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Abstract. In this paper, a new accelerated fixed point algorithm for finding a common fixed point of two
countable families of nonexpansive mappings in a Hilbert space is introduced. The weak convergence of
the proposed algorithm is analyzed under some suitable conditions. We apply our proposed algorithm to
solve the convex optimization problems in the form of the sum of two lower semi-continuous and convex
functions. Some numerical experiments are conducted to demonstrate the efficiency of the proposed
algorithm.
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1. INTRODUCTION

Let H be a real Hilbert space, and let C be a nonempty, closed, and convex subset of H
with ‖ · ‖. In the past decades, many researchers paid attention to the convex minimization
problem in the form of the sum of two functions. A general natural formulation by estimating
the minimizer of the sum of two functions is defined as follows:

min
x∈H
{ f (x)+g(x)}, (1.1)

where f and g are proper, lower semi-continuous, and convex functions. The set of all solutions
to problems (1.1) is denoted by argmin( f + g). If f is differentiable on H, then (1.1) can be
described by the fixed point equation

x = proxµg(x−µ∇ f (x)), (1.2)
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where µ > 0 and proxµg is the proximity operator of g defined by proxµg = (I − µ∂g)−1,
where I is the identity operator in H, and ∂g is the subdifferential of g. In [1–3], the authors
provided important properties of proximal operators. For example, proxµg is well-defined with
full domain, single valued, and nonexpansive.

Equation (1.2) leads to the classical forward-backward splitting algorithm (FBS) [4] which
is generated by x1 ∈ Rn and xn+1 = proxµng(I− µn∇ f )(xn), n ≥ 0, where µn ∈ (0, 2

L) is a step
size, and L is a Lipschitz constant of ∇ f . Several authors utilized the concept of the classical
forward-backward splitting algorithm to solve problem (1.1); see, e.g., [5–9] and the references
therein.

Fixed point methods are efficient to solve the convex minimization problem in the form of the
sum of two functions. In the real word, fixed point theory have been applied to many branches
of applied analysis; see, e.g., [10–12]. In addition, fixed point methods also play an important
role in solving various problems in data science, economics, medicine, and engineering; see,
e.g., [6, 13–17] and the references therein. In order to find a fixed point of a nonlinear operator
T : C→C, many researchers introduced various methods. One of the famous iterative methods
is the Picard iteration process, defined by xn+1 = T xn. In 1953, Mann [18] proposed an iterative
method known as the Mann iteration process in Hilbert spaces as follows: x1 ∈ C, xn+1 =
(1−αn)xn +αnT xn, where {αn} is a sequence in (0,1). He also proved a weak convergence
theorem of this iteration under some conditions on {αn}. In 1967, Halpern [19] introduced
the following iterative scheme for a fixed point of T : xn+1 = (1−αn)x+αnT xn, where {αn}
is a sequence in (0,1) and x ∈ C. This is now called Halpern iteration. He proved the strong
convergence of the iterative sequence in a Hilbert space. Mann iteration may fail to provide a
convergence result when T is a pseudo-contractive mapping. In order to overcome this problem,
Ishikawa [20] defined an iterative process, called Ishikawa iterative process, as follows: x1 ∈C,{

yn = (1−αn)xn +αnT xn,

xn+1 = (1−βn)xn +βnTyn,

where {αn} and {βn} are sequences in (0,1). Notice that if αn = 1 for all n ∈ N, then the
Ishikawa iterative process reduces to the Mann iteration process.

Recently, Agarwal et al. [21] modified the Ishikawa iteration to introduce a new iteration
process, called the S-iteration process, x1 ∈C,{

yn = (1−αn)xn +αnT xn,

xn+1 = (1−βn)T xn +βnTyn,

where {αn} and {βn} are sequences in (0,1). The authors proved that the convergence behavior
of the S-iteration is better than that of Mann and of Ishikawa iterations.

For common fixed points of two mappings, Das and Debata [22] and Takahashi and Tamura
[23] generalized the Ishikawa iteration for two mappings S and T as follows: x1 ∈C,{

xn+1 = (1−βn)xn +βnSyn,

yn = (1−αn)xn +αnT xn,

where {αn} and {βn} are sequences in (0,1). Note that when S = T , the above generalized
Ishikawa iterative process reduces to the Ishikawa iterative process. It is worth noting that the
approximation of common fixed points of two mappings case can be linked with minimization



CONVEX MINIMIZATION PROBLEMS 89

problems directly, see, e.g., [24]. In 2006, Nakajo et al. [25] constructed a sequence by an
hybrid method in mathematical programming for finding a common fixed point of family of
nonexpansive mappings in Hilbert spaces. Consequently, several modifications of the above
hybrid method was constructed for finding a common fixed point of a countable family of
nonexpansive mappings; see, e.g., see [26–28]. In 2007, Aoyama et al. [29] improved the
Halpern iterative sequence by considering xn+1 = (1−αn)x+αnTnxn, where {αn} is a sequence
in (0,1) and x1, x∈C. They proved the strong convergence of the Halpern type algorithm under
some suitable conditions. In 2008, Takahashi et al. [26] defined a useful condition so-called
the NST-condition (I) for proving that the sequence generated by the hybrid method converges
strongly to a common fixed point of a countable family of nonexpansive mappings in Hilbert
spaces. Nakajo et al. [27] proposed the condition, called NST?-condition, which is weaker
than that of the NST-condition (I) and proved the strong convergence of the hybrid method to a
common fixed point of a countable family of nonexpansive mappings.

To accelerate convergence behavior of these algorithms, many researchers utilized an inertial
technique, which was first introduced by Polyak [30] to solve smooth convex minimization
problems. Recently, many inertial-type algorithms were proposed and studied; see, e.g., [7, 9,
31,32] and the references therein. The inertial forward-backward splitting (IFBS) was presented
by Moudafi and Oliny in [33] as follows:{

yn = xn +θn(xn− xn−1),

xn+1 = proxµng(yn−µn∇ f (xn)),

where x0, x1 ∈ Rn, µn ∈ (0, 2
L), and θn is the inertial parameter which controls the momentum

of xn− xn−1. It can be guaranteed the convergence of IFBS by proper choices of µn and θn.
The fast iterative shrinkage-thresholding algorithm (FISTA) was defined by

yn = xn− 1
L∇ f (xn),

tn+1 =
1+
√

1+4t2
n

2 ,θn =
tn−1
tn+1

,

xn+1 = yn +θn(yn− yn−1),

where n ∈ N, x1 = y0 ∈ Rn, and t1 = 1. This notion was suggested by Beck and Teboulle [31].
The authors also analyzed the convergence rate of the FISTA and applied the FISTA to image
restoration problems. It is pointed out from this work that the LASSO model is a suitable model
for image restoration problems.

Recently, Verma and Shukla [7] proposed the new accelerated proximal gradient algorithm
(NAGA) as follows: 

zn = xn +θn(xn− xn−1),

yn = (1−βn)zn +βnproxµng(zn−µn∇ f (zn)),

xn+1 = proxµng(yn−µn∇ f (yn)),

where n ∈ N, x0, x1 ∈ Rn, βn ∈ (0,1), µn ∈ (0, 2
L), and θn ∈ (0,1) is the inertial parameter

which controls the momentum of xn− xn−1. The authors proved NAGA’s convergence theorem
under the condition ‖xn−xn−1‖2

θn
→ 0 and applied their result to the convex minimization problem

for a multitask learning framework using sparsity inducing regularizes.
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Motivated and inspired by the results mentioned above, in this paper, we aim to introduce
a new accelerated algorithm by using the inertial technique to solve a common fixed point
problem of two countable families of nonexpansive operators. We prove a convergence theorem
for common fixed points of two countable families of nonexpansive mappings in a real Hilbert
space under some control conditions and also apply the algorithm to some convex minimization
problems. This paper is organized as follows. Section 2 provides some preliminary results that
will be utilized throughout the paper. In Section 3, we introduce our new accelerated algorithm
via the inertial techniques and prove a weak convergence theorem. We also apply our main
results to convex minimization problems and image restoration problems. Some numerical
experiments of the proposed methods are given in Section 4. Finally, we give a brief conclusion
of our work in Section 5.

2. PRELIMINARIES

Throughout this paper, let N and R be the set of positive integers and real numbers, respec-
tively. Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, induced by the inner
product. For a sequence {xn} in H, we denote the strong convergence and the weak convergence
of {xn} to x ∈ H by xn→ x and xn ⇀ x, respectively.

A mapping T : C → C is called L-Lipschitz if there exists L > 0 such that ‖T x− Ty‖ ≤
L‖x− y‖, ∀x,y ∈C. If L = 1, then T is called nonexpansive. We denoted by F(T ) the set of all
fixed points of T , that is, F(T ) = {x ∈C : T x = x}. Let {Tn} and ℑ be families of nonexpansive
operators from C into itself such that /0 6= F(ℑ) ⊂

⋂
∞
n=1 F(Tn), where F(ℑ) is the set of all

common fixed points of ℑ and F(Tn) is the set of all fixed point of Tn. From [28], we see that
{Tn} satisfies the NST-condition (I) with ℑ if, for every bounded sequence {xn} in C,

lim
n→+∞

‖xn−Tnxn‖= 0 =⇒ lim
n→+∞

‖xn−T xn‖= 0, ∀T ∈ ℑ.

In particular, if ℑ = {T}, then {Tn} is said to satisfy NST-condition (I) with T . After that, the
concept of NST?-condition which is weaker than that of NST-condition (I) was introduced by
Nakajo et al. [27] and they provided some of mappings that satisfying the NST?-condition.

A sequence {Tn} is said to satisfy the NST?-condition if, for every bounded sequence {xn}
in C,

lim
n→∞
‖xn−Tnxn‖= 0 = lim

n→∞
‖xn− xn+1‖=⇒ ωw(xn)⊂

∞⋂
n=1

F(Tn),

where ωw(xn) is the set of all weak-cluster points of {xn}.
Note that the NST?-condition is more general than that of NST-condition (I). It is easy to see

that if {Tn} satisfies the NST-condition (I), then {Tn} satisfies the NST?-condition.
We now recall the definition of forward-backward operator of lower semi-continuous and

convex functions of f : Rn → (−∞,+∞) and g : Rn → (−∞,+∞) as: In 1962, Moreau [34]
defined the proximity operator with respect to λ and g, denoted as proxλg. A forward-backward
operator T is defined by T :=proxλg(I− λ∇ f ) for λ > 0, where ∇ f is the gradient operator
of function f and proxλg(x) := argminy∈H{g(y)+ 1

2λ
‖y− x‖2} (see [3, 9]). Moreover, T is a

nonexpansive mapping whenever λ ∈ (0, 2
L), where L is a Lipschitz constant of ∇ f .

We end this section with the following lemmas which will be used to prove our main result
in next section.
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Lemma 2.1 ([35]). Let {αn},{βn}, and {γn} be sequences of nonnegative real numbers such
that αn+1 ≤ (1+ γn)αn+βn for all n ∈N. If ∑

∞
n=1 γn <+∞ and ∑

∞
n=1 βn <+∞, then limn→∞ αn

exists.

Lemma 2.2 ([33]). Let H be a Hilbert space, and let {xn} be a sequence in H such that there
exists a nonempty subset F of H satisfying

(i) for every p ∈ F, limn→+∞ ‖xn− p‖ exists;
(ii) each weak-cluster point of {xn} is in F.

Then, there exists x ∈ F such that xn ⇀ x.

Lemma 2.3 ([32]). Let {an} and {θn} be sequences of nonnegative real numbers such that
an+1 ≤ (1+θn)an +θnan−1 for all n ∈ N. Then the following holds an+1 ≤ K ·∏n

j=1(1+2θ j),

where K = max{a1,a2}. Moreover, if ∑
∞
n=1 θn <+∞, then {an} is bounded.

Lemma 2.4 ([9]). For a real Hilbert space H, let g : H → R∪{+∞} be proper convex and
lower semi-continuous function, and let f : H → R be convex differentiable with gradient ∇ f
being L−Lipschitz constant for some L > 0. If {Tn} is the forward-backward operator of f and
g with respect to cn ∈

(
0, 2

L

)
such that {cn} converges to c, then {Tn} satisfies the NST-condition

(I) with T , where T is the forward-backward operator of f and g with respect to c ∈
(
0, 2

L

)
.

3. MAIN RESULTS

In this section, we first introduce the new algorithm for finding a common fixed point of
two countable families of nonexpansive mappings in real Hilbert spaces. Let {Sn} and {Tn} be
families of nonexpansive mappings on H into itself with {αn} and {βn} are sequences in (0,1).

Algorithm 1: (IMIA): Inertial Modified Ishikawa algorithm.

Initial step. Take x0, x1 ∈ H arbitrarily and set n = 1. Let {θn} ⊂ [0,∞) such that
∑

∞
n=1 θn <+∞.
Iterative step. Compute zn, yn, and xn+1 via

zn = xn +θn(xn− xn−1),

yn = βnzn +(1−βn)Tnzn,

xn+1 = αnyn +(1−αn)Snyn.

We now prove our main result.

Theorem 3.1. Let {Sn} and {Tn} be two countable families of nonexpansive mappings on a
real Hilbert space H with

⋂
∞
n=1 F(Sn)

⋂⋂
∞
n=1 F(Tn) 6= /0. Let {xn} be a sequence generated by

Algorithm 1, where {αn} and {βn} are sequences in (0,1) satisfying the following conditions:
(i) 0 < liminfn→∞ βn(1−βn) and (ii) 0 < liminfn→∞ αn(1−αn). If {Sn} and {Tn} satisfy the
NST?-condition, then xn ⇀ x ∈Ω :=

⋂
∞
n=1 F(Sn)

⋂⋂
∞
n=1 F(Tn).

Proof. Fix u ∈Ω. It follows from the definition of zn that

‖zn−u‖= ‖xn +θn(xn− xn−1)−u‖
≤ ‖xn−u‖+θn‖xn− xn−1‖. (3.1)
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By the nonexpansiveness of Tn, we have

‖yn−u‖2 = ‖βn(zn−u)+(1−βn)(Tnzn−u)‖2

= βn‖zn−u‖2 +(1−βn)‖Tnzn−u‖2−βn(1−βn)‖zn−Tnzn‖2 (3.2)

≤ ‖zn−u‖2, (3.3)

and

‖xn+1−u‖2 = ‖αn(yn−u)+(1−αn)(Snyn−u)‖2

= αn‖yn−u‖2 +(1−αn)‖Snyn−u‖2−αn(1−αn)‖yn−Snyn‖2 (3.4)

≤ αn‖yn−u‖2 +(1−αn)‖Snyn−u‖2

≤ ‖yn−u‖2. (3.5)

From (3.1), (3.3), and (3.5), we have

‖xn+1−u‖ ≤ ‖zn−u‖
≤ ‖xn−u‖+θn‖xn− xn−1‖
≤ (1+θn)‖xn−u‖+θn‖xn−1−u‖. (3.6)

Using Lemma 2.3, we obtain

‖xn+1−u‖ ≤ K ·
n

∏
j=1

(1+2θ j),

where K = max{‖x1− u‖,‖x2− u‖}. Since ∑
∞
n=1 θn < +∞, we see that {xn} is a bounded. It

follows that ∑
∞
n=1 θn‖xn−xn−1‖<+∞. Using (3.6) and Lemma 2.1, we obtain limn→∞ ‖xn−u‖

exists for all u ∈Ω. By (3.2), (3.5), and nonexpansiveness of Tn, we have

‖xn+1−u‖2 ≤ ‖yn−u‖2

= βn‖zn−u‖2 +(1−βn)‖Tnzn−u‖2−βn(1−βn)‖zn−Tnzn‖2

= βn‖zn−u‖2 +(1−βn)‖zn−u‖2−βn(1−βn)‖zn−Tnzn‖2

= ‖zn−u‖2−βn(1−βn)‖zn−Tnzn‖2

= ‖(xn−u)+θn(xn− xn−1)‖2−βn(1−βn)‖zn−Tnzn‖2

≤ ‖xn−u‖2 +2θn‖xn−u‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2−βn(1−βn)‖zn−Tnzn‖2,

which implies

βn(1−βn)‖zn−Tnzn‖2 ≤ ‖xn−u‖2−‖xn+1−u‖2 +2θn‖xn−u‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2.

This together with assumption (i), limn→∞ ‖xn− u‖ exists and ∑
∞
n=1 θn‖xn− xn−1‖ < +∞, we

obtain

lim
n→∞
‖zn−Tnzn‖= 0. (3.7)
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It follows from (3.3), (3.4) and nonexpansiveness of Sn that

αn(1−αn)‖yn−Snyn‖2

= αn‖yn−u‖2 +(1−αn)‖Snyn−u‖2−‖xn+1−u‖2

≤ ‖yn−u‖2−‖xn+1−u‖2

≤ ‖zn−u‖2−‖xn+1−u‖2

= ‖(xn−u)+θn(xn− xn−1)‖2−‖xn+1−u‖2

≤ ‖xn−u‖2 +2θn‖xn−u‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2−‖xn+1−u‖2.

By condition (ii) and the facts that limn→∞ ‖xn− u‖ exists and ∑
∞
n=1 θn‖xn− xn−1‖ < +∞, we

conclude that
lim
n→∞
‖yn−Snyn‖= 0. (3.8)

Since ‖zn− xn‖= θn‖xn− xn−1‖ and ∑
∞
n=1 θn‖xn− xn−1‖<+∞, we arrive at

lim
n→∞
‖zn− xn‖= 0. (3.9)

By the nonexpansiveness of Tn, we have

‖xn−Tnxn‖ ≤ ‖xn− zn‖+‖zn−Tnzn‖+‖Tnzn−Tnxn‖
≤ 2‖xn− zn‖+‖zn−Tnzn‖, ∀n ∈ N.

Combining (3.7) and (3.9), we obtain limn→∞ ‖xn−Tnxn‖= 0. Moreover, we have

‖xn− yn‖ ≤ βn‖xn− zn‖+(1−βn)‖xn−Tnzn‖
≤ βn‖xn− zn‖+(1−βn)(‖xn− zn‖+‖zn−Tnzn‖)
≤ ‖xn− zn‖+‖zn−Tnzn‖.

It follows from (3.7) and (3.9) that

lim
n→∞
‖xn− yn‖= 0. (3.11)

In view of the nonexpansiveness of Sn, we have

‖xn−Snxn‖ ≤ ‖xn− yn‖+‖yn−Snyn‖+‖Snyn−Snxn‖
≤ 2‖xn− yn‖+‖yn−Snyn‖, ∀n ∈ N.

This implies by (3.8) and (3.11) that limn→∞ ‖xn−Snxn‖= 0. Note that limn→∞ ‖xn+1−xn‖= 0.
Indeed, from the definition of xn+1, we have

‖xn+1− xn‖ ≤ αn‖yn− xn‖+(1−αn)‖Snyn− xn‖
≤ αn‖yn− xn‖+(1−αn)[‖Snyn− yn‖+‖yn− xn‖].
≤ ‖yn− xn‖+‖Snyn− yn‖.

Using (3.8) and (3.11), we have limn→∞ ‖xn+1−xn‖= 0. Since {Sn} and {Tn} satisfy the NST?-
condition, we have that all the weak-cluster points of the bounded sequence {xn} are contained
in Ω. By Opial’s Lemma (Lemma 2.2), we obtain that xn ⇀ x for some x ∈Ω. �



94 P. THONGPAEN, W. INTHAKON, A. KAEWKHAO, S. SUANTAI

Remark 3.1. We observe from the proof of Theorem 3.1 that condition ∑
∞
n=1 θn < +∞ was

assumed to guarantee the boundedness and convergence of the sequence {xn} generated by
Algorithm 1. From inequality (3.6), if we assume that ∑

∞
n=1 θn‖xn− xn−1‖<+∞, then Lemma

2.1 indicates that limn→∞ ‖xn−u‖ exists. Thus we can follow the same proof line from this point
to conclude that xn ⇀ x ∈ Ω. Hence, we may assume a weaker condition on {θn} in Theorem
3.1 by assuming that ∑

∞
n=1 θn‖xn−xn−1‖<+∞ instead of ∑

∞
n=1 θn <+∞. However, in practice,

condition ∑
∞
n=1 θn <+∞ is more suitable and gives us more flexibility for implementations (see

TABLE 1).

As a direct consequence of Theorem 3.1, we obtain the following result by setting Sn = Tn.

Corollary 3.1. Let {Tn} be a countable family of nonexpansive mappings on a real Hilbert
space H with Ω :=

⋂
∞
n=1 F(Tn) 6= /0. Let {xn} be a sequence generated by

zn = xn +θn(xn− xn−1),

yn = βnzn +(1−βn)Tnzn,

xn+1 = αnyn +(1−αn)Tnyn,

where ∑
∞
n=1 θn < +∞, {αn} and {βn} are sequences in (0,1) satisfying the assumptions as in

Theorem 3.1. If {Tn} satisfies the NST?-condition, then {xn} converges weakly to x ∈Ω.

4. APPLICATIONS TO CONVEX MINIMIZATION PROBLEMS

In this section, we focus on our proposed method for finding a common solution of the
following convex minimization problems:

min
x∈H

( f1(x)+g1(x)) and min
x∈H

( f2(x)+g2(x)), (4.1)

where fi,gi : H → (−∞,∞], i = 1,2, are proper lower semi-continuous functions such that f1
and f2 are differentiable. The set of all solutions of problem (4.1) is denoted by

Ω := argmin( f1 +g1)∩ argmin( f2 +g2).

When f1 = f2 and g1 = g2, the problem (4.1) can be reduced to the convex minimization prob-
lem of the following form:

min
x∈H

( f1(x)+g1(x)). (4.2)

One knows that a point z in H is a solution to problem (4.2) if and only if z = T z, where
T =proxµg1(I− µ∇ f1) and µ > 0. We also see that a point z in Ω if and only if z = T z = Sz,
where T =proxµg1(I− µ∇ f1) and S =proxκg2(I−κ∇ f2) with µ,κ > 0. It is also guaranteed
that T and S are nonxpansive if µ ∈ (0, 2

ρ1
) and κ ∈ (0, 2

ρ2
) when ρ1 and ρ2 are Lipschitz

constants of ∇ f1 and ∇ f2, respectively. For more details, one refers to [1–3]. To solve convex
minimization problem (4.1), we set Tn =proxµng1(I− µn∇ f1) and Sn =proxκng2(I−κn∇ f2) in
Algorithm 1, where µn ∈ (0, 2

ρ1
) and κn ∈ (0, 2

ρ2
). So, Algorithm 1 can be written as Algorithm

2:
As a consequence of Theorem 3.1, we obtain the weak convergence of the sequence generated

by Algorithm 2 to a solution of problem (4.1).

Theorem 4.1. Let {xn} be a sequence generated by Algorithm 2. Under the same conditions
and assumptions as in Theorem 3.1, we have xn ⇀ x ∈Ω.
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Algorithm 2: (FBMIA (I)): Forward-Backward Modified Ishikawa algorithm

Initial step. Take x0, x1 ∈ H arbitrarily and n = 1. Let {θn} ⊂ [0,∞) such that
∑

∞
n=1 θn <+∞

Iterative step. Compute zn, yn and xn+1 using
zn = xn +θn(xn− xn−1),

yn = βnzn +(1−βn)proxµng1
(I−µn∇ f1)zn,

xn+1 = αnyn +(1−αn)proxκng2
(I−κn∇ f2)yn.

Proof. Let Tn =proxµng1(I − µn∇ f1) and Sn =proxκng2(I − κn∇ f2), where µn ∈
(

0, 2
ρ1

)
and

κn ∈
(

0, 2
ρ2

)
. Then Tn and Sn are nonexpansive operators for all n. Similarly, we set T and

S to be forward-backward operators of f1 and f2 with respect to µ and κ , respectively, where
µ ∈

(
0, 2

ρ1

)
and κ ∈

(
0, 2

ρ2

)
. Then T =proxµg1(I − µ∇ f1) and S =proxκg2(I − κ∇ f2) are

nonexpansive operators. By [36, Proposition 26.1], we know that
⋂

∞
n=1 F(Tn)= argmin( f1+g1)

and
⋂

∞
n=1 F(Sn) = argmin( f2 + g2). It is derived from Lemma 2.4 that {Tn} and {Sn} satisfy

the NST∗-condition. Using Theorem 3.1, we can conclude that {xn} converges weakly to x ∈
Ω. �

Moreover, if f2 = f1, g2 = g1, and κn = µn in Algorithm 2, then we can prove {xn} converges
weakly to solution of problem (4.2) via the following algorithm.

Algorithm 3: (FBMIA (II)): Forward-Backward Modified Ishikawa Algorithm

Initial step. Take x0, x1 ∈ H arbitrarily and n = 1. Let {θn} ⊂ [0,∞) such that
∑

∞
n=1 θn <+∞

Iterative step. Compute zn, yn and xn+1 using
zn = xn +θn(xn− xn−1),

yn = βnzn +(1−βn)proxµng1
(I−µn∇ f1)zn,

xn+1 = αnyn +(1−αn)proxµng1
(I−µn∇ f1)yn.

The following result is a consequence of Corollary 3.1.

Theorem 4.2. Let {xn} be a sequence generated by Algorithm 3. Under the same conditions
and assumption as in Corollary 3.1, we have xn ⇀ x ∈ argmin( f1 +g1).

Proof. Let Tn =proxµng1(I−µn∇ f1) and T =proxµg1(I−µ∇ f1), where µn,µ ∈
(

0, 2
ρ1

)
. Then

Tn and T are nonexpansive for all n. By [36, Proposition 26.1], we obtain ∩∞
n=1F(Tn) =

argmin( f1 + g1). It is derived from Lemma 2.4 that {Tn} satisfies the NST∗-condition. Us-
ing Corollary 3.1, we obtain that {xn} converges weakly to x ∈ argmin( f1 +g1). �

We next present some experiments on image restoration problems by using Algorithm 2 and
Algorithm 3. The model of image restoration problem is a simple linear inverse problem as
follows:

Ax = b+w (4.3)
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where x ∈ Rn×1 is the original image, A is the blurring operator, b is the observed image, and
w is an additive noise. To approximate the original image x? ∈ Rn×1 which satisfies (4.3), we
need to minimize the value of w by using the least squares (LS) problem:

min
x

{
‖Ax−b‖2

2
}
, (4.4)

where ‖ · ‖2 is an `2 norm defined by ‖x‖2=
√

∑
n
k=1 |xk|2.

There are numerous iterations for solving problem (4.4), such as the Richardson iteration (see
[37]). However, the number of unknown variables is much more than the observations which
cause (4.4) to be an ill-posed problem; see [38] and [39]. Therefore, in order to improve the
ill-conditioned least squares problem, several regularization methods were introduced. One of
the most popular regularization methods is the least absolute shrinkage and selection operator
(LASSO) model introduced by Tibshirani [40] as the following form:

min
x

{
‖Ax−b‖2

2 +β‖x‖1
}
, (4.5)

where β is a positive regularization parameter, ‖x‖1 = ∑
n
k=1 |xk|, and ‖x‖2=

√
∑

n
k=1 |xk|2. This

model can be used to solve problem (4.2) by utilizing optimization methods; see, e.g., [31, 40].
For solving image restoration problems, in particular, the true RGB images, this model is highly
cost to compute the multiplication Ax and ‖x‖1 because of the size of matrix A and x as well as
their members. In order to overcome this problem, most of researchers in this area employed
the 2-D fast Fourier transform for transformation the true RGB images as the following form:

min
x
{‖A x− v‖2

2 +β‖W x‖1},

where A is the blurring operator which is often chosen as A = BW , B is the blurring matrix,
W is the 2-D fast Fourier transform, v ∈ Rm×n is the observed image of size m×n, and β is a
positive regularization parameter. In real situation, we may have more than one observed images
by different blurring operators. Let v1 and v2 be observed images occurred by blurring operators
A1 = B1W and A2 = B2W , where B1 and B2 are the blurring matrices, respectively. Our
model of image restoration problem is to find the original image x which satisfies the following
LASSO model:

min
x
{‖A1x− v1‖2

2 +λ1‖W x‖1} and min
x
{‖A2x− v2‖2

2 +λ2‖W x‖1}.

Hence, it can be viewed as two convex minimization problem (4.1). So, FBMIA (I) can be
applied to image restoration problem (4.3) by setting f1(x) = ‖A1x− v1‖2

2, g1(x) = λ1‖W x‖1,
and f2(x) = ‖A2x− v2‖2

2, g2(x) = λ2‖W x‖1. Furthermore, FBMIA (II), FBS [4], IFBS [33],
FISTA [31], and NAGA [7] can be applied to image restoration problem Ax = b+w by setting
f (x) = ‖A x−b‖2

2 and g(x) = γ‖W x‖1, where γ is a regularization parameter. In the following
experiment, we set the regularization parameter γ = 5e−5 and look at the original image (Wat
Lok Moli) of size 256× 256 pixels. The blurred and noisy images are created by a Gaussian
blur of size 9× 9 with the standard deviation σ = 5 and the motion blur of angle θ = 10. In
Figure 2, we can see the original image 2 (a) and both two blurred images 2 (b) and 2 (c). We
use the peak signal-to-noise ratio (PSNR) in decibel (dB) [41] to measure the performance of
restorative image which is defined by

PSNR(xn) = 10log
(

2552

MSE

)
,
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where MSE= 1
K‖xn−x?‖2

2, K is the number of image samples, and x? is the original image. It is
observed that a higher value of PSNR shows a higher quality of deblurring image. In addition,
we compute the Lipschitz constant L by using the maximum eigenvalue of the matrix AT A and
set parameters for FBMIA (I), FBMIA (II), FISTA, NAGA, IFBS and FBS as in Table 1.

TABLE 1. Algorihtms and their setting of parameters

Methods Setting of parameters
FBMIA (I) αn =

1
100 , βn = 0.5, µn,κn =

n
L(n+1) , and

FBMIA (II) θn =

{
n

n+1 if 1≤ n < N,
1
2n , otherwise, where N is a stop number of iteration.

FISTA µ = 1
L , θn =

tn−1
tn+1

, where tn+1 =
1+
√

1+4t2
n

2 .

NAGA βn = 0.5, µn =
n

L(n+1) and θn =
tn−1
tn+1

,

where tn+1 =
1+
√

1+4t2
n

2 .

IFBS µn =
n

L(n+1) and

θn =

{
1

n2‖xn−xn−1‖2
2

if xn 6= xn−1,

0, otherwise.
FBS µn =

n
L(n+1)

As seen in Table 1, all parameters are selected to satisfy all the conditions for each algo-
rithms. By Theorem 4.1 and Theorem 4.2, the sequence {xn} generated by FBMIA (I) and
FBMIA (II) converges to the original image, respectively. All experiments are performed on
Intel(R) core(TM) i7-9700CPU with 32.00 GB RAM, windows 10, under Matlab computing
environment. All parameters in each algorithm are set as in Table 1, we obtain the results of
deblurring image of Wat Lok Moli with 500 iterations in Table 2.

TABLE 2. The values of PSNR at x10,x50,x100,x200,x300,x400,x500

Iteration No.
The peak signal-to-noise ratio (PSNR)

FBMIA (I) FBMIA (II) NAGA FISTA IFBS FBS
10 23.3669 22.5153 22.0882 21.9384 21.3223 21.3223
50 29.4914 25.5639 25.5513 25.1685 22.5736 22.5736
100 32.8390 27.2957 26.8910 26.5220 23.4065 23.4065
200 35.9721 28.9271 22.4459 27.9742 24.2912 24.2912
300 37.7413 29.7341 29.3091 28.9318 24.7922 24.7922
400 38.7311 30.1881 29.9754 29.5728 25.1320 25.1320
500 39.4552 30.4147 30.3461 30.0153 25.3848 25.3848

From Table 2, comparing with FBMIA (II), NAGA, FISTA, IFBS and FBS, FBMIA (I) provides
higher value of PSNR. This means that the performance of the image restoration of our proposed
algorithm is the best. Moreover, we present the results of deblurring image of Wat Lok Moli



98 P. THONGPAEN, W. INTHAKON, A. KAEWKHAO, S. SUANTAI

at the 500th iteration of such studied algorithms as in Figure 1. It is derived from the graph

FIGURE 1. The graph of PSNR for Wat Lok Moli

of PSNR in Figure 1 that FBMIA (I) provides the higher value of PSNR than other algorithms.
This implies that FBMIA (I) has a better performance than those of FBMIA (II), NAGA, FISTA,
IFBS, and FBS. We can conclude from Figure 2 that Algorithm 2 provides the best results of
deblurring.

5. CONCLUSIONS

In this paper, a new accelerated algorithm for solving a common fixed point of two countable
families of nonexpansive operators was introduced. Under some conditions, a weak conver-
gence theorem of this algorithm was proved. The main result of this paper was applied to a
convex minimization problem in the form of the sum of two proper lower semi-continuous and
convex functions. Image restoration problems were also considered as applications. some nu-
merical experiments were provided to compare the performance of the studied algorithms with
NAGA [7], FISTA [31], IFBS [33], and FBS [4] and the efficiency for images restoration of our
proposed algorithm was obtained.
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(A) Original image (B) Gaussian Blurred (C) Motion Blurred

(D) FBS (E) IFBS (F) FISTA

(G) NAGA (H) FBMIA (II) (I) FBMIA (I)

FIGURE 2. Results for image restoration at 500th iteration.
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