0}

‖u‖2

‖u‖2
2∗s

,

where

‖u‖2 :=
∫

Q

|u(x)−u(y)|2

|x− y|N+2s dxdy.

The norm introduced in the previous equation is derived form the following formula

〈u,v〉X s
0(Ω) :=

∫
Q

(u(x)−u(y))(v(x)− v(y))
|x− y|N+2s dxdy, f or any u,v ∈ X s

0(Ω).

The key point to apply variational approaches to problem (1.1) is the following well-known
Hardy-Littlewood-Sobolev inequality; see [29, 30]. We have∫

RN

∫
RN

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy≤C(N,µ)|u|2·2

∗
µ,s

2∗s
,

where C(N,µ) is a suitable constant. We define

SH,L := inf
u∈X s

0(Ω)\{0}

‖u‖2(∫
Ω

(∫
Ω

|u(y)|2
∗
µ,s

|x−y|µ dy
)
|u(x)|2∗µ,sdx

) 1
2∗µ,s

(2.1)

as the best constant which is achieved if and only if u is of the form

C0

(
t

t2 + |x− x0|2

)N−2s
2

, f or all x ∈Ω,

for some x0 ∈ RN , C0 > 0 and t > 0. Also it satisfies

(−∆)su =

(∫
Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−2u in Ω.

Moreover,

SH,L =
SN,s

C(N,µ)
1

2∗µ,s

. (2.2)

Denote by I λ
a,b : X s

0(Ω)→ R the energy functional associated to (1.1),

I λ
a,b(u) :=

a
2
‖u‖2 +

b
4
‖u‖4− 1

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy−λ

∫
Ω

F(x,u)dx,
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where F(x,v) =
∫ v

0 f (x,w)dw. One has

(
I λ

a,b

)
′(u)[ϕ] = (a+b‖u‖2)〈u,ϕ〉X s

0(Ω)−
∫

Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s−2u(y)ϕ(y)

|x− y|µ
dxdy

−λ

∫
Ω

f (x,u)ϕdx,

(2.3)
for all u,ϕ ∈ X s

0(Ω). When f (x,u) = 0, we will use the notation

Ia,b(u) :=
a
2
‖u‖2 +

b
4
‖u‖4− 1

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy,

and we point out the Ia,b is a C2-functional.
In the following, we completely describe the range of parameters a and b for which the

functional Ia,b associated to the problem


(

a+b
∫

Q

|u(x)−u(y)|2

|x− y|N+2s dxdy
)
(−∆)su =

( ∫
Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−2u in Ω,

u = 0 in RN \Ω.

Proof of Theorem 1.1. (i) For a
4s−µ

µ−2s−N b≥MN,s,µ , there exists a sequence (un)n ⊂ X s
0(Ω) such

that un ⇀ u. Since the embedding X s
0(Ω) ↪→ Lp(Ω) is compact (see Lemma 9 of [31]), un→ u

in Lp(Ω) for any p ∈ [1,2∗s ). We derive that

‖un‖2−‖u‖2 = ‖un−u‖2 +2〈un−u,u〉X s
0(Ω) = ‖un−u‖2 +o(1), (2.4)

as n→ ∞ and

‖un‖4−‖u‖4 = (‖un−u‖2 +o(1))(‖un−u‖2 +2‖u‖2 +o(1)). (2.5)

Finally, from Lemma 3.3 of [29], we have

∫
Ω

∫
Ω

|un(x)|2
∗
µ,s|un(y)|2

∗
µ,s

|x− y|µ
dxdy−

∫
Ω

∫
Ω

|(un−u)(x)|2
∗
µ,s|(un−u)(y)|2

∗
µ,s

|x− y|µ
dxdy

→
∫

Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy,

(2.6)
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as n→ ∞. Combining (2.4), (2.5), (2.6), and the Sobolev inequality (2.1), we obtain

Ia,b(un)−Ia,b(u)

=
a
2
(‖un‖2−‖u‖2)+

b
4
(‖un‖4−‖u‖4)

− 1
2 ·2∗µ,s

(∫
Ω

∫
Ω

|un(x)|2
∗
µ,s|un(y)|2

∗
µ,s

|x− y|µ
dxdy−

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy

)

=
a
2
(‖un‖2−‖u‖2)+

b
4
(‖un‖4−‖u‖4)

− 1
2 ·2∗µ,s

∫
Ω

∫
Ω

|(un−u)(x)|2
∗
µ,s|(un−u)(y)|2

∗
µ,s

|x− y|µ
dxdy+o(1)

≥ ‖un−u‖2

a
2
+

b
4
‖un−u‖2−

S
−2∗µ,s
H,L

2 ·2∗µ,s
‖un−u‖2·2∗µ,s−2

+o(1),

(2.7)

as n→ ∞. At this point, we introduce the auxiliary function

lN,s,µ(t) =
a
2
+

b
4

t2−
S
−2∗µ,s
H,L

2 ·2∗µ,s
t2·2∗µ,s−2, f or t ≥ 0.

It is easy to obtain that the function lN,s,µ attains its minimum at the point

dN,s,µ =

(
b ·2∗µ,s

2 ·2∗µ,s−2
S

2∗µ,s
H,L

) 1
2·(2∗µ,s−2)

,

and that

a
4s−µ

µ−2s−N b≥MN,s,µ ⇔ lN,s,µ(dN,s,µ)≥ 0. (2.8)

It follows from (2.7) and (2.8) that

liminf
n→∞

(Ia,b(un)−Ia,b(u))≥ liminf
n→∞

‖un−u‖2lN,s,µ(‖un−u‖)≥ 0,

which concludes this part of the proof. �

Proof of Theorem 1.1. (ii) Let {un}n ⊂ X s
0(Ω) be a (PS)c sequence, i.e., Ia,b(un)→ c and

I ′a,b(un)→ 0 as n→ ∞. Recalling (2.1), we have

Ia,b(u) = a‖u‖2 +b‖u‖4−
∫

Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy≥ a‖u‖2 +b‖u‖4−S

−2∗µ,s
H,L ‖u‖

2·2∗µ,s.

Since 2∗µ,s < 2, we have that Ia,b is coercive. From Lemma 9 in [31], up to a subsequence, we
have 

un ⇀ u in X s
0(Ω),

un→ u in Lp(Ω), f or all p ∈ [1,2∗s ),
un→ u a.e in RN .
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Using the Hölder inequality, it is easy to see that {un}n is bounded. Thus there exist two finite
measures µ and ν such that |(−∆)

s
2 un|2 ⇀∗ µ, and(∫

Ω

|un(y)|2
∗
µ,s

|x− y|µ
dy

)
|un(x)|2

∗
µ,s ⇀∗ ν .

From Lemma 2.3 of [8], it follows that either un → u in L2∗s (Ω) or there exist a set I at most
countable, two real sequences {µi}i∈I , {νi}i∈I and distinct points {xi}i∈I ⊂ RN , such that

ν =

(∫
Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u(x)|2

∗
µ,s +∑

i∈I
νiδxi, (2.9)

and
µ = |(−∆)

s
2 u|2 + µ̃ +∑

i∈I
µiδxi, (2.10)

for some positive finite measure µ̃ , where

νi ≤ S
−2∗µ,s
H,L µ

2∗µ,s
i . (2.11)

Claim: The set I is empty.
If not, then there exists an index i0 such that νi0 6= 0 at xi0 . For any ε > 0, consider a cut-off

function ϑε such that 
0≤ ϑε ≤ 1 in Ω,

ϑε = 1 in B(xi0,ε),

ϑε = 0 in Ω\B(xi0,2ε).

Since the sequence {unϑε}n is bounded in X s
0(Ω), we have limn→∞ Ia,b(un)[unϑε ] = 0. Thus

o(1) = I ′a,b(un)[unϑε ]

= (a+b‖un‖2)〈un,unϑε〉X s
0(Ω)−

∫
Ω

∫
Ω

|un(x)|2
∗
µ,s|un(y)|2

∗
µ,sϑε

|x− y|µ
dxdy

=

[
(a+b‖un‖2)

∫
Q

un(y)
(un(x)−un(y))(ϑε(x)−ϑε(y))

|x− y|N+2s dxdy

+
∫

Q
ϑε(x)

(un(x)−un(y))2

|x− y|N+2s dxdy
]
−
∫

Ω

∫
Ω

|un(x)|2
∗
µ,s|un(y)|2

∗
µ,sϑε

|x− y|µ
dxdy,

(2.12)

as n→ ∞. We estimate the first term related to (2.12) by using the Hölder inequality,

(a+b‖un‖2)
∫

Q
un(y)

(un(x)−un(y))(ϑε(x)−ϑε(y))
|x− y|N+2s dxdy

≤C
∫

Q
|un(y)|2

|ϑε(x)−ϑε(y)|2

|x− y|N+2s dxdy,

for some C > 0. From Lemma 2.1 of [32], we have

lim
ε→0

limsup
n→∞

∫
Q
|un(y)|2

|ϑε(x)−ϑε(y)|2

|x− y|N+2s dxdy = 0. (2.13)
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For the second term of (2.12), we conclude from (2.10) that

lim
ε→0

lim
n→∞

(a+b‖un‖2)
∫

Q
ϑε(x)

(un(x)−un(y))2

|x− y|N+2s dxdy≥ aµi0 +bµ
2
i0. (2.14)

Finally, by (2.9), we have

lim
ε→0

lim
n→∞

∫
Ω

∫
Ω

|un(x)|2
∗
µ,s|un(y)|2

∗
µ,sϑε

|x− y|µ
dxdy = lim

ε→0

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,sϑε

|x− y|µ
dxdy+νi0 = νi0.

(2.15)
Combining (2.13), (2.14), (2.15), and using (2.11), we have

0≥ aµi0 +bµ
2
i0−νi0 ≥ aµi0 +bµ

2
i0−S

−2∗µ,s
H,L µ

2∗µ,s
i0 = µi0(a+bµi0−S

−2∗µ,s
H,L µ

2∗µ,s−1
i0 ).

We introduce the auxiliary function l̃N,s,µ(t) = a+bt−S
−2∗µ,s
H,L t2∗µ,s−1 for t ≥ 0. At this point, we

deduce a
4s−µ

µ−2s−N b > NN,s,µ ⇔ l̃N,s,µ(t) > 0. So, we have a+ bµi0 − S
−2∗µ,s
H,L µ

2∗µ,s−1
i0 > 0. Hence,

µi0 = 0 and by (2.11), νi0 = 0 as well. Thus we conclude that I = /0. Using the Brezis-Lieb
lemma, we can obtain

lim
n→∞

∫
Ω

∫
Ω

|un(x)|2
∗
µ,s|un(y)|2

∗
µ,s

|x− y|µ
dxdy =

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy.

Hence un→ u in L2∗s (Ω) and

lim
n→∞

∫
Ω

∫
Ω

|un(x)|2
∗
µ,s|un(y)|2

∗
µ,s−2un(y)

|x− y|µ
(u−un)(y)dxdy = 0. (2.16)

Since I ′a,b(un)→ 0 as n→ ∞, we have

0 = lim
n→∞

I ′a,b(un)[un−u] = lim
n→∞

(a+b‖un‖2)〈un,un−u〉X s
0(Ω).

From above equalities, we obtain limn→∞〈un,un− u〉X s
0(Ω) = 0, which together with the fact

that un ⇀ u yields that ‖un− u‖2 = 〈un,un− u〉X s
0(Ω)−〈u,un− u〉X s

0(Ω) → 0, as n→ ∞. This
completes the proof of this part. �

Proof of Theorem 1.1. (iii) To prove the convexity, we show that I ′′a,b(u)[ϕ,ϕ] ≥ 0 for all
u,ϕ ∈ X s

0(Ω). Differentiating (2.3), we have

I ′′a,b(u)[ϕ,ϕ]

= a‖ϕ‖2 +b‖u‖2‖ϕ‖2−

[
2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s−1|u(y)|2

∗
µ,s−2u(y)ϕ2

|x− y|µ
dxdy

+ (2∗µ,s−1)
∫

Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s−2

ϕ2

|x− y|µ
dxdy

]
.

(2.17)
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Using the Hölder inequality, the Sobolev inequality, and (2.2), we have

2∗µ,s
∫

Ω

∫
Ω

|u(x)|2
∗
µ,s−1|u(y)|2

∗
µ,s−2u(y)ϕ2

|x− y|µ
dxdy+(2∗µ,s−1)

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s−2

ϕ2

|x− y|µ
dxdy

≤ (2 ·2∗µ,s−1)‖ϕ‖2‖u‖2·(2∗µ,s−1)S
−2∗µ,s
H,L .

(2.18)
Combining (2.17) and (2.18), we have

I ′′a,b(u)[ϕ,ϕ]≥ ‖ϕ‖2[a+b‖u‖2− (2 ·2∗µ,s−1)‖u‖2·(2∗µ,s−1)S
−2∗µ,s
H,L ].

We introduce the auxiliary function l̂N,s,µ(t) = a+bt2− (2 ·2∗µ,s−1)t2·(2∗µ,s−1)S
−2∗µ,s
H,L for all t ≥

0. It is easy to verify that l̂N,s,µ attains its global minimum at the point

d̂N,s,µ :=

 2bS
2∗µ,s
H,L

(2 ·2∗µ,s−1)(2 ·2∗µ,s−2)

 1
2·(2∗µ,s−2)

,

and that
a

4s−µ

µ−2s−N b≥QN,s,µ ⇔ l̂N,s,µ(t)≥ 0,

for all t ≥ 0. It is clear from the proof that Ia,b is strictly convex provided that a
4s−µ

µ−2s−N b >
QN,s,µ . �

3. EXISTENCE AND NON-EXISTENCE RESULTS: GENERAL CASE

On the application of Theorem 1.1, we study the set of solutions of perturbed problem (1.1).
As for f , we make the following assumptions:

(H1) f : Ω×R→ R is a Carathéodory function satisfying f (x,0) = 0 a.e. in Ω;
(H2) f (x,v)> 0 for every v > 0 and f (x,v)< 0 for every v < 0 a.e. in Ω. Further, there exists

µ > 0 such that f (x,v)≥ µ > 0 a.e. in Ω and for any v ∈ J, where J is open interval of (0,∞);
(H3) f : Ω×R→ R is a function satisfying f (x,v) ≤ c(1+ |v|p−1) for all x ∈ Ω and v ∈ R,

where c > 0, 2 < p < 2∗s ;
(H4) limv→0

f (x,v)
|v| = 0 uniformly in x ∈Ω;

(H5) For every u ∈ X s
0(Ω), the function t 7→

∫
Ω

f (x, tu(x))dx is C1 with respect to t ∈ (0,∞).
We first establish the following results which are the fundamental tools in proving our theo-

rems.

Proposition 3.1. Let u ∈ X s
0(Ω)\{0}. we have:

(i) for each t > 0, it holds

a
2
‖u‖2 +

b
4

t2‖u‖4− t2·2∗µ,s−2

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy > lN,s,µ(t‖u‖)‖u‖2;

(ii) for each t > 0, it holds

a‖u‖2 +bt2‖u‖4− t2·2∗µ,s−2
∫

Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy > l̃N,s,µ(t‖u‖)‖u‖2.



FRACTIONAL KIRCHHOFF-CHOQUARD EQUATIONS 77

Proof. From the boundedness of Ω and the Sobolev inequality, we have

t2

[
a
2
‖u‖2 +

b
4

t2‖u‖4− t2·2∗µ,s−2

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy

]

=
a
2
(t‖u‖)2 +

b
4
(t‖u‖)4− (t‖u‖)2·2∗µ,s

2 ·2∗µ,s
· ‖u‖−2·2∗µ,s

(
∫

Ω

∫
Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x−y|µ dxdy)−1

>
a
2
(t‖u‖)2 +

b
4
(t‖u‖)4− (t‖u‖)2·2∗µ,s

2 ·2∗µ,s
·S−2∗µ,s

H,L .

Moreover, we can obtain (ii) similarly. The proof is complete. �

Lemma 3.1. Let a,b ∈ R+, (uk)k ⊂ X s
0(Ω), and λk→ λ ≥ 0 as k→ ∞.

(1) If a
4s−µ

µ−2s−N b≥MN,s,µ and uk ⇀ u in X s
0(Ω), then I λ

a,b(u)≤ liminf
k→∞

I λ
a,b(uk);

(2) If a
4s−µ

µ−2s−N b > NN,s,µ , I λ
a,b(uk)→ c and

(
I λ

a,b

)
′(uk)→ 0, then (uk)k is convergent to

some u in X s
0(Ω) up to subsequence.

Proof. The proof process is similar to that of Theorem 1.1 (i) and (ii). �

For every t > 0, we introduce the fiber map

ψ
λ ,u
a,b (t) :=I λ

a,b(tu)=
a
2

t2‖u‖2+
b
4

t4‖u‖4− t2·2∗µ,s

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy−λ

∫
Ω

F(x, tu)dx,

for λ ≥ 0 and u ∈ X s
0(Ω).

Proposition 3.2. There exists a neighbourhood V of 0 such that ψ
λ ,u
a,b (t) > 0 for all t ∈ V ∩

(0,∞). We have ψ
λ ,u
a,b (t)→ ∞ as t→ ∞ and we also have that ψ

λ ,u
a,b (t) is bounded from below.

Proof. Fix ε > 0. Due to (H4), we have

ψ
λ ,u
a,b (t) = t2

(
a
2
‖u‖2 +

b
4

t2‖u‖4− t2·2∗µ,s−2

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy−λ

∫
Ω

F(x, tu)
t2 dx

)

≥ t2

(
a
2
‖u‖2 +

b
4

t2‖u‖4− t2·2∗µ,s−2

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy−λ

ε

2
‖u‖2

2

)
.

By using the Sobolev inequality and taking ε and t appropriately, we obtain the results of the
first part. Since 1 < 2∗µ,s < 2, we conclude that ψ

λ ,u
a,b (t)→ ∞ as t → ∞. At the same time, we

also have that ψ
λ ,u
a,b (t) is bounded from below. �

Now, we consider the system
ψ

λ ,u
a,b (t) = 0,(
ψ

λ ,u
a,b

)
′(t) = 0,

ψ
λ ,u
a,b (t) = infα>0 ψ

λ ,u
a,b (α),

(3.1)
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in the unknowns λ and t.

Proposition 3.3. Let a,b ∈ R+ such that a
4s−µ

µ−2s−N b≥MN,s,µ and choose u ∈ X s
0(Ω)\{0}. Then

there exists a unique λ = λ s
0(u) that solves (3.1).

Proof. The proof is the similar to that of Proposition 4 of [27]. We omit the concrete details. �

Corollary 3.1. Let u ∈ X s
0(Ω)\{0}. Then λ s

0(u) is the unique parameter such that

inf
t∈(0,∞)

ψ
λ s

0(u),u
a,b (t) = 0.

Moreover,

inf
t∈(0,∞)

ψ
λ ,u
a,b (t)

{
< 0 i f λ > λ s

0(u),
= 0 i f 0 < λ ≤ λ s

0(u).

Now, we introduce the following extremal parameter. Set λ
s
0 := infu∈X s

0(Ω)\{0}λ s
0(u).

The next proposition demonstrates how the parameter λ
s
0 varies according to the choices

made for a and b.

Proposition 3.4. The following assertions hold:

(i) If a
4s−µ

µ−2s−N b > MN,s,µ , then λ
s
0 > 0;

(ii) If a
4s−µ

µ−2s−N b = MN,s,µ , then λ
s
0 = 0. Moreover, if (uk)k ⊂ X s

0(Ω)\{0} is a sequence such
that λ s

0(uk)→ λ
s
0 as k→ ∞, then uk ⇀ 0 and

‖uk‖2

(
∫

Ω

∫
Ω

|uk(x)
2∗µ,s ||uk(y)

2∗µ,s |
|x−y|µ dxdy)

1
2∗µ,s

→ SH,L.

Proof. (i) Since the proof is quite similar to that of Proposition 5 in [27], we omit the details.
(ii) We can assume that 0 ∈ Ω. Take a nonnegative cut-off function such that φ(x) = 1 in

BR(0) for some R > 0. Set ε > 0 and consider υε(x) := φ(x)

(ε+|x|2)
N−2s

2
. We set uε := υε

‖υε‖ . By

Appendix A, we obtain that

‖uε‖= 1,
∫

Ω

∫
Ω

|uε(x)|2
∗
µ,s|uε(y)|2

∗
µ,s

|x− y|µ
dxdy≥ S

−2∗µ,s
H,L +O(ε2N−µ), ‖υε‖ ≤ ε

−N−2s
4 C1 +O(1),

as ε → 0 for some C1 > 0. Therefore,

ψ
λ ,uε

a,b (t) =
a
2

t2 +
b
4

t4− t2·2∗µ,s

2 ·2∗µ,s

∫
Ω

∫
Ω

|uε(x)|2
∗
µ,s|uε(y)|2

∗
µ,s

|x− y|µ
dxdy−λ

∫
Ω

F(x, tuε)dx

≤ t2lN,s,µ(t)−
t2·2∗µ,s

2 ·2∗µ,s
O(ε2N−µ)−λ

∫
Ω

F(x, tuε)dx.

Letting t = dN,s,µ , we obtain

ψ
λ ,uε

a,b (dN,s,µ) =−
dN,s,µ

2·2∗µ,s

2 ·2∗µ,s
O(ε2N−µ)−λ

∫
Ω

F(x,dN,s,µuε)dx.

Claim: There exists a constant C2 > 0 such that
∫

Ω
F(x,dN,s,µuε)dx≥C2ε

N
2 as ε → 0.
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As a consequence of the claim ,we obtain

ψ
λ ,uε

a,b (dN,s,µ)≤ ε
2N−µ

(
−

dN,s,µ
2·2∗µ,s

2 ·2∗µ,s
O(1)−λC2ε

µ− 3N
2

)
< 0.

Hence, λ s
0(uε) < λ . We obtain λ

s
0 = 0 as λ → 0. Now, we see the last part, We suppose that

(uk)k ⊂ X s
0(Ω)\{0} satisfies λk := λ s

0(uk)→ λ
s
0 = 0. Let ‖uk‖= 1 and uk ⇀ u, Then there exists

tk > 0 such that

a
2
+

b
4

t2
k −

t
2·2∗µ,s−2
k
2 ·2∗µ,s

∫
Ω

∫
Ω

|uk(x)|2
∗
µ,s|uk(y)|2

∗
µ,s

|x− y|µ
dxdy−λk

∫
Ω

F(x, tkuk)

t2
k

dx = 0. (3.2)

Combining (H3), (H4), and (3.2), we can deduce that tk→ t and
∫

Ω

∫
Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x−y|µ dxdy→
σ , as k→ ∞. Passing to the limit in (3.2), we arrive at

a
2
+

b
4

t2− t2·2∗µ,s−2

2 ·2∗µ,s
σ = 0.

From a
4s−µ

µ−2s−N b = MN,s,µ , it follows that σ = S
−2∗µ,s
H,L . Thus (uk)k is a minimizing sequence for

SH,L. Now, if u 6= 0, by the lower semicontinuity of the norm, we have ‖u‖ ≤ 1. Coupling this
fact with lN,s,µ , we obtain

0≤ a
2
+

b
4

t2− t2·2∗µ,s−2

2 ·2∗µ,s
S
−2∗µ,s
H,L ‖u‖

2·2∗µ,s

≤ a
2
+

b
4

t2− t2·2∗µ,s−2

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy

≤ limsup
k→∞

a
2
+

b
4

t2
k −

t
2·2∗µ,s−2
k
2 ·2∗µ,s

∫
Ω

∫
Ω

|uk(x)|2
∗
µ,s|uk(y)|2

∗
µ,s

|x− y|µ
dxdy−λk

∫
Ω

F(x, tkuk)

t2
k

dx

= 0,

which cannot happen since Ω is bounded. �

The following proposition summarizes the condition of the infimum depending on the choice
of the parameter λ for the functional ψ

λ ,u
a,b (t).

Proposition 3.5. If λ ≤ λ
s
0, then inft>0 ψ

λ ,u
a,b (t) = 0 for any u ∈ X s

0(Ω)\{0}. If λ > λ
s
0, then

inft>0 ψ
λ ,u
a,b (t)< 0 for any u ∈ X s

0(Ω)\{0}.

Proof. The proof is the similar to that of Proposition 6 of [27]. We omit the details here. �

After some preliminary results, we use the traditional variational methods to study the set of
solutions of problem (1.1). The first step giving the proof for Theorems 1.2 and 1.3 provides
the existence of global minimizers for λ ≥ λ

s
0.

Proof of Theorem 1.2. Combining (H3) and (H4), it is easy to verify that I λ
a,b is coercive.

Moreover, we also have the lower semicontinuity. Finally, we recall that Proposition 3.5 implies
the existence of a function and the functional is proved to be negative. �
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Proof of Theorem 1.3. (i) Take a sequence λk ↘ λ
s
0. From Theorem 1.2, for each k, we

can find (uk)k ⊂ X s
0(Ω)\{0} such that Rs

λk
= I λk

a,b(uk) < 0. Since λk ↘ λ
s
0, it follows that

(uk)k is bounded and we may suppose that uk ⇀ u in X s
0(Ω). According to Lemma 3.1 (1), we

obtain I
λ

s
0

a,b(u) ≤ liminfk→∞ I
λ

s
0

a,b(uk) ≤ 0. Proposition 3.5 ensures that I
λ

s
0

a,b(ω) ≥ 0 for each

ω ∈ X s
0(Ω). Thus I

λ
s
0

a,b(u) = Rs
λ

s
0
= 0. To conclude the proof, we have to prove that u 6= 0. In

fact

a
2
‖uk‖2 +

b
4
‖uk‖4−

S
−2∗µ,s
H,L

2 ·2∗µ,s
‖uk‖2·2∗µ,s

≤ a
2
‖uk‖2 +

b
4
‖uk‖4− 1

2 ·2∗µ,s

∫
Ω

∫
Ω

|uk(x)|2
∗
µ,s|uk(y)|2

∗
µ,s

|x− y|µ
dxdy

≤ λk

∫
Ω

F(x,uk)dx.

Thus

lN,s,µ(‖uk‖) =
a
2
+

b
4
‖uk‖2−

S
−2∗µ,s
H,L

2 ·2∗µ,s
‖uk‖2·2∗µ,s−2 ≤ λk

∫
Ω

F(x,uk)

‖uk‖2 dx.

If u = 0, by (H3) and (H4), we have lN,s,µ(‖uk‖)→ 0 as k→ ∞. This fact is in contradiction

with lN,s,µ(‖uk‖)≥ lN,s,µ(dN,s,µ)> 0. Since a
4s−µ

µ−2s−N b > MN,s,µ , then u must be different from
zero.

(ii) From Proposition 3.4 (ii), we have λ
s
0 and

I
λ

s
0

a,b(u) =
a
2
‖u‖2 +

b
4
‖u‖4− 1

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy.

Furthermore, I
λ

s
0

a,b(u) = ‖u‖
2lN,s,µ(‖u‖) > 0 for any u ∈ X s

0(Ω)\{0}. So u = 0 is the only
minimizer for this functional. �

Corollary 3.2. Let a
4s−µ

µ−2s−N b > MN,s,µ and u ∈ X s
0(Ω)\{0} such that I

λ
s
0

a,b(u) = Rs
λ

s
0
. Then

λ
s
0 = λ s

0(u).

Proof. The pair (λ
s
0,u) solves system (3.1). �

Proof of Theorem 1.4. The proof process is similar to that of Proposition 3.4 (ii). We omit the
proof here. �

Now we investigate the solutions of mountain pass type. As we can see, the situation changes

if λ ≥ λ
s
0 or λ < λ

s
0. Next we consider positive parameters a,b ∈ R such that a

4s−µ

µ−2s−N b >
MN,s,µ .
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Proof of Theorem 1.5. Combining (H3) and (H4), and recalling X s
0(Ω) ↪→ Lq(Ω) continuously

for each q ∈ [2,2∗s ], there exists a positive constant C such that

I λ
a,b ≥

a
2
‖u‖2 +

b
4
‖u‖4− C

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy−λC(ε‖u‖2 +‖u‖p)

= (
a
2
−λCε)‖u‖2 +

b
4
‖u‖4− C

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy−λC‖u‖p.

(3.3)
By selecting ε < a/(2λC), we see that there exists ιs

λ
such that inf‖u‖=ιs

λ
I λ

a,b > 0. Hence, we

have I λ
a,b(0) = 0 and I λ

a,b(u
s
λ

s
0
) ≤ 0. In fact, I λ

a,b(u
s
λ

s
0
) = 0 if λ = λ

s
0 while I λ

a,b(u
s
λ

s
0
) < 0

for λ > λ
s
0 by Proposition 3.5. The functional possesses a mountain pass geometry. Moreover,

recalling Lemma 3.1 (2), we have that I λ
a,b satisfies the Palais-Smale condition. So we obtain

the conclusion by the mountain pass theorem. �
After solving the case of λ ≥ λ

s
0, we now study the case of λ < λ

s
0, that is, the existence of

nontrivial solutions which are local minimizers or mountain pass type.

Proposition 3.6. Let λ ≤ λ
s
0. Then there exist r = r(s) and M = M(s)> 0 such that

inf
{

I λ
a,b(u) : u ∈ X s

0(Ω), ‖u‖= r
}
≥M. (3.4)

Proof. Fix ε > 0. Since λ ≤ λ
s
0 and (3.3), we have

I λ
a,b ≥ (

a
2
−λ

s
0Cε)‖u‖2 +

b
4
‖u‖4− C

2 ·2∗µ,s

∫
Ω

∫
Ω

|u(x)|2
∗
µ,s|u(y)|2

∗
µ,s

|x− y|µ
dxdy−λ

s
0C‖u‖p,

for any u ∈ X s
0(Ω). If we take ε in such a way that a/2−λ

s
0Cε > 0, then the proof is complete.

�

Now, we show that the infimum in Theorem 1.6. Set

R̂s
λ

:= inf
{

I λ
a,b(u) : u ∈ X s

0(Ω), ‖u‖ ≥ r
}
, f or any r > 0.

Remark 3.1. We can easily see that R̂s
0 → 0 as λ → λ

s
0. There exists a function u ∈ X s

0(Ω)

such that λ
s
0 = λ s

0(u) and we have 0≤ R̂s
λ
≤I λ

a,b(u)→ 0 as λ → λ
s
0.

Remark 3.2. ws
λ

is a local minimizer and a critical point for I λ
a,b.

Proof of Theorem 1.6. For r,M > 0, if λ
s
0− δ < λ < λ

s
0, we have that R̂s

λ
< M for δ > 0.

As a result, if (uk)k is a minimizing sequence, then there exist β > 0 and k � 0 such that
‖uk‖ ≥M +β . we conclude the existence of a minimizing sequence and the convergence to a
local minimizer ws

λ
∈ X s

0(Ω) such that ‖ws
λ
‖ ≥M and R̂s

λ
= I λ

a,b(w
s
λ
) is established. �

Next, we prove the existence of mountain pass solutions in Theorem 1.7 for λ < λ
s
0 close

enough to λ
s
0.

Proof of Theorem 1.7. We obtain that min{I λ
a,b(0), I λ

a,b(w
s
λ
)}< M, recalling ‖ws

λ
‖> M and

(3.4). Hence, we have a mountain pass geometry. Since the Palais-Smale condition is satisfied,
we obtain the conclusion by the Mountain Pass Theorem. �
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Finally, we introduce the nonexistence result of solutions for problem (1.1). For (H5), the
following system is well defined

(
ψ

λ ,u
a,b

)
′(t) = 0,(

ψ
λ ,u
a,b

)
′′(t) = 0,(

ψ
λ ,u
a,b

)
′(t) = infα>0

(
ψ

λ ,u
a,b

)
′(α).

(3.5)

Fixing u ∈ X s
0(Ω), we see that there exists a unique λ s(u)> 0 that solves (3.5).

Proposition 3.7. For each u ∈ X s
0(Ω)\{0}, the parameter λ s(u) is the unique λ > 0 for which

the fiber map ψ
λ ,u
a,b (t) has a critical point where the second derivative is zero. Moreover, ψ

λ ,u
a,b (t)

has no critical points if and only if 0 < λ < λ s(u).

Proof. If 0 < λ < λ s(u) for each t > 0, then ψ
λ ,u
a,b (t)> ψ

λ s(u),u
a,b (t)> 0. �

Corollary 3.3. For each u ∈ X s
0(Ω)\{0}, then λ s

0(u)> λ s(u).

Proof. Indeed, we assume on the contrary that λ s
0(u)≤ λ s(u). From Proposition 3.2, we obtain

that ψ
λ s

0(u),u
a,b (t) is increasing which contradicts with the existence of solutions for system (3.1).

�

Define the extremal value λ
s

:= infu∈X s
0(Ω)\{0}λ s(u).

Proposition 3.8. Let a
4s−µ

µ−2s−N b > NN,s,µ . Then 0 < λ
s
< λ

s
0.

Proof. In fact, it follows from Theorem 1.3 and Corollary 3.2 that there exists a u ∈ X s
0(Ω)\{0}

such that λ
s
0 = λ s

0(u). From Corollary 3.3, it follows that λ
s ≤ λ s(u)< λ s

0(u) = λ
s
0. �

Proposition 3.9. For each 0 < λ < λ
s
, the fiber map ψ

λ ,u
a,b (t) is increasing and has no critical

points.

Proof. This follows from the fact that λ < λ
s ≤ λ s(u) for each u ∈ X s

0(Ω)\{0} and Proposition
3.7. �

Proof of Theorem 1.8. In fact, by Proposition 3.9, we have that
(

ψ
λ ,u
a,b

)
′(t) > 0 for all t > 0

and u ∈ X s
0(Ω)\{0}. So u = 0 is the only critical point. �

APPENDIX A. ESTIMATION BOUT THE CUT-OFF FUNCTION

In this section, we give some new estimates on the cut-off function which needs to be reestab-
lished. It is also applied to our main theorems.

Lemma A.1. Let s ∈ (0,1), N > 4s, and µ > 4s. Then, the following estimate holds

‖υε‖ ≤ ε
−N−2s

4 C1 +O(1).

Proof. The proof is based on the previous estimates. And it is complicated-definitely more
difficult than the one for similar results in the case of the Laplacian

‖υε‖2 ≤
∫

Q

|υε(x)−υε(y)|2

|x− y|N+2s dxdy+O(1).
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By Proposition 3.4 (ii), we can obtain

‖υε‖2 ≤
∫

Q

∣∣∣∣ 1

(ε+|x|2)
N−2s

2
− 1

(ε+|y|2)
N−2s

2

∣∣∣∣2
|x− y|N+2s dxdy+O(1).

Note that |x− y|N+2s ≥
∣∣|x|N+2s−|y|N+2s

∣∣ . Hence,

‖υε‖2 ≤
∫

Q

∣∣∣∣ 1

(ε+|x|2)
N−2s

2
− 1

(ε+|y|2)
N−2s

2

∣∣∣∣2
|x− y|N+2s dxdy+O(1)

≤
∫

Q

∣∣∣∣ 1

(ε+|x|2)
N−2s

2
− 1

(ε+|y|2)
N−2s

2

∣∣∣∣2
||x|N+2s−|y|N+2s| dxdy+O(1)

= ε
−(N−2s)

∫
Q

∣∣∣∣ 1

(1+ |x|
2

ε
)

N−2s
2
− 1

(1+ |y|
2

ε
)

N−2s
2

∣∣∣∣2
||x|N+2s−|y|N+2s| dxdy+O(1).

(A.1)

Let |x|√
ε
= r1 and

|y|√
ε
= r2. We have dx = (

√
εr1)

N−1√εdr1 and dy = (
√

εr2)
N−1√εdr2. Sub-

stituting them into the formula above, we have

‖υε‖2 ≤ ε
−(N−2s)

∫
Q

∣∣∣∣ 1

(1+ |x|
2

ε
)

N−2s
2
− 1

(1+ |y|
2

ε
)

N−2s
2

∣∣∣∣2
||x|N+2s−|y|N+2s| dxdy+O(1)

= ε
−(N−2s) · εN

ε
N+2s

2

∫
Q

∣∣∣∣ 1

(1+r2
1)

N−2s
2
− 1

(1+r2
2)

N−2s
2

∣∣∣∣2 rN−1
1 rN−1

2

||r1|N+2s−|r2|N+2s| dr1dr2 +O(1)

= ε
−N−2s

2

∫
Q

∣∣∣∣ 1

(1+r2
1)

N−2s
2
− 1

(1+r2
2)

N−2s
2

∣∣∣∣2 rN−1
1 rN−1

2

||r1|N+2s−|r2|N+2s| dr1dr2 +O(1).

(A.2)

Thus ‖υε‖ ≤ ε−
N−2s

4 C1 +O(1) for some C1 > 0. This completes the proof. �

Lemma A.2. Let s ∈ (0,1), N > 4s and µ > 4s. Then, the following estimate holds

∫
Ω

∫
Ω

|uε(x)|2
∗
µ,s|uε(y)|2

∗
µ,s

|x− y|µ
dxdy≥ S

−2∗µ,s
H,L +O(ε2N−µ).
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Proof. By Proposition 3.4 (ii) and Lemma A.1, we can obtain

∫
Ω

∫
Ω

|uε(x)|2
∗
µ,s|uε(y)|2

∗
µ,s

|x− y|µ
dxdy =

∫
Ω

∫
Ω

∣∣∣υε (x)
‖υε‖

∣∣∣2∗µ,s ∣∣∣υε (y)
‖υε‖

∣∣∣2∗µ,s
|x− y|µ

dxdy

=
1

‖υε‖2·2∗µ,s

∫
Ω

∫
Ω

|υε(x)|2
∗
µ,s|υε(y)|2

∗
µ,s

|x− y|µ
dxdy

=
1

‖υε‖2·2∗µ,s

∫
Ω

∫
Ω

∣∣∣∣ 1

(ε+|x|2)
N−2s

2

∣∣∣∣2∗µ,s ∣∣∣∣ 1

(ε+|y|2)
N−2s

2

∣∣∣∣2∗µ,s
|x− y|µ

dxdy.

(A.3)
We calculate the above formula

∫
Ω

∫
Ω

∣∣∣∣ 1

(ε+|x|2)
N−2s

2

∣∣∣∣2∗µ,s ∣∣∣∣ 1

(ε+|y|2)
N−2s

2

∣∣∣∣2∗µ,s
|x− y|µ

dxdy

= ε
−(2N−µ)

∫
Ω

∫
Ω

∣∣∣∣ 1

(1+ |x|
2

ε
)

N−2s
2

∣∣∣∣2∗µ,s ∣∣∣∣ 1

(1+ |y|
2

ε
)

N−2s
2

∣∣∣∣2∗µ,s
|x− y|µ

dxdy.

Note that

SH,L := inf
υε∈X s

0(Ω)\{0}

‖υε‖2(∫
Ω

(∫
Ω

|υε (y)|2
∗
µ,s

|x−y|µ dy
)
|υε(x)|2

∗
µ,sdx

) 1
2∗µ,s

. (A.4)

Combining (A.2), (A.3), and (A.4), we have

SH,L := inf
υε∈X s

0(Ω)\{0}

(
ε−

N−2s
4

∫
Q

∣∣∣∣ 1

(1+r2
1)

N−2s
2
− 1

(1+r2
2)

N−2s
2

∣∣∣∣2 rN−1
1 rN−1

2

||r1|N+2s−|r2|N+2s| dr1dr2

)2

(
ε
−(2N−µ)

∫
Ω

∫
Ω

∣∣∣∣ 1

(1+ |x|
2

ε
)

N−2s
2

∣∣∣∣2∗µ,s ∣∣∣∣ 1

(1+ |y|
2

ε
)

N−2s
2

∣∣∣∣2∗µ,s
|x− y|µ

dxdy
) 1

2∗µ,s

. (A.5)

Setting
|x|√

ε
= r1 and

|y|√
ε
= r2, we have dx = (

√
εr1)

N−1√εdr1 and dy = (
√

εr2)
N−1√εdr2.

Substituting them into the formula above, we have

ε
−(2N−µ)

∫
Ω

∫
Ω

∣∣∣∣ 1

(1+ |x|
2

ε
)

N−2s
2

∣∣∣∣2∗µ,s ∣∣∣∣ 1

(1+ |y|
2

ε
)

N−2s
2

∣∣∣∣2∗µ,s
|x− y|µ

dxdy

≤ ε
−(N− µ

2 )
∫

Ω

∫
Ω

∣∣∣∣ 1

(1+r2
1)

N−2s
2

∣∣∣∣2∗µ,s ∣∣∣∣ 1

(1+r2
2)

N−2s
2

∣∣∣∣2∗µ,s rN−1
1 rN−1

2

|r1− r2|µ
dr1dr2.
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Hence, combining (A.3) and (A.5), we have∫
Ω

∫
Ω

|uε(x)|2
∗
µ,s|uε(y)|2

∗
µ,s

|x− y|µ
dxdy

≥
ε
−(N− µ

2 )
∫

Ω

∫
Ω

∣∣∣∣ 1

(1+r2
1)

N−2s
2

∣∣∣∣2∗µ,s ∣∣∣∣ 1

(1+r2
2)

N−2s
2

∣∣∣∣2∗µ,s rN−1
1 rN−1

2

|r1− r2|µ
dr1dr2

(
ε
−N−2s

4

∫
Q

∣∣∣∣ 1

(1+r2
1)

N−2s
2
− 1

(1+r2
2)

N−2s
2

∣∣∣∣2 rN−1
1 rN−1

2

||r1|N+2s−|r2|N+2s| dr1dr2

)2·2∗µ,s

≥ S
−2∗µ,s
H,L +O(ε2N−µ).

This completes the proof. �

Acknowledgments
This research was supported by the Programs for the Cultivation of Young Scientific Research
Personnel of Higher Education Institutions in Shanxi Province, Fundamental Research Program
of Shanxi Province(202103021224198), and the Innovative Research Team of North University
of China (TD201901).

REFERENCES

[1] X. Chang, Z.Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general
nonlinearity, Nonlinearity 26 (2013), 479-494.

[2] P. Felmer, A. Quaas, J.G. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional
Laplacian, Proc. Math. Phys. Eng. Sci. 142 (2012), 1237-1262.

[3] I.M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations,
Class. Quantum Gravity 15 (1998), 2733-2742.

[4] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, In: Loss,
M., Ruskai, M.B. (eds) Inequalities, Springer, Berlin, Heidelberg, 2002. doi: 10.1007/978-3-642-55925-9 37.

[5] B. Zhang, S. Marco, X. Zhang, Fractional NLS equations with magnetic field, critical frequency and critical
growth, Manuscripta Math. 155 (2018), 115-140.

[6] D. Goel, K. Sreenadh, Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Nonlinear
Anal. 186 (2019), 162-186.

[7] X. Luo, A. Mao, Y. Sang, Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents,
Commun. Pure Appl. Anal. 20 (2021), 1319-1345.

[8] S. Liang, P. Pucci, B. Zhang, Multiple solutions for critical Choquard-Kirchhoff type equations, Adv. Non-
linear Anal. 10 (2020), 400-419.

[9] Y. Su, H.B. Chen, Existence of nontrivial solutions for a perturbation of choquard equation with Hardy-
Littlewood-Sobolev upper critical exponent, Electron. J. Differ. Equ. 2018 (2018), 123.

[10] F. Gao, M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China
Math. 61 (2018), 1219-1242.

[11] F. Gao, Y. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J.
Math. Anal. Appl. 448 (2017), 1006-1041.

[12] R. Arora, J. Giacomoni, T. Mukherjee, K. Sreenadh, n-Kirchhoff-Choquard equations with exponential non-
linearity, Nonlinear Anal. 186 (2019), 113-144.



86 X. YU, Y. SANG, Z. HAN

[13] F. Wang, M. Xiang, Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving
critical nonlinearity, Anal. Math. Phys. 9 (2017), 1-16.
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