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Abstract. This paper defines a convertible nonconvex function (CN function for short) and a weak
(strong) uniform (decomposable, exact) CN function, proves the optimization conditions for their global
solutions, and proposes algorithms for solving the unconstrained optimization problems with decom-
posable CN functions. First, to illustrate the fact that some nonconvex functions, nonsmooth or discon-
tinuous, are actually weak uniform CN functions, examples are given. The operational properties of
CN functions are proved, including addition, subtraction, multiplication, division, and compound opera-
tions. Second, optimization conditions of the global optimal solution to the unconstrained optimization
with weak uniform CN function are proved. Based on the unconstrained optimization problem with de-
composable CN functions, a decomposable algorithm is proposed by its augmented Lagrangian penalty
function and its convergence is proved. Numerical results demonstrate that an approximate global op-
timal solution to unconstrained optimization with CN function may be obtained by the decomposable
algorithm. The decomposable algorithm can effectively reduce the scale in solving the unconstrained
optimization problem with decomposable CN function. This paper provides a new idea for solving un-
constrained nonconvex optimization problems.

Keywords. Decomposable algorithm; Optimization conditions; Unconstrained optimization problems;
Weak uniform convertible nonconvex function.

1. INTRODUCTION

In this paper, the following unconstrained optimization (convertible nonconvex optimization,
CNO) with weak uniform (decomposable) convertible nonconvex (CN) function is considered:

(CNO) min f (xxx)

s.t. xxx ∈ Rn,

where f : Rn→R is neither convex nor smooth. In machine learning, there are many nonconvex,
nonsmooth, non-Lipschitz, and discontinuous optimization problems [24, 27, 37, 38]. To solve
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these problems, theoretical tools of nonsmooth and nonconvex functions are needed, such as
the subdifferentiable, general convex, smoothing, and so on [3, 9, 10, 14, 31].

In this paper, we define a new nonconvex function (Definition 2.2 below), called the (weak
or strong uniform) CN function, where the CN function is a nonconvex nonsmooth function
form that can be transformed into a convex smooth function with convex equality constraints.
The CN function somewhat relates to the upper -UCk function [5, 11, 17, 28, 31, 34] and the
factorable nonconvex function [6, 15, 21, 22, 25, 26, 36, 32].

The lower(upper)-Ck function was suggested by Rockafellar [31]. The class of lower-C1

functions was first introduced by Spingarn [34]. Spingarn proved that these functions are (Mif-
flin) semi-smooth and Clarke regular, and are characterized by a generalized monotonicity prop-
erty of their subgradients, called the submonotonicity. The definition of the lower(upper)-Ck

function was given as follows.

Definition 1.1. [11] Let U be an open subset of Rn and k ∈ N. Function f : U → R is called
lower-Ck (for short, LCk) if, for every xxx0 ∈U , there exist δ > 0, compact topological space S,
and a jointly continuous function F : B(xxx0,δ )×S→ R satisfying f (xxx) = maxsss∈S F(xxx,sss) for all
xxx ∈ B(xxx0,δ ) such that all the derivatives of F up to order k with respect to xxx exist and are jointly
continuous. If − f is lower-Ck, then f is said to be upper-Ck.

The lower(upper)-Ck function is nonconvex or nondifferentiable, but it is locally Lipschitz
approximately convex function [11]. The Moreau envelopes er f (xxx) := infwww{ f (www)+ r

2 |www−xxx|2}
is lower-C2 [5, 17, 28] such that the subdifferential of the lower(upper)-Ck functions can solve
nonconvex optimization by prox-regularity and the proximal mapping(operator) [18]. Chieu et
al. proved second-order necessary and sufficient conditions for lower-C2 functions to be convex
and strongly convex in [9]. Some methods for non-smooth non-convex optimization programs
with lower(upper)-Ck functions have been studied in [12, 19, 20, 30]. Dao [12] developed a
nonconvex bundle method based on the downshift mechanism and a proximity control manage-
ment technique to solve nonconvex nonsmooth constrained optimization problems. He proved
the global convergence in the sense of subsequences for both classes of lower-C1 and upper-C1;
see [12] for more details. In [19, 20], Hare et al. studied two proximal bundle methods for
nonsmooth nonconvex optimization by proximal mapping on lower-C2 functions. In [30], Noll
defined a first-order model of f as an extend case of lower-Ck function and presented a bundle
method as follows.

Definition 1.2. A function φ : Rn×Rn→ R is called a first-order model of f on ω ⊂ Rn if φ(·,xxx)
is convex for every fixed xxx ∈ ω , and if the following axioms are satisfied:

(M1) φ(xxx,xxx) = f (xxx) and ∂1φ(xxx,xxx)⊂ ∂ f (xxx).
(M2) For every sequence yyy j→ xxx, there exists ε j→ 0+ such that f (yyy j)≤ φ(yyy j,xxx)+ε j‖yyy j−xxx‖

for all j ∈ N.
(M3) For sequences yyy j→ yyy ∈ Rn and xxx j→ xxx in ω , one has f (yyy j)≤ limsup j→∞ ≤ φ(yyy,xxx) for

all j ∈ N.

Clearly, if f is a first-order model, then f is not necessarily lower-Ck, and the reverse is not
necessarily true.

On the other hand, the branch-and-bound method in conjunction with underestimating convex
problems has been proved an effective method to solve global nonconvex optimization problems
[1, 4, 35]. Almost all the methods used to solve nonconvex optimization are to construct many



CONVERTIBLE NONCONVEX OPTIMIZATION 105

convex relaxation subproblems with convex envelopes and convex underestimating; see, e.g., [4,
33, 32, 36]. Based on this idea, the factorable programming technique, one of the most popular
approaches for constructing convex relaxations of nonconvex optimization problems, including
the problems with convex-transformable functions, was given in [26]. Due to its simplicity,
factorable programming technique is included in most global optimization packages, such as
BARON, ANTIGONE, and so on [29]. But, Nohra and Sahinidis pointed out in [29] that a main
drawback of factorable programming technique is that it often results in large relaxation gaps. In
1976, McCormick [26] first defined the factorable nonconvex function, however the factorable
nonconvex function is not necessarily lower-C1, such as f (x) = |x|0.1 + |x + 1|0.2 on x ∈ R,
because f (x) = |x|0.1 + |x+1|0.2 is not locally Lipschitz [7]. In fact, the factorable nonconvex
functions in [22, 25, 26, 36] may be special CN functions (see Definition 2.2). In recent years,
research on nonconvex factorable programming further demonstrates its effectiveness in solving
the global optimization; see, e.g., [6, 15, 21, 32] and the references therein.

There are many CN functions that are not upper-Ck functions or factorable functions, such as
|x|0 because upper-Ck functions are continuous; see [16]. So, a CN function is not necessarily
an upper-Ck function or a factorable nonconvex function. There are three differences between
factorable functions and CN functions.

(1) They are different in functional decomposition representation. Each function X i(x) w.r.t
a single variable in any form of a factorable function is not necessarily a convex or concave
function [26]. However, each function gi(xxx,yyy) in any CN form of a CN function is convex (see
Definition 2.2 below).

(2) To estimate the factorable function, it is necessary to underestimate/overestimate the con-
vex/concave functions of each X i(x), while CN function does not require the estimation of its
convex envelope (underestimating) functions.

(3) The method of solving optimization problems with CN functions differs from the method
of solving nonconvex factorable programming. Factorial programming solves its relaxation
problem to obtain an approximate global optimal solution. To solve the approximate global
optimal solutions to the optimization problems with CN functiosn, their equivalent optimization
are needed.

In order to solve (CNO), Jiang et al. [23] discussed optimal conditions, Lagrangian dual,
and an algorithm for the unconstrained CN optimization problems. In this paper, a weak uni-
form CN function is defined, and the weak uniform and decomposable weak uniform of the CN
function, optimization conditions, and decomposable algorithms for (CNO) with the weak uni-
form CN function are studied. The main contributions of this paper are as follows: (1) a weak
uniform CN function is proposed, (2) the sufficient conditions of the optimal solution to the op-
timization problems with such CN function are proved, and (3) a decomposable algorithm for
the optimization problem with a decomposable CN function is proposed. This paper provides a
new method to solve the difficulties in solving nonconvex or nonsmooth optimization problems.

The remainder of the paper is organized as follows. In Section 2, the CN function and the
weak (strongy) uniform (decomposable, exact) CN function are defined, respectively. Some
examples are given. The operational properties of the CN functions are demonstrated. In section
3, optimization conditions of the global optimal solution to the unconstrained optimization with
the weak uniform CN function are proved. In Section 4, for the decomposable CN function,
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a decomposable algorithm is proposed by its augmented Lagrangian penalty function, and its
convergence is proved. Section 5 the last section, end this paper.

2. THE WEAK UNIFORM CN FUNCTION

In this section, a (weak, strong uniform, exact) CN function is defined. Some examples are
given to demonstrate that some nonconvex or discontinuous functions are differentiable (weak
uniform) CN ones.

Definition 2.1. Let function g : Rn×Rm → R be differentiable. For all ddd ∈ Rn×Rm and all
(xxx,yyy) ∈ Rn×Rm, if there is a positive semidefinite matrix B(xxx,yyy) such that

g((xxx,yyy)+ddd)−g(xxx,yyy)≥ ∇g(xxx,yyy)>ddd +
1
2

ddd>B(xxx,yyy)ddd, (2.1)

then g is called a weak uniform convex function which has two cases as follows.
(i) If there is a positive definite matrix B(xxx,yyy) such that (2.1) holds, then g is called a strong

uniform convex function.
(ii) If there is an ρ̄ > 0 such that

g((xxx,yyy)+ddd)−g(xxx,yyy)≥ ∇g(xxx,yyy)>ddd +
ρ̄

2
‖ddd‖2, (2.2)

then g is called a uniform convex function.

It is clear that a uniform convex function g is not only a weak uniform convex function but
also a strong uniform convex function. A strong uniform convex function is a weak uniform
convex function. And a weak uniform convex function is a convex function, which is demon-
strated in the following examples.

Example 2.1. g(x,y) = (x+ y− 1)2 for (x,y) ∈ R×R is a weak uniform convex function, but
g(x,y) is not a strong uniform convex function.

Example 2.2. g(x,y) = x4+y4 for (x,y)∈R×R is a strong uniform convex function for (x,y) 6=
0, but g(x,y) is not a uniform convex function.

Example 2.3. g(xxx,yyy) = (xxx,yyy)>A(xxx,yyy)+ ccc>(xxx,yyy) is a weak uniform convex function, where A
is a positive semidefinite matrix, (xxx,yyy) ∈ Rn×Rm.

We have the following conclusion.

Proposition 2.1. Let function g : Rn×Rm→ R be twice continuously differentiable and matrix
B(xxx,yyy) be given for (xxx,yyy) ∈ Rn×Rm. Then g(xxx,yyy) is a weak (strong) uniform convex function if
and only if ddd>∇2g(xxx,yyy)ddd ≥ ddd>B(xxx,yyy)ddd ≥ (>)0, ∀(xxx,yyy), ∀ddd ∈ Rn×Rm.

Based on the definition of weak uniform convex functions, we define the weak uniform CN
function, strong uniform CN function, and uniform CN function.

Definition 2.2. Let S = S1× S2 ⊂ Rn×Rm be a convex set. Let functions gi : Rn×Rm → R
(i = 1,2, · · · ,r and r ≥ 1) be convex on S, and let g : Rn×Rm→ R be a convex function on S.
Let function f : Rn→ R be nonconvex. All functions g1(xxx,yyy),g2(xxx,yyy), · · · ,gr(xxx,yyy) are recorded
as

ggg(xxx,yyy) = (g1(xxx,yyy),g2(xxx,yyy), · · · ,gr(xxx,yyy))>. (2.3)
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Let

X(ggg) = {(xxx,yyy) ∈ S | gi(xxx,yyy) = 0, i = 1,2, · · · ,r}. (2.4)

If, for each xxx ∈ S and f (xxx), there is a yyy ∈ Rm such that (xxx,yyy) ∈ X(ggg) and

f (xxx) = g(xxx,yyy) = min
(xxx,yyy′)∈X(ggg)

g(xxx,yyy′), (2.5)

then f is called a convertible nonconvex (CN) function on S (when S = Rn×Rm, the term ”on
S” is omitted), i.e., if there are g(xxx,yyy) and g1(xxx,yyy),g2(xxx,yyy), · · · ,gr(xxx,yyy) such that (2.5) holds,
then f is a CN function on S, and [g : g1,g2, · · · ,gr] is called a convertible nonconvex(CN) form
of f on S, briefing as f = [g : g1,g2, · · · ,gr]. For f , the number of its CN form is more than one.
In particular,

(i) if g is a weak uniform convex function on S, then f is called a weak uniform CN function
on S;

(ii) if g is a strong uniform convex function on S, then f is called a strong uniform CN
function on S;

(iii) if g is a uniform convex function on S, then f is called a uniform CN function on S.
Furthermore, if for each xxx ∈ S and f (xxx) there is a yyy ∈ Rm such that (xxx,yyy) ∈ X(ggg) and

f (xxx) = g(xxx,yyy) = g(xxx,yyy′), ∀(xxx,yyy′) ∈ X(ggg),

then f is called an exact convertible nonconvex(CN) function on S. [g : g1,g2, · · · ,gr] is called
an exact convertible nonconvex (CN) form of f on S. Then, f is called a (weak or strong)
uniform exact CN function on S if condition (i), (ii), or (iii) holds accordingly.

When S = Rn× Rm, the term ”on S” above is all omitted. It is clear that a uniform CN
function is a CN function, a weak uniform CN function, and a strong uniform CN function. A
weak uniform convertible convex function is a CN function.

Remark 2.1. It is clear that the definition of the CN function differs form that of the upper-
Ck function [11] and a first-order model [30]. For example, 0-norm ‖xxx‖0 is not an upper-Ck

function [11, 16] or a first-order model because it is not continuous, but ‖xxx‖0 is a CN function
in Example 2.7. Hence, the CN function contains a wider range of functions than upper-Ck

functions and the first-order model.

Definition 2.2 means that a nonconvex function f (xxx) may be converted into a (weak uniform)
convertible convex function. By Definition 2.2, a set is defined by

X( f ) = {(xxx,yyy)| f (xxx) = g(xxx,yyy),∀(xxx,yyy) ∈ X(ggg)}. (2.6)

For a fixed (xxx,yyy), two sets are defined by

Yg(xxx) = {yyy ∈ Rm|(xxx,yyy) ∈ X(ggg)},Xg(yyy) = {xxx ∈ Rm|(xxx,yyy) ∈ X(ggg)}.

The following conclusion is clear.

Proposition 2.2. Let f be a CN function on S. Then, (1) f is an exact CN function on S if and
only if X( f )=X(ggg); (2) X( f ) and X(ggg) are closed sets for S=Rn; (3) f (xxx)=minyyy∈Yg(xxx) g(xxx,yyy);
and (4) minxxx∈Xg(yyy) f (xxx)≤minxxx∈Xg(yyy) g(xxx,yyy).
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Proposition 2.2 demonstrates that if f is a CN function on S, f (xxx) = g(xxx,yyy) ≤ g(xxx,yyy′) for
all (xxx,yyy) ∈ X( f ) and (xxx,yyy′) ∈ X(ggg)\X( f ). (xxx,yyy) ∈ X( f ) is called a CN point of f . Next, an
example is given to demonstrate that the number of weak uniform (exact) CN forms could be
more than one.

Example 2.4. Non-convex function f (x1,x2) = 2x1x2 is a weak uniform exact CN function.
One of its weak uniform exact CN forms is f = [(x1+x2)

2−y1−y2 : x2
1−y1,x2

2−y2]. A second
weak uniform exact CN form of f (x1,x2) = 2x1x2 is f = [(x1+x2)

2−y1 : x2
1 +x2

2−y1]. Hence,
it is understood that there are more than one weak uniform exact CN form.

Next, some operational properties of the weak uniform (exact) CN function are easily proved
as follows.

Proposition 2.3. If f : Rn→ R is an exact CN function on S, then − f is an exact CN function
on S.

Proposition 2.4. If f1, f2 : Rn→ R are (weak uniform or strong uniform) (exact) CN functions
on S, then α1 f1 +α2 f2 is a (weak uniform or strong uniform) (exact) CN function on S for any
α1,α2 > 0. Especially, if f1, f2 : Rn→ R are exact CN functions on S, then α1 f1 +α2 f2 is an
exact CN function on S for any α1,α2 ∈ R.

Proposition 2.5. If f1, f2 : Rn→ R are (weak uniform or strong uniform) exact CN functions on
S, then f1 f2 is a weak uniform exact CN function on S.

Proposition 2.6. If f1, f2 : Rn→ R are (weak uniform or strong uniform) exact CN functions on
S, then f1

f2
is a weak uniform exact CN function on S.

Proposition 2.7. If f : Rn→ R is a (weak uniform or strong uniform) (exact) CN function on
S and φ : R→ R is a monotone increasing convex function, then φ( f ) is a (weak uniform or
strong uniform) (exact) CN function on S.

Example 2.5. Let a weak uniform DC function f (xxx,yyy) = d(xxx,yyy)− c(xxx,yyy) for (xxx,yyy) ∈ Rn×Rm,
where d(xxx,yyy) and c(xxx,yyy) are weak uniform convex functions on (xxx,yyy)∈Rn×Rm. Let g(xxx,yyy,z)=
d(xxx,yyy)− z and g1(xxx,yyy,z) = c(xxx,yyy)− z. Thus f (x,y) is a weak uniform CN function.

By Proposition 2.3-2.7, some polynomial functions are CN. For example, multi-convex func-
tion f (xxx) = x1x2 · · ·xn is a weak uniform CN by Proposition 2.4. Thus weak uniform CN func-
tions cover a wide range of non-convex functions. To illustrate it, some examples are given as
follows.

Example 2.6. ([7, Example 2.1]) A CN form of nonsmooth function f (x1,x2) = (x1 + x2−
1)2 +λ (|x1|

1
2 + |x2|

1
2 ) is defined as

[(x1 + x2−1)2 +λ (y1 + y4) : y4
1− y3,x2

1− y3,y2
2− y1,y4

4− y6,x2
2− y6,y2

5− y4],

where λ > 0. So, f (x) is a weak uniform exact CN function.

Example 2.7. A CN form of the nonconvex and discontinuous function f (x1,x2) = (x1 + x2−
1)2 +λ‖(x1,x2)‖0 is defined as

f = [(x1 + x2−1)2 +λ (y2
1 + y2

3) : (x1 + y1−1)2− y2,x2
1 +(y1−1)2− y2,

y2
1− y1,(x2 + y3−1)2− y4,x2

2 +(y3−1)2− y4,y2
3− y3],

where λ > 0. So, f (x) is a weak uniform CN function, but not exact.
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The above examples demonstrate that some nonsmooth, nonconvex, or discontinuous func-
tions are CN functions as shown by their twice differentiable and weak uniform CN forms.
Many nonconvex functions in the fields of machine learning, image processing, and signal pro-
cessing are combinations of simple CN functions by Propositions 2.3-2.7. For example, let
αi > 0(i = 1,2, · · · ,m),α > 0, β > 0 , k0 > 0, and k1 > 0, then the nonconvex functions:

m

∏
i=1

xαi
i , f (xxx)αg(xxx)β ,

f (xxx)αexp(g0(xxx))

k0 + k1
m
∑

i=1
exp(gi(xxx))

,

where f (xxx),g(xxx),gi(xxx)(i = 0,1, · · · ,m) are convex on xxx, are CN functions; see [29]. The com-
piled functions demonstrate themselves in a wide variety of scientific and engineering applica-
tions. Their exact CN forms are easily obtained by Propositions 2.3-2.7.

3. OPTIMIZATION CONDITIONS OF (CNO)

In this section, it is assumed that f is a weak uniform CN function or a CN function with
f = [g : g1,g2, · · · ,gr], where g,g1,g2, · · · ,gr are twice differentiable, but f (xxx) is not necessarily
differentiable on xxx ∈ Rn.

With the (weak uniform) CN form of f , one considers the following constrained optimization
problem:

(CNP) min
(xxx,yyy)∈Rn×Rm

g(xxx,yyy)

s.t. gi(xxx,yyy) = 0, i = 1,2, · · · ,r.

It is clear minxxx∈Rn f (xxx) = min(xxx,yyy)∈X( f ) g(xxx,yyy) = min(xxx,yyy)∈X(ggg) g(xxx,yyy).
Let a directional sets at a fixed (xxx,yyy) be defined by

T (xxx,yyy) = {ddd ∈ Rn×Rm | ∇gi(xxx,yyy)>ddd ≤ 0, i = 1,2, · · · ,r}

Let us prove the sufficient condition of an optimal solution to (CNO) by solving (CNP).

Theorem 3.1. Suppose that (xxx∗,yyy∗)∈ X( f ) and f is a weak uniform CN function. Consider the
problem

(WCNP)(xxx∗,yyy∗) min ∇g(xxx∗,yyy∗)>ddd +
1
2

ddd>B(xxx∗,yyy∗)ddd

s.t. ddd ∈ T (xxx∗,yyy∗).

If ddd∗ is an optimal solution to (WCNP)(xxx∗,yyy∗) such that ∇g(xxx∗,yyy∗)>ddd∗+ 1
2ddd∗T B(xxx∗,yyy∗)ddd∗ ≥ 0,

then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO). Further-
more, if there is a ddd′ such that ∇gi(xxx∗,yyy∗)>ddd′ < 0, i = 1,2, · · · ,r, then there are α∗i ≥ 0, i =
1,2, · · · ,r such that

B(xxx∗,yyy∗)ddd∗+∇g(xxx∗,yyy∗)+
r

∑
i=1

α
∗
i ∇gi(xxx∗,yyy∗) = 0, (3.1)

α
∗
i ∇gi(xxx∗,yyy∗)>ddd∗ = 0, i = 1,2, · · · ,r. (3.2)

Conversely, if there are ddd∗ ∈ T (xxx∗,yyy∗) and α∗i ≥ 0, i = 1,2, · · · ,r such that (3.1) and (3.2) hold,
then ddd∗ is an optimal solution to (WCNP)(xxx∗,yyy∗).
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Proof. For any (xxx,yyy) ∈ X(ggg), let ddd = [(xxx,yyy)− (xxx∗,yyy∗)]. Then

0 = gi(xxx,yyy)−gi(xxx∗,yyy∗) ≥ ∇gi(xxx∗,yyy∗)>[(xxx,yyy)− (xxx∗,yyy∗)], i = 1,2, · · · ,r,
and (xxx,yyy)− (xxx∗,yyy∗) is a feasible solution to (WCNP)(xxx∗,yyy∗). It follows that

g(xxx,yyy)−g(xxx∗,yyy∗) ≥ ∇g(xxx∗,yyy∗)>ddd +
1
2

ddd>B(xxx∗,yyy∗)ddd,

≥ ∇g(xxx∗,yyy∗)>ddd∗+
1
2

ddd∗>B(xxx∗,yyy∗)ddd∗ ≥ 0.

Hence, (xxx∗,yyy∗) is an optimal solution to (CNP), and xxx∗ is an optimal solution to (CNO). Since
(WCNP)(xxx∗,yyy∗) is a convex programm, by the KKT condition, conclusions (3.1) and (3.2) are
true. Conversely, the conclusion is clear. �

By Theorem 3.1, we have the following three corollaries.

Corollary 3.1. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a uniform CN function. Consider the
problem

(UCNP)(xxx∗,yyy∗) min ∇g(xxx∗,yyy∗)>ddd +
ρ̄

2
‖ddd‖2

s.t. ddd ∈ T (xxx∗,yyy∗).

If ddd∗ is an optimal solution to (UCNP)(xxx∗,yyy∗) such that ∇g(xxx∗,yyy∗)>ddd∗+ ρ̄

2‖ddd
∗‖2 ≥ 0, then

(xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO). Furthermore,
if there is a ddd′ such that ∇gi(xxx∗,yyy∗)>ddd′ < 0, i = 1,2, · · · ,r, then there are α∗i ≥ 0, i = 1,2, · · · ,r
such that

ρ̄ddd∗+∇g(xxx∗,yyy∗)+
r

∑
i=1

α
∗
i ∇gi(xxx∗,yyy∗) = 0, (3.3)

α
∗
i ∇gi(xxx∗,yyy∗)>ddd∗ = 0, i = 1,2, · · · ,r. (3.4)

Conversely, if there are ddd∗ ∈ T (xxx∗,yyy∗) and α∗i ≥ 0, i = 1,2, · · · ,r such that (3.3) and (3.4) hold,
then ddd∗ is an optimal solution to (UCNP)(xxx∗,yyy∗).

Corollary 3.2. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a CN function. Consider the problem

(LCNP)(xxx∗,yyy∗) min ∇g(xxx∗,yyy∗)>ddd

s.t. ddd ∈ T (xxx∗,yyy∗).

If ddd∗ is an optimal solution to (LCNP)(xxx∗,yyy∗) such that ∇g(xxx∗,yyy∗)>ddd∗ ≥ 0, then (xxx∗,yyy∗) is an
optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO). Furthermore, if there is a ddd′

such that ∇gi(xxx∗,yyy∗)>ddd′ < 0, i = 1,2, · · · ,r, then there are α∗i ≥ 0, i = 1,2, · · · ,r such that

∇g(xxx∗,yyy∗)+
r

∑
i=1

α
∗
i ∇gi(xxx∗,yyy∗) = 0. (3.5)

α
∗
i ∇gi(xxx∗,yyy∗)>ddd∗ = 0, i = 1,2, · · · ,r. (3.6)

Conversely, if there are ddd∗ ∈ T (xxx∗,yyy∗) and α∗i ≥ 0, i = 1,2, · · · ,r such that (3.5) and (3.6) hold,
then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO).

Corollary 3.3. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a CN function. If ∇g(xxx∗,yyy∗) = 0, then
(xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO).
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Define a set

T1(xxx∗,yyy∗) = {(xxx,yyy) | ∇gi(xxx∗,yyy∗)>[(xxx,yyy)− (xxx∗,yyy∗)]≤ 0, i = 1,2, · · · ,r.}

We have X(ggg)⊂T1(xxx∗,yyy∗) and T1(xxx∗,yyy∗)−(xxx∗,yyy∗)=T (xxx∗,yyy∗). By [13], if G1(ddd) of (WCNP)(xxx∗,yyy∗)
has a lower bound, then there is a global optimal solution to (WCNP)(xxx∗,yyy∗). Then we have the
following conclusion.

Theorem 3.2. Suppose that (xxx∗,yyy∗)∈ X( f ) and f is a weak uniform CN function. Consider the
problem

(WCNP1)(xxx∗,yyy∗) min G1(xxx,yyy) = ∇g(xxx∗,yyy∗)>[[[(xxx,yyy)− (xxx∗,yyy∗)]

+
1
2
[[[(xxx,yyy)− (xxx∗,yyy∗)]>B(xxx∗,yyy∗)[[[(xxx,yyy)− (xxx∗,yyy∗)]

s.t. (xxx,yyy) ∈ T1(xxx∗,yyy∗).

If the objective value G1(xxx,yyy) of (WCNP1)(xxx∗,yyy∗) has a lower bound, then there is an optimal
solution (x̄xx, ȳyy) to (WCNP1)(xxx∗,yyy∗). Furthermore, if G1(x̄xx, ȳyy) ≥ 0, then (xxx∗,yyy∗) is an optimal
solution to (CNP) and xxx∗ is an optimal solution to (CNO), or if G1(x̄xx, ȳyy) < 0, then G1(x̄xx, ȳyy) =
−1

2 d̄dd>B(xxx∗,yyy∗)d̄dd, where d̄dd = (x̄xx, ȳyy)− (xxx∗,yyy∗). If there is (xxx′,yyy′) such that ∇gi(xxx∗,yyy∗)>[(xxx,yyy)−
(xxx∗,yyy∗)]< 0, i = 1,2, · · · ,r holds, then there are α∗i ≥ 0, i = 1,2, · · · ,r such that

d̄dd>B(xxx∗,yyy∗)+∇g(xxx∗,yyy∗)+
r

∑
i=1

α
∗
i ∇gi(xxx∗,yyy∗) = 0.

These conclusions of Theorem 3.1 and Theorem 3.2 are true when f is a strong uniform CN
function. Theorem 3.2 demonstrates that (xxx∗,yyy∗) is an optimal solution to (CNP) if B(xxx∗,yyy∗)
is positive definite or ddd∗T B(xxx∗,yyy∗)ddd∗ > 0. If (xxx∗,yyy∗) is not an optimal solution to (CNP), then
B(xxx∗,yyy∗) is not positive definite or ddd∗T B(xxx∗,yyy∗)ddd∗ = 0.

Next, another sufficient condition of the optimal solution to (CNO) is obtained by solving
(CNP).

Theorem 3.3. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a weak uniform CN function. Define a set

Kw(xxx∗,yyy∗) = {(xxx,yyy) ∈ Rn×Rm | ∇g(xxx∗,yyy∗)>[(xxx,yyy)− (xxx∗,yyy∗)]

+
1
2
[(xxx,yyy)− (xxx∗,yyy∗)]>B(xxx∗,yyy∗)[(xxx,yyy)− (xxx∗,yyy∗)]< 0}.

If X(ggg)∩Kw(xxx∗,yyy∗) = /0 holds, then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal
solution to (CNO).

By Theorem 3.3, if (((xxx∗,yyy∗) is an optimal solution to

(WCNPP)(xxx∗,yyy∗) min ∇g(xxx∗,yyy∗)>[[[(xxx,yyy)− (xxx∗,yyy∗)]

+
1
2
[[[(xxx,yyy)− (xxx∗,yyy∗)]>B(xxx∗,yyy∗)[[[(xxx,yyy)− (xxx∗,yyy∗)]

s.t. (xxx,yyy) ∈ T1(xxx∗,yyy∗)∩X(ggg),

then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO).
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Corollary 3.4. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a uniform CN function. Define a set

Ku(xxx∗,yyy∗) = {(xxx,yyy) ∈ Rn×Rm | ∇g(xxx∗,yyy∗)>[(xxx,yyy)− (xxx∗,yyy∗)]

+
ρ̄

2
‖(xxx− xxx∗,yyy− yyy∗)‖2 < 0}. (3.7)

If X(ggg)∩Ku(xxx∗,yyy∗) = /0 holds, then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal
solution to (CNO).

By Corollary 3.1 and Corollary 3.4, if (((xxx∗,yyy∗) is an optimal solution to

(UCNP)(xxx∗,yyy∗) min ∇g(xxx∗,yyy∗)>[[[(xxx,yyy)− (xxx∗,yyy∗)]+
ρ̄

2
‖(xxx− xxx∗,yyy− yyy∗)‖2

s.t. (xxx,yyy) ∈ T1(xxx∗,yyy∗)∩X(ggg),

then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO).

Corollary 3.5. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a CN function. Define a set

Kc(xxx∗,yyy∗) = {(xxx,yyy) ∈ Rn×Rm | ∇g(xxx∗,yyy∗)>[(xxx,yyy)− (xxx∗,yyy∗)]< 0}. (3.8)

If X(ggg)∩Kc(xxx∗,yyy∗) = /0 holds, then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal
solution to (CNO).

By Corollary 3.2 and Corollary 3.5, if (((xxx∗,yyy∗) is an optimal solution to

(LCNP)(xxx∗,yyy∗) min ∇g(xxx∗,yyy∗)>[[[(xxx,yyy)− (xxx∗,yyy∗)]

s.t. (xxx,yyy) ∈ T1(xxx∗,yyy∗)∩X(ggg),

then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO).
It is clear that Kw(xxx∗,yyy∗)⊂ Kc(xxx∗,yyy∗) and Ku(xxx∗,yyy∗)⊂ Kc(xxx∗,yyy∗).

Theorem 3.4. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a weak uniform CN function. If there is a
neighborhood O(xxx∗,yyy∗) of (xxx∗,yyy∗) such that

X(ggg)∩O(xxx∗,yyy∗)∩Kw(xxx∗,yyy∗) = /0 (3.9)

holds, then (xxx∗,yyy∗) is a local optimal solution to (CNP) and xxx∗ is a local optimal solution to
(CNO).

In particular, if f is a strong uniform CN function or a uniform CN function, the conclusion
of Theorem 3.4 still holds.

Theorem 3.5. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a CN function. If there is a neighborhood
O(xxx∗,yyy∗) of (xxx∗,yyy∗) such that

X(ggg)∩O(xxx∗,yyy∗)∩Kc(xxx∗,yyy∗) = /0 (3.10)

holds, then (xxx∗,yyy∗) is a local optimal solution to (CNP) and xxx∗ is a local optimal solution to
(CNO).

For (xxx∗,yyy∗) ∈ X( f ), let

T0(xxx∗,yyy∗) = {ddd ∈ Rn×Rm | ∇gi(xxx∗,yyy∗)>ddd = 0, i = 1,2, · · · ,r}. (3.11)

For ααα ∈ Rr, a Lagrange function of (CNP) is defined by

L(xxx,yyy,ααα) = g(xxx,yyy)+ααα
>ggg(xxx,yyy). (3.12)
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The following necessary conditions of (CNP) are obvious.

Theorem 3.6. Suppose that (xxx∗,yyy∗) ∈ X( f ) is a local optimal solution to (CNP). Then
(i) ∇g(xxx∗,yyy∗)T ddd ≥ 0 for ddd ∈ T0(xxx∗,yyy∗).
(ii) If ∇gi(xxx∗,yyy∗)(i = 1,2, · · · ,r) is linearly independent, then there are α∗1 ,α

∗
2 , · · · ,α∗r such

that

∇g(xxx∗,yyy∗)+
r

∑
i=1

α
∗
i ∇gi(xxx∗,yyy∗) = 0. (3.13)

Furthermore, if L(xxx,yyy,ααα∗) is convex on (xxx,yyy), then (xxx∗,yyy∗) is a global optimal solution to
(CNP) and xxx∗ is a global optimal solution to (CNO).

In Theorem 3.6, if α∗1 ,α
∗
2 , · · · ,α∗r ≥ 0, then (xxx∗,yyy∗) is a global optimal solution to (CNP) and

xxx∗ is a global optimal solution to (CNO). The following examples demonstrate that the above
sufficient conditions help determine an optimal solution to (CNP) or (CNO), which further help
us to devise a global algorithm for (CNP), which brings a new way to study and solve nonconvex
and nonsmooth optimization problems.

Example 3.1. Consider an optimization problem ([7, Example 2.1]):

(EX8) min f (x1,x2) = (x1 + x2−1)2 +λ (|x1|
1
2 + |x2|

1
2 )

s.t. x1,x2 ∈ R,

where f (x) is a non-smooth and non-convex function. By Example 2.6, f (x) is a weak uniform
exact CN function. Let (xxx∗,yyy∗)∈ X( f ) and (xxx,yyy) = (x1,x2,y1, · · · ,y6). The weak uniform exact
CN optimization of (EX8) is defined by

(MEX8) min g(xxx,yyy) = (x1 + x2−1)2 +λ (y1 + y4),

s.t. (xxx,yyy) ∈ X( f ),

where X( f ) = {(xxx,yyy) | y4
1−y3 = 0,x2

1−y3 = 0,y2
2−y1 = 0,y4

4−y6 = 0,x2
2−y6 = 0,y2

5−y4 = 0}.
Then, the linear programming (LCNP-EX8) (xxx∗,yyy∗) of (MEX8) at (xxx∗,yyy∗) is defined by

Corollary 3.2. Let (xxx∗,yyy∗) = (0,0,0,0,0,0,0,0) ∈ X( f ). xxx = (0,0) is an optimal solution
to (EX8) for λ ≥ 8

1
4 in [7]. It is clear that there is no optimal solution to (LCNP-EX8) at

(xxx∗,yyy∗) = (0,0,0,0,0,0,0,0) ∈ X( f ). Now, a programming (WCNP-EX8) (xxx∗,yyy∗) of (MEX8)
at (xxx∗,yyy∗) is defined by Theorem 3.1. Then, by Theorem 3.3, the objective value of (WCNP-
EX8 )(xxx∗,yyy∗) at (xxx∗,yyy∗) = (0,0,0,0,0,0,0,0) is computed such that it is not less than zero.

Thus we obtain that xxx∗ = (0,0) is an optimal solution to (EX8) for λ ≥ 4
3

√
2
3(< 8

1
4 ). Chen et

al. [7] pointed out that there is a smaller error bound β ∗ < 8
1
4 that makes xxx∗ = (0,0) an optimal

solution to (EX8). Here, the above error bound β ∗ = 4
3

√
2
3 . This result demonstrates that the

sufficient conditions in Theorem 3.3 for determining the global optimal solution are valid.
On the other hand, let ddd = (d1,d2, · · · ,d8)

> ∈ R8 for (xxx,yyy) ∈ R2× R6. By Theorem 3.1,
a programming (WCNP-EX8) (xxx∗,yyy∗) of (MEX8) at (xxx∗,yyy∗) = (0,0,0,0,0,0,0,0) is defined.
(d∗1 ,d

∗
2 ,0,0,0,0,0,0) is an optimal solution to (WCNP-EX8)(xxx∗,yyy∗) when d∗1 +d∗2 = 1. By (3.1)

and (3.2), we have ∇g(xxx∗,yyy∗)= (−2,−2,λ ,0,0,λ ,0,0)>, ∇g1(xxx∗,yyy∗)= (0,0,0,0,−1,0,0,0)>,
∇g2(xxx∗,yyy∗)= (0,0,0,0,−1,0,0,0)>, ∇g3(xxx∗,yyy∗)= (0,0,−1,0,0,0,0,0)>, ∇g4(xxx∗,yyy∗)= (0,0,0,
0,0,0,0,−1)>, ∇g5(xxx∗,yyy∗) = (0,0,0,0,0,0,0,−1)>, and ∇g6(xxx∗,yyy∗) = (0,0,0,0,0,−1,0,0)>.
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When (α∗1 ,α
∗
2 ,α

∗
3 ,α

∗
4 ,α

∗
5 ,α

∗
6 )= (0,0, λ ,0,0,λ ), and d∗1 +d∗2 = 1 with λ > 0, optimization con-

dition (3.1) and (3.2) hold. But, KKT condition (3.5) and (3.6) are not true. So, (xxx∗,yyy∗) is not a
KKT point, and ∇gi(xxx∗,yyy∗)(i = 1,2, · · · ,6) is not linear independent.

The above example demonstrates that optimization conditions (3.1) and (3.2) hold if there is
an optimal solution to (CNP) when the objective value of (WCNP-EX8) (xxx∗,yyy∗) has a lower
bound. The optimization condition of the weak uniform CN form is better than that of CN
function [23].

Example 3.2. Let the function f (x1,x2) = (x1 + x2−1)2 +λ‖(x1,x2)‖0 be nonconvex and dis-
continuous, where λ > 0.

(EX9) min f (x1,x2) = (x1 + x2−1)2 +λ‖(x1,x2)‖0

s.t. x1,x2 ∈ R,

where f (x) is a non-smooth and non-convex function, f (x) is a weak uniform CN function. By
Example 2.7, a weak uniform CN optimization of (EX9) is defined by

(EX9) min g(xxx,yyy) = (x1 + x2−1)2 +λ (y2
1 + y2

2),

s.t. (xxx,yyy) ∈ X( f ),

where (xxx,yyy) = (x1,x2,y1,y2,y3,y4) and X( f ) is defined by Example 2.7. Let (xxx∗,yyy∗) ∈ X( f ).
When (xxx∗,yyy∗) = (0,0,0,1,0,1)∈ X( f ), it is clear that xxx = (0,0) is an optimal solution to (EX9)
for λ ≥ 2. So, by Corollary 3.2, it is easily known that there is no optimal solution to (LCNP-
EX9) (xxx∗,yyy∗) and X(g)∩Kc(xxx∗,yyy∗) 6= /0 for λ ≥ 1. But, by Theorem 3.3, it is clear that, for any
(x1,x2,y1, · · · ,y4) ∈ X( f ) and λ ≥ 1,

−2(x1 + x2)+λ (2y1 +2y3)+(x1 + x2)
2 ≥−2(x1 + x2)+1+(x1 + x2)

2 ≥ 0,

i.e., X( f )∩Kw(xxx∗,yyy∗) = /0. Hence, xxx = (0,0) is an optimal solution to (EX9) for λ ≥ 1 by
Theorem 3.3. It is easily checked that (3.1) and (3.2) hold.

Example 3.1 and 3.2 demonstrates that optimization conditions (3.1) and (3.2) probably hold
if f is a weak uniform CN function when the KKT conditions (3.5) and (3.6) are not true.

4. DECOMPOSABLE ALGORITHM OF (CNP)

The CN function form [g : g1,g2, · · · ,gr] of f has more variables than f . Because CN func-
tion optimization min(xxx,yyy)∈X(ggg) g(xxx,yyy) has more variables than (CNO), it is not easy to solve
it, resulting in a scale problem. However, many of decomposable CN functions help to reduce
the scale problem of CN function optimization. Now, a decomposable form of (xxx,yyy) ∈ X(ggg) of
the CN function f (xxx) on S is given. Let f = [g : g1,g2, · · · ,gr] be a CN form on S. ((xxx1,yyy1),
(xxx2,yyy2), · · · ,(xxxp,yyyp)) is called a decomposition of (xxx,yyy) on S if it satisfies the following condi-
tions:

(i) xxx = (xxx1,xxx2, · · · ,xxxp)
> ∈ S, where xxx j ∈ Rp j( j = 1,2, · · · , p) is composed of p j variables of

xxx with ∑
p
j=1 p j = n;

(ii) yyy = (yyy1,yyy2, · · · ,yyyp)
> ∈ Rm, where yyy j ∈ Rq j( j = 1,2, · · · , p) is composed of q j variables

of yyy with ∑
p
j=1 q j = m;

(iii) ((xxx1,yyy1),(xxx2,yyy2), · · · ,(xxxp,yyyp)) is a rearrangement of (xxx,yyy);
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(iv) there are no identical variables between (xxxk,yyyk) and (xxx j,yyy j) for any j,k = 1,2, · · · , p,k 6=
j.

Note that a decomposition of (xxx,yyy)∈X(ggg) means that (xxx,yyy)= ((xxx1,yyy1),(xxx2, yyy2), · · · ,(xxxp,yyyp)).
p is called the decomposition number. We have 2 ≤ p ≤ min{n,m}. p = 2 is the min-
imum decomposition number, and p = min{n,m} is the maximum decomposition number.
Let (xxx j,yyy j | (xxx,yyy)) := ((xxx1,yyy1),(xxx2,yyy2), · · · ,(xxxp,yyyp)), where (xxx j,yyy j) is a variable, that is, all
(xxxk,yyyk)(k = 1,2, · · · , p,k 6= j) are fixed except (xxx j,yyy j). For each (xxx j,yyy j), j = 1,2, · · · , p, define

X(ggg j) = {(xxx j,yyy j) ∈ Rp j ×Rq j | gi(xxx j,yyy j | (xxx,yyy)) = 0, i = 1,2, · · · ,r},
where (xxx,yyy) ∈ X(ggg). It follows that X(ggg) = X(ggg1)×X(ggg2) · · ·×X(gggp).

Definition 4.1. Let the CN form of f be [g : g1,g2, · · · ,gr] on S. If each function g1,g2, · · · ,gr
relates only to one of the variables: {(xxx1,yyy1),(xxx2,yyy2), · · · ,(xxxp,yyyp)} respectively, i.e., the fol-
lowing constraints gi(xxx,yyy) includes its decision variables that belongs to (xxx j,yyy j):

gi(xxx,yyy) = gi(xxx j,yyy j) = 0, i = 1,2, · · · ,r.
Let ggg j(xxx j,yyy j) be composed of r j constraints of gt(xxx j,yyy j)(t = j1, j2, · · · ,r j) in {g1(xxx,yyy),g2(xxx,yyy), · · · ,
gr(xxx,yyy)}. If ggg j(xxx j,yyy j) = 0 can be expressed equivalently as

ggg j(xxx j,yyy j) = (g j1(xxx j,yyy j),g j2(xxx j,yyy j), · · · ,g jr j
(xxx j,yyy j)) = 0, j = 1,2, · · · , p,

where gt(xxx j,yyy j) ∈ {g1(xxx,yyy),g2(xxx,yyy), · · · ,gr(xxx,yyy)}, t = j1, j2, · · · ,r j with ∑
j=1

r j = r, i.e.,

ggg(xxx,yyy) = (ggg1(xxx1,yyy1),ggg2(xxx2,yyy2), · · · ,gggp(xxxp,yyyp)) = 0, (4.1)

then f is called a decomposable CN function on S, and p is called the decomposable num-
ber. If there is not any decomposable CN function form, then f is called an undecomposable
CN function. (4.1) shows that each function gi(xxx,yyy) only relates to some variable (xxx j,yyy j) in
{(xxx1,yyy1),(xxx2,yyy2), · · · ,(xxxp,yyyp)}.

The f in Example 2.6 is a decomposable CN function. Another example of decomposable
CN functions is given as follows:

f (x1,x2,x3,x4,x5) = (x1 + x2 + x3 + x4 + x5−1)2 +λ‖(x1,x2,x3,x4,x5)‖0,

where λ > 0. Let xxx = (x1,x2,x3,x4,x5)
> and yyy = (y1,y2 · · · ,y10)

> ∈ R10. A CN function form
of f is defined by

g(xxx,yyy) = (x1 + x2 + x3 + x4 + x5−1)2 +β (y2
1 + y2

3 + y2
5 + y2

7 + y2
9) :

gi(xxx,yyy) = (xi + yi−1)2− yi+5 = 0, i = 1,2,3,4,5,

gi+5(xxx,yyy) = x2
i +(yi−1)2− yi+5 = 0, i = 1,2,3,4,5,

gi+10(xxx,yyy) = y2
i − yi = 0, i = 1,2,3,4,5.

There are many decomposable CN function forms for the above function f . If let p = 2,
xxx1 = (x1,x2),xxx2 = (x3,x4,x5), yyy1 = (y1,y2,y6,y7), and yyy2 = (y3,y4,y5,y8,y9,y10), then a de-
composable CN function form of f is defined by

ggg1(xxx1,yyy1) = (g1(xxx,yyy),g2(xxx,yyy),g6(xxx,yyy),g7(xxx,yyy),g11(xxx,yyy),g12(xxx,yyy)) = 0,

ggg2(xxx2,yyy2) = (g3(xxx,yyy),g4(xxx,yyy),g5(xxx,yyy),g8(xxx,yyy),g9(xxx,yyy),g10(xxx,yyy),g13(xxx,yyy),

g14(xxx,yyy),g15(xxx,yyy)) = 0,
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where

X(ggg1) = {(xxx1,yyy1) | (g1(xxx,yyy),g2(xxx,yyy),g6(xxx,yyy),g7(xxx,yyy),g11(xxx,yyy),g12(xxx,yyy)) = 0},
X(ggg2) = {(xxx2,yyy2) | (g3(xxx,yyy),g4(xxx,yyy),g5(xxx,yyy),g8(xxx,yyy),g9(xxx,yyy),g10(xxx,yyy),g13(xxx,yyy),

g14(xxx,yyy),g15(xxx,yyy)) = 0}.

For each j = 1,2, · · · , p and i = 1,2, · · · ,r, let a gradient of g(xxx,yyy) and gi(xxx,yyy) on (xxx j,yyy j) be
defined respectively by ∇ jg(xxx,yyy) := ∇(xxxi,yyy j)

g(xxxi,yyy j | (xxx,yyy)) and ∇ jgi(xxx,yyy) := ∇(xxxi,yyy j)
gi(xxxi,yyy j |

(xxx,yyy)), where all (xxxk,yyyk)(k = 1,2, · · · , p,k 6= j) are fixed except for (xxx j,yyy j). We have

∇g(xxx,yyy) = (∇1g(xxx,yyy),∇2g(xxx,yyy),∇pg(xxx,yyy))>, (4.2)

∇gi(xxx,yyy) = (∇1gi(xxx,yyy),∇2gi(xxx,yyy),∇pgi(xxx,yyy))>. (4.3)

For ddd j ∈ Rp j ×Rq j , j = 1,2, · · · , p, let

Tj(xxx j,yyy j) = {ddd j ∈ Rp j ×Rq j | ∇ jgi(xxx,yyy)>ddd j ≤ 0, i = 1,2 · · · ,r}. (4.4)

By (4.4), we have

T1(xxx1,yyy1)×Tj(xxx2,yyy2) · · ·×Tp(xxxp,yyyp)⊂ T (xxx,yyy).

By Definition 4.1, we have following propositions.

Proposition 4.1. Let f be a decomposable CN function and f = [g : g1,g2, · · · , gr], where
((xxx1,yyy1),(xxx2,yyy2), · · · ,(xxxp,yyyp)) is a decomposition of (xxx,yyy). Then

T1(xxx1,yyy1)×T2(xxx2,yyy2) · · ·×Tp(xxxp,yyyp) = T (xxx,yyy). (4.5)

Proposition 4.2. Let f = [g : g1,g2, · · · ,gr] be a decomposable CN function and ((xxx1,yyy1),(xxx2,yyy2),
· · · ,(xxxp,yyyp)) be a decomposition of (xxx,yyy). If g(xxx,yyy) is a (weak or strong) uniform convex
function on (xxx,yyy), then g(xxxi,yyy j | (xxx,yyy)) is a (weak or strong) uniform convex function on
(xxx j,yyy j)( j = 1,2, · · · , p).

An example of decomposable CN function is given as follows.

Example 4.1. [8] The function in sparse optimization is

f (xxx) = ‖Axxx−bbb‖2 +λ‖xxx‖0, (4.6)

where A ∈ Rm×Rn, bbb ∈ Rm, λ > 0, and ‖xxx‖0 is 0-norm. Then, a weak uniform CN function
form of f (xxx) is obtained by

g(xxx,yyy) = ‖Axxx−bbb‖2 +λ

n

∑
i=1

y2
i :

gi(xxx,yyy) = (xi + yi−1)2− yi+n = 0, i = 1,2, · · · ,n,
gi+n(xxx,yyy) = x2

i +(yi−1)2− yi+n = 0, i = 1,2, · · · ,n,
gi+2n(xxx,yyy) = y2

i − yi = 0, i = 1,2, · · · ,n,
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where yyy ∈ R2n. Let wwwi = (xi,yi,yi+n), i = 1,2, · · · ,n. Then, a decomposable CN form of f (xxx) at
the maximum decomposition number p = n is defined by

g(www1,www2, · · · ,wwwn) = ‖Axxx−bbb‖2 +λ

n

∑
i=1

y2
i :

gggi(wwwi) = ((xi + yi−1)2− yi+n,x2
i +(yi−1)2− yi+n,y2

i − yi)

= 000, i = 1,2, · · · ,n.

If ((xxx1,yyy1), (xxx2,yyy2), · · · ,(xxxp,yyyp)) is a decomposition of (xxx,yyy)), (CNP) is redefined as

(CNP) min g(xxx,yyy) = g((xxx1,yyy1),(xxx2,yyy2), · · · ,(xxxp,yyyp))

s.t. ggg j(xxx j,yyy j|(xxx,yyy)) = 0, j = 1,2, · · · , p,

(xxx j,yyy j) ∈ Rp j ×Rq j , j = 1,2, · · · , p,

where f is not necessarily a decomposable CN function. For each j = 1,2, · · · , p, the jth sub-
problem of (CNP) is defined by

(CNP) j min g(xxxi,yyy j|(xxx,yyy))
s.t. (xxxi,yyy j|(xxx,yyy)) ∈ X(ggg j),

where (xxx j,yyy j) is the variable, i.e., all (xxxk,yyyk)(k = 1,2, · · · , p,k 6= j) are fixed except for (xxx j,yyy j)
in problem (CNP) j. Then, the optimal solution to (CNP) is expected to be obtained by solv-
ing p subproblems (CNP) j, j = 1,2, · · · , p. If f is a decomposable CN function and there
is an optimal solution to (CNP) or (CNO), there are optimal solutions to all subproblems
(CNP)1,(CNP)2,· · · , (CNP)p of (CNP). But, if there is not an optimal solution to anyone of all
subproblems (CNP)1,(CNP)2,· · · , (CNP)p of (CNP), there is not an optimal solution to (CNP)
or (CNO).

The following theorems are true.

Theorem 4.1. Suppose that (xxx∗,yyy∗) = ((xxx∗1,yyy
∗
1),(xxx

∗
2,yyy
∗
2), · · · ,(xxx∗p,yyy∗p))∈X( f ) and f is a decom-

posable CN function. For each j = 1,2, · · · , p, let

(LCNP) j(xxx
∗
j ,yyy
∗
j) min ∇ jg(xxx∗,yyy∗)>ddd j

s.t. ddd j ∈ Tj(xxx∗j ,yyy
∗
j).

For all j = 1,2, · · · , p, if ddd∗j is an optimal solution to (LCNP) j(xxx∗j ,yyy
∗
j) such that ∇ jg(xxx∗,yyy∗)>ddd∗j ≥

0, then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to (CNO). Fur-
thermore, if there is a ddd′ such that ∇gi(xxx∗,yyy∗)>ddd′ < 0, i = 1,2, · · · ,r, then there are α∗i ≥ 0, i =
1,2, · · · ,r such that

∇g(xxx∗,yyy∗)+
r

∑
i=1

α
∗
i ∇gi(xxx∗,yyy∗) = 0. (4.7)

Theorem 4.1 demonstrates that the optimal solution to (CNP) is expected to be obtained
by solving p subproblems (CNP) j, j = 1,2, · · · , p. These subproblems (CNP) j( j = 1,2, · · · , p)
have smaller scale although the problem (CNP) has more variables.
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Theorem 4.2. Suppose that (xxx∗,yyy∗) = ((xxx∗1,yyy
∗
1),(xxx

∗
2,yyy
∗
2), · · · ,(xxx∗p,yyy∗p))∈X( f ) and f is a decom-

posable uniform CN function. For each j = 1,2, · · · , p, let

(UCNP) j(xxx
∗
j ,yyy
∗
j) min ∇ jg(xxx∗,yyy∗)>ddd j +

ρ̄

2
‖ddd j‖2

s.t. ddd j ∈ Tj(xxx∗j ,yyy
∗
j).

For all j = 1,2, · · · , p, if ddd∗j is an optimal solution to (UCNP) j(xxx∗j ,yyy
∗
j) such that ∇ jg(xxx∗,yyy∗)>ddd∗j +

ρ̄

2‖ddd
∗
j‖2 ≥ 0, then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an optimal solution to

(CNO). Furthermore, if there is a ddd′ such that ∇gi(xxx∗,yyy∗)>ddd′ < 0, i = 1,2, · · · ,r, then there are
α∗i ≥ 0, i = 1,2, · · · ,r such that

ρ̄

2
ddd∗j +∇g(xxx∗,yyy∗)+

r

∑
i=1

α
∗
i ∇gi(xxx∗,yyy∗) = 0. (4.8)

Theorem 4.3. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is an uniform decomposable CN function.
For each j = 1,2, · · · , p, define a set

Ku j(xxx∗j ,yyy
∗
j) = {(xxx j,yyy j) ∈ Rp j ×Rq j | ∇ jg(xxx∗,yyy∗)>(xxx j− xxx∗j ,yyy j− yyy∗j)

+
ρ̄

2
‖(xxx j− xxx∗j ,yyy j− yyy∗j)‖2 < 0}. (4.9)

If X(ggg j)∩Ku j(xxx∗j ,yyy
∗
j) = /0 holds, then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an

optimal solution to (CNO).

Theorem 4.4. Suppose that (xxx∗,yyy∗) ∈ X( f ) and f is a decomposable CN function. For each
j = 1,2, · · · , p, define a set

Kc j(xxx
∗
j ,yyy
∗
j) = {(xxx j,yyy j) ∈ Rp j ×Rq j | ∇ jg(xxx∗,yyy∗)>(xxx j− xxx∗j ,yyy j− yyy∗j)< 0}. (4.10)

If X(ggg j)∩Kc j(xxx∗j ,yyy
∗
j) = /0 holds, then (xxx∗,yyy∗) is an optimal solution to (CNP) and xxx∗ is an op-

timal solution to (CNO).

Now, an augmented Lagrange penalty function for (CNP) with decomposable variable is
defined. Next, an algorithm is proposed by the augmented Lagrange penalty function for (CNP)
and their convergence is proved.

Let ααα j ∈ Rr j , j = 1,2, · · · , p, be Lagrange parameters and σ > 0 be a penalty parameter, and
ααα = (ααα1,ααα2, · · · ,ααα p). Suppose that ((xxx1,yyy1),(xxx2,yyy2), · · · ,(xxxp,yyyp)) is a decomposable variable
of (xxx,yyy), and f is not necessarily a decomposable CN function. In order to solve (CNP), the
augmented Lagrange penalty functions for all subproblems (CNP) j( j = 1,2, · · · , p) are defined
by

A j(xxxi,yyy j | (xxx,yyy);ααα j,σ) = g(xxxi,yyy j|(xxx,yyy))+ααα
>
j ggg j(xxx j,yyy j|(xxx,yyy))

+
1
2

σ‖ggg j(xxx j,yyy j|(xxx,yyy))‖2, (4.11)

where (xxx j,yyy j) is variable, i.e., all (xxxk,yyyk)(k = 1,2, · · · , p,k 6= j) are fixed except for (xxx j,yyy j). By
(4.11), for j = 1,2, · · · , p, define an unconstraint optimization problem

(CNP) j(ααα j,σ) min A j(xxx j,yyy j|(xxx,yyy);ααα j,σ)

s.t. (xxx j,yyy j) ∈ Rp j ×Rq j .
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To solve the problem (CNP) j(ααα j,σ), an algorithm involving an augmented Lagrange penalty
function for (CNP)(which is called Algorithm 1) is proposed.

Algorithm 1.
Step 1: Let ε > 0,σ1 > 0,N > 1,www0

j = (xxx0
j ,yyy

0
j) ∈ Rp j ×Rq j( j = 1,2, · · · , p), and ααα1

j ∈
Rr j( j = 1,2, · · · , p), k = 1.

Step 2.1: Let j = 1. If a point (xxxk−1,yyyk−1)1 =((xxxk−1
1 ,yyyk−1

1 ),(xxxk−1
2 ,yyyk−1

2 ), · · · ,(xxxk−1
p ,yyyk−1

p ))

is obtained, then find (xxxk
1,yyy

k
1) ∈ Rp1×Rq1 to the subproblem

min
(xxx1,yyy1)

Ak
1(xxx1,yyy1|(xxxk−1,yyyk−1)1;ααα

k
1,σk)

such that ∇1Ak
1(xxx

k
1,yyy

k
1|(xxxk−1,yyyk−1)1;αααk

1,σk) = 0, where (xxx1,yyy1) of function

Ak
1(xxx1,yyy1|(xxxk−1,yyyk−1)1;ααα

k
1,σk)

is variable, that is, all (xxxk−1
s ,yyyk−1

s )(s = 2, · · · , p) are fixed except for (xxx1,yyy1). Let j = 2
and go to Step 2.2.

Step 2.2: Let j > 1. If a point

(xxxk−1,yyyk−1) j = ((xxxk
1,yyy

k
1), · · · ,(xxxk

j−1,yyy
k
j−1),(xxx

k−1
j ,yyyk−1

j ), · · · ,(xxxk−1
p ,yyyk−1

p ))

is obtained, then find (xxxk
j,yyy

k
j) ∈ Rp j ×Rq j to the subproblem

min
(xxx j,yyy j)

Ak
j(xxx j,yyy j|(xxxk−1,yyyk−1) j;ααα

k
j,σk)

such that ∇ jAk
j(xxx

k
j,yyy

k
j|(xxxk−1,yyyk−1) j;αααk

j,σk) = 0, where

(xxx j,yyy j|(xxxk−1,yyyk−1) j = ((xxxk
1,yyy

k
1), · · · ,(xxxk

j−1,yyy
k
j−1),(xxx j,yyy j),(xxx

k−1
j+1,yyy

k−1
j+1), · · · ,(xxx

k−1
p ,yyyk−1

p )),

i.e., (xxx j,yyy j) of Ak
j(xxx j,yyy j|(xxxk−1,yyyk−1) j;αααk

j,σk) is variable, i.e., all (xxxk
s ,yyy

k
s)(s= 1,2, · · · , j−

1) and (xxxk−1
s ,yyyk−1

s )(s = j+1, j+2, · · · , p) are fixed except for (xxx j,yyy j). Go to Step 2.3
Step 2.3: If j = p, go to Step 3. Otherwise, set j := j+1 and go to Step 2.2.
Step 3: If (xxxk,yyyk) = (xxxk−1,yyyk−1) ∈ X( f ) and L(xxx,yyy,αααk) is convex on (xxx,yyy) (see (3.12)),

then stop and xxxk is an optimal solution to (CNO). Otherwise, go to Step 4.
Step 4: If ‖ggg(xxxk,yyyk)‖=∑

p
j=1 ‖ggg j(xxx

k
j,yyy

k
j)‖< ε , then stop and xxxk is an approximate solution

to (CNO). Otherwise, for j = 1,2, · · · , p, let ααα
k+1
j = αααk

j +σkggg j(xxx
k
j,yyy

k
j), σk+1 = Nσk,

k := k+1 and go to Step 2.1.
Note that, in Step 3, if (xxxk,yyyk) = (xxxk−1,yyyk−1) ∈ X( f ) holds, then(xxxk

j,yyy
k
j) ∈ Rp j ×Rq j( j =

1,2, · · · , p). So, for all ( j = 1,2, · · · , p,

∇ jAk
j(xxx

k
j,yyy

k
j|(xxxk−1,yyyk−1) j;ααα

k
j,σk) = ∇ jAk

j(xxx
k
j,yyy

k
j|(xxxk,yyyk) j;ααα

k
j,σk) = 0

holds.
From the algorithm, if ‖ggg(xxxk,yyyk)‖< ε holds, we find an approximate global optimal solution

to (CNO). Under some conditions, it is proved that the algorithm can converge to a KKT point
for ε = 0. Let

S(π,g) = {(xxx,yyy) | π ≥ g(xxx,yyy)},
which is called a level set. If S(π,g) is bounded for any given π > 0, then S(π,g) is also
bounded.
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Theorem 4.5. Let ε = 0 and f be a decomposable CN function. Suppose that a sequence of
{(xxxk,yyyk) := ((xxxk

1,yyy
k
1),(xxx

k
2, yyyk

2), · · · ,(xxxk
p,yyy

k
p))}, k = 1,2, · · · , is obtained by Algorithm 1. Let the

sequence of {Hk(xxxk,yyyk,σk)}, k = 1,2, · · · , be bounded and the level set S(π,g) be bounded,
where

Hk(xxxk,yyyk,ρk) = g(xxxk,yyyk)+σk

r

∑
i=1

gi(xxxk,yyyk)2.

(i) If the algorithm stops at a finite number of step k, then xxxk is a global optimal solution to
(CNO).
(ii) If {(xxxk,yyyk)} is an infinite sequence, then {(xxxk,yyyk)} is bounded and any limit point (xxx∗,yyy∗)
of the sequence belongs to X(ggg), and there exist η > 0 and λi, i = 1,2, · · · ,r, such that

η∇g(xxx∗,yyy∗)+
r

∑
i=1

λi∇gi(xxx∗,yyy∗) = 0. (4.12)

If (xxx∗,yyy∗) ∈ X( f ) and ηg(xxx,yyy)+
r
∑

i=1
λigi(xxx,yyy) is convex on (xxx,yyy) or λi ≥ 0, i = 1,2, · · · ,r, then

xxx∗ is an optimal solution to (CNO).

Proof. (i) From Step 2 and Step 3 of the algorithm, we have

∇ jAk
j(xxx

k
j,yyy

k
j|(xxxk−1,yyyk−1) j;ααα

k
j,σk) = ∇ jAk

j(xxx
k
j,yyy

k
j|(xxxk,yyyk) j;ααα

k
j,σk)

= ∇ jg j(xxxk,yyyk)+ααα
k
j
>

∇ jggg j(xxx
k
j,yyy j

k)

= 0, j = 1,2, · · · , p,

where αααk = (αααk
1,ααα

k
2, · · · ,αααk

p)
>. Thus ∇g(xxxk,yyyk)+αααk>∇ggg(xxxk,yyyk) = 0. By Theorem 4.1, xxxk is

a global optimal solution to (CNO).
(ii) As k → +∞, since {Hk(xxxk,yyyk,ρk)} is bounded, there must be some π > 0 such that

π > Hk(xxxk,yyyk,σk) ≥ g(xxxk,yyyk). {(xxxk,yyyk)} is bounded because the level set S(π, f ) is bounded.
Without loss of generality, suppose (xxxk,yyyk)→ (xxx∗,yyy∗), i.e., (xxxk

j,yyy
k
j)→ (xxx∗j ,yyy

∗
j)( j = 1,2, · · · , p).

Since g is continuous, one has that S(π,g) is closed. So, g(xxxk,yyyk) is bounded and there is a
σ ′ > 0 such that g(xxxk,yyyk)>−σ ′. From the above inequality, we have that

r

∑
i=1

gi(xxxk,yyyk)2 ≤ 1
σk

(π−g(xxxk,yyyk))<
π +σ ′

σk
.

Thus ∑
r
i=1(gi(xxxk,yyyk))2→ 0 as σk→+∞. Hence, (xxx∗,yyy∗) ∈ X(ggg). Note that there is an infinite

sequence {(xxxk,yyyk,αααk,ρk)} such that ∇ jAk
j(xxx

k
j,yyy

k
j|(xxxk−1,yyyk−1) j;αααk

j,σk) = 0, j = 1,2, · · · , p. For
all j = 1,2, · · · , p, we have

∇ jg(xxxk
j,yyy

k
j|(xxxk−1,yyyk−1) j)+

r j

∑
i=1

α
k+1
ji ∇ jg ji(xxxk

j,yyy
k
j) = 0, (4.13)

where αααk
j =(αk

j1,α
k
j2, · · · ,αk

jr j
), (xxxk

j,yyy
k
j|(xxxk−1,yyyk−1) j)= ((xxxk

1,yyy
k
1), · · · ,(xxxk

j−1, yyyk
j−1),(xxx

k
j,yyy

k
j),(xxx

k−1
j+1,

yyyk−1
j+1), · · · ,(xxxk−1

p ,yyyk−1
p )) and α

k+1
ji =αk

ji+σkg ji(xxxk
ji,yyy

k
ji) (i= 1,2, · · · ,r j). For all j = 1,2, · · · , p,

let γk
j = 1+∑

r j
i=1(max{αk+1

ji ,0}+max{−α
k+1
ji ,0})> 0. Let ηk

j =
1
γk

j
> 0, µk

ji =
max{αk+1

ji ,0}
γk

j
≥
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0, i = 1,2, · · · ,r j, and νk
ji =

max{−α
k+1
ji ,0}

γk
j

≥ 0, i = 1,2, · · · ,r j. Then,

η
k
j +

r j

∑
i=1

(µk
ji +ν

k
ji) = 1. (4.14)

Clearly, for all j = 1,2, · · · , p, as k → ∞, we have ηk
j → η j > 0,µk

ji → µ ji,ν
k
ji → ν ji,∀i =

1,2, · · · ,r j. By (4.13) and (4.14), we have

η∇g(xxx∗,yyy∗)+
r

∑
i=1

(µi−νi)∇gi(xxx∗,yyy∗) = 0. (4.15)

Let λ k = µk
i −νk

i → λ as k→+∞, we conclude from (4.15) that (4.12). �

Finally, four examples are given to demonstrate that our algorithm can solve an approximate
optimal solution to (CNO). All codes are written with Matlab2016a and numerical experiments
are carried out with Thinkpad S3.

Example 4.2. Consider the optimization problem which is the same as Example 3.1. (x∗1,x
∗
2) =

(0,0) is an optimal solution to (Ex4.2) and f (0,0) = 1 for λ > 2. The CN function f (x) is
decomposable. By Example 3.1 and our algorithm, two subproblems are solved:

(Ex4.2)1 min g((x1,y1,y2,y3),(x2,y4,y5,y6)) = (x1 + x2−1)2 +λ (y2
2 + y2

5)

s.t. ggg1(x1,yyy1) = (y4
1− y3,x2

1− y3,y2
2− y1) = 0.

(Ex4.2)2 min g((x1,y1,y2,y3),(x2,y4,y5,y6)) = (x1 + x2−1)2 +λ (y2
2 + y2

5)

s.t. ggg2(x2,yyy2) = (y4
4− y6,x2

2− y6,y2
5− y4)) = 0.

Now, stating parameters λ = 20000,ε = 10−4,θ = 0.1,σ1 = 1000,N = 1000,α1
1 = (2,2,2)>,

α2
1 = (2,2,2)>, and ((x0

1,y
0
1, y0

2,y
0
3),(x

0
2,y

0
4,y

0
5,y

0
6)) = ((2,2,2,2),(2,2,2,2)). At iteration 3, an

approximate optimal solution is obtained ((xk
1,y

k
1,y

k
2,y

k
3), (x

k
2,y

k
4,y

k
5,y

k
6)) = ((0.0009,0.0000,

0.0000,0.0000), (0.0006,0.0000,−0.0000,0.0000)). Furthermore, when random values of
starting points are chosen from [−500,500], the same approximate optimal solution is obtained
at iteration 6.

Example 4.3. Consider the special sparse optimization problem in [8]:

(Ex4.3) min fn(xxx) = (
n

∑
i=1

ixi−2n)2 +λ

n

∑
i=1
|xi|0

s.t. xxx ∈ Rn.

For (xi,yi,yi+n), i = 1,2, · · · ,n, a decomposable PCN form of fn(xxx) at the maximum decompo-
sition number p = n is defined by

[(
n

∑
i=1

ixi−2n)2 +λ

n

∑
i=1

y2
i : ((xi + yi−1)2− yi+n,

x2
i +(yi−1)2− yi+n,y2

i − yi) = 0, i = 1,2, · · · ,n].



122 M. JIANG, R. SHEN, Z. MENG, C. DANG

Let n= ep, www j = (xe j+1,xe j+2, · · · ,xe j+e,ye j+1,ye j+2, · · · ,ye j+e,ye j+1+n, ye j+2+n, · · · ,ye j+e+n),
j = 0,1,2, · · · , p−1. So, for j = 0,1,2, · · · , p−1, p subproblems are solved by:

(Ex4.3) j min g(www0,www1, · · · ,wwwp−1) = (
p−1

∑
j=0

e

∑
t=1

(e j+ t)xe j+t−2n)2 +λ

e

∑
t=1

y2
e j+t

s.t. ggg j(www j) = ((xe j+t + ye j+t−1)2− ye j+t+n,

x2
e j+t +(ye j+t−1)2− ye j+t+n,y2

e j+t− ye j+t) = 0, t = 1,2, · · · ,e.
For j = 0,1,2, · · · , p− 1, the augmented Lagrange penalty optimization of (Ex4.3) j is defined
by

(Ex4.3) j min A j(www j,ααα j,σ) = (
p−1

∑
j=0

e

∑
t=1

(e j+ t)xe j+t−2n)2 +λ

e

∑
t=1

y2
e j+t +

e

∑
t=1

[α1t((xe j+t + ye j+t−1)2− ye j+t+n)+α2t(x2
e j+t +(ye j+t−1)2

−ye j+t+n)+α3(y2
e j+t− ye j+t)+σ(((xe j+t + ye j+t−1)2− ye j+t+n)

2

+(x2
e j+t +(ye j+t−1)2− ye j+t+n)

2 +α3(y2
e j+t− ye j+t)

2)]

s.t. (xe j+t ,ye j+t ,ye j+t+n) ∈ R3, t = 1,2, · · · ,e.

By Algorithm 1, let the starting parameters ε = 10−4,σ1 = 5,N = 10,ααα j = (0,0, · · · ,0), and
www0

j =(0,0,0, · · · ,0) be taken. When e= 5, p= 1,2,6,10,20, 100,200, λ = 1,10,100,500,1000,
the value of 0-norm ‖xxxk‖0 is obtained by Algorithm 1 as shown in Table 1. Numerical results
demonstrate that an approximate sparse optimal solution is obtained. When λ is larger, the
value of 0-norm ‖xxxk‖0 is smaller at the approximate sparse optimal solution.

TABLE 1. Value of ‖xxxk‖0 obtained by Algorithm 1 when e = 5.

n = 5p λ = 1 λ = 10 λ = 100 λ = 500 λ = 1000
5 1 1 0 0 0

10 2 2 0 0 0
30 15 10 10 3 1
50 22 17 18 16 10

100 54 37 39 42 42
500 325 192 208 227 208

1000 611 382 427 471 421

TABLE 2. Numerical results obtained by Algorithm 1 when e = 5 and n = 100.

λ 10 100 1000 2000 3000 5000 8000 10000 15000 20000 21000
‖xxxk‖0 37 39 42 40 31 11 7 5 2 1 0

Numerical experiments demonstrate if problem (CNP) is not decomposable, we cannot obtain
an approximate sparse optimal solution by Algorithm 1 for p = 1, λ ∈ [1,10] and n > 15. As
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the scale of the problem increases, the approximate spear solution may be obtained by using
the decomposition algorithm (CNP). When λ is greater, the value of 0-norm ‖xxxk‖0 is smaller as
shown in Table 2 when n = e× p = 5×20 = 100.

Example 4.4. Consider the nonconvex optimization problem ([2, Problem 5] and [3, Problem
73]):

(Ex4.4) min fn(xxx) = nmax{|xi| : i = 1,2, · · · ,n}−
n

∑
i=1
|xi|

s.t. xxx ∈ Rn.

An optimal solution to (Ex4.4) is xxx∗ = (±α,±α, · · · ,±α)> with f (xxx∗) = 0 for α ∈ R [3]. Let
xxx ∈ Rn,yyy ∈ R2n+1. A convertible nonconvex form of f is defined by

[ny2n+1−
n

∑
i=1

yi : y2
i − yi+n,x2

i − yi+n, i = 1,2, · · · ,n],

where xxx ∈ S1 = Rn,yyy ∈ S2 = {yyy | −yi ≤ 0,yi− y2n+1 ≤ 0, i = 1,2, · · · ,n}. Let n = ep, www0 =
(x1,x2, · · · ,xe,y1,y2, · · · ,ye,y1+n,y2+n, · · · , ye+n,y2n+1), www j−1 = (xe j+1,xe j+2, · · · ,xe j+e,ye j+1,
ye j+2, · · · ,ye j+e,ye j+1+n,ye j+2+n, · · · ,ye j+e+n), j = 1,2, · · · , p−1. So, for j = 0,1,2, · · · , p−1,
p subproblems are solved by:

(Ex4.4) j min g(www0,www1, · · · ,wwwp−1) = ny2n+1−
e

∑
t=1

yet+ j

s.t. ggg j(www j) = (y2
e j+t− ye j+t+n,x2

e j+t− y2n+1) = 0, t = 1,2, · · · ,e,

−ye j+t ≤ 0,y2
e j+t− ye j+t+n ≤ 0, t = 1,2, · · · ,e.

For j = 0,1,2, · · · , p− 1, the augmented Lagrange penalty optimization of (Ex4.4) j is defined
by

(Ex4.4) j min A j(www j,ααα j,σ) = ny2n+1−
e

∑
t=1

yet+ j +
e

∑
t=1

[α1t(y2
e j+t− ye j+t+n)

+α2t(x2
e j+t− y2n+1)+σ((y2

e j+t− ye j+t+n)
2

+(x2
e j+t− y2n+1)

2 +max{y2
e j+t− ye j+t+n,0}2)]

s.t. −ye j+t ≤ 0, t = 1,2, · · · ,e.

By Algorithm 1, let the starting parameters ε = 10−4,σ1 = 5,N = 10,ααα j = (0,0, · · · ,0), and
www0

j = (1,2,3, · · · ,3e+1) be taken. So, numerical results in Table 3 and Table 4 are obtained for
e = 3,5. Through Algorithm 1, an approximate solution can be obtained at iteration steps 2-4 .
The numerical results demonstrate that the running time is a multiple of the decomposition scale
p. Through numerical experiments, it is appropriate to take e from 2 to 6 in this example. When
e exceeds 6, the larger the n, the worse the approximate solution. However, the smaller the e,
the longer the execution time. The scale of (Ex4.4) here is much larger than those of (Ex4.4) in
[2]. If fact, the example demonstrates that the solution xxx∗ to (Ex4.4) is composed of xxxk repeated
e times. For example, because xxxk = (3.1448,3.1448,3.1448,3.1448,3.1448) is an optimal solu-
tion to (Ex4.4) at n= 5 by Algorithm 1. Then, (3.1448,3.1448,3.1448,3.1448, 3.1448) extends
to xxxk = (3.1448,3.1448,3.1448,3.1448,3.1448,3.1448,3.1448, 3.1448,3.1448,3.1448) which



124 M. JIANG, R. SHEN, Z. MENG, C. DANG

is an optimal solution to (Ex4.4) at n = 10. When n is very large, it is easy to obtain its optimal
solution.

TABLE 3. Numerical results obtained by Algorithm 1 when e = 5.

n k (xk
1,x

k
2, · · · ,xk

n) Running time
5 2 (3.1448,3.1448,3.1448, 3.1448,3.1448) 2.9155s
10 2 (3.1448,3.1448,3.1448, · · · ,3.1448) 4.3817s
50 2 (3.1448,3.1448,3.1448, · · · ,3.1448) 18.1406s

250 3 (3.3481,3.3481,3.3481, · · · ,3.3481) 152.7852s
500 4 (3.3484,3.3484,3.3484, · · · ,−3.3484) 401.494226s

1000 4 (3.3484,3.3484,3.3484, · · · ,3.3484) 855.879704s

TABLE 4. Numerical results obtained by Algorithm 1 when e = 3.

n k (xk
1,x

k
2, · · · ,xk

n) Running time
6 2 (3.4322,3.4322,3.4322, · · · ,3.4322) 3.1981s

30 2 (3.4322,3.4322,3.4322, · · · ,3.4322) 12.5217s
90 2 (3.4322,3.4322,3.4322, · · · ,3.4322) 45.0358s

300 3 (3.4262,3.4262,3.4262, · · · ,3.4262) 215.3782s
600 3 (3.4262,3.4262,3.4262, · · · ,3.4262) 457.0393s

1500 3 (3.4262,3.4262,3.4262, · · · ,3.4262) 1102.5697s

Example 4.5. Consider the nonconvex optimization problem (Problem 64 on Page 280 in [3] ):

(Ex4.5) min fn(xxx) =
n−1

∑
i=1

(−xi +2(x2
i + x2

i+1−1)+1.75|x2
i + x2

i+1−1|)

s.t. xxx ∈ Rn.

Let xxx ∈ Rn,yyy ∈ R2n+1. A convertible nonconvex form of f is defined by

[
n−1

∑
i=1

(−xi +2yi +1.75yi+n) : x2
i + x2

i+1−1− yi = 0,y2
i+n− yi+2n = 0,

y2
i − yi+2n = 0 i = 1,2, · · · ,n−1],

where xxx ∈ S1 = Rn,yyy ∈ S2 = {yyy | yi ≥ −1,yi+n,yi+2n ≥ 0, i = 1,2, · · · ,n}. Let n = ep, www j =
(xe j+1,xe j+2, · · · ,xe j+e,ye j+1,ye j+2, · · · ,ye j+e,ye j+1+n, ye j+2+n, · · · ,ye j+e+n,ye j+1+2n,ye j+2+2n,
· · · ,ye j+e+2n), j = 0,1,2, · · · , p−1. So, for j = 0,1,2, · · · , p−1, p subproblems are solved by:

(Ex4.5) j min g(www0,www1, · · · ,wwwp−1) =
e

∑
t=1

(−xe j+t +2ye j+t +1.75ye j+t+n)

s.t. ggg j(www j) = (x2
e j+t + x2

e j+t+1−1− ye j+t ,y2
e j+t+n− ye j+t+2n,

y2
e j+t− ye j+t+2n) = 0, t = 1,2, · · · ,e,
−ye j+t ≤ 1,−ye j+t+n,−ye j+t+2n ≤ 0, t = 1,2, · · · ,e.
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Since {www j−1}∩{www j}= {xe j+1}, fn(xxx) is not decomposable. If www∗j−1( j > 0) is an optimal solu-
tion to (EX4.5) j−1, a term ”σ(x∗e j+1−xe j+1)

2” is added to (EX4.5) j, where, for j = 0,1,2, · · · , p−
1, the augmented Lagrange penalty optimization of (EX4.5) j is defined by

(Ex4.5) j min A j(www j,ααα j,σ) =
e

∑
t=1

(−xe j+t +2ye j+t +1.75ye j+t+n)+

e

∑
t=1

[α1t(x2
e j+t + x2

e j+t+1−1− ye j+t)+

α2t(y2
e j+t+n− ye j+t+2n)+α3t(y2

e j+t− ye j+t+2n))

+σ((x2
e j+t + x2

e j+t+1−1− ye j+t)
2 +

(y2
e j+t+n− ye j+t+2n)

2 +(y2
e j+t− ye j+t+2n)

2)]

+σ(x∗e j+1− xe j+1)
2

s.t. −ye j+t ≤ 1,−ye j+t+n,−ye j+t+2n ≤ 0, t = 1,2, · · · ,e.

Especially, when j = 0, ”σ(x∗1− x1)
2” is deleted from the above (EX4.5) j. When n = 50,200,

and 1000, their approximate objective values f (xxxk) are −34.795,−140.86, and −706.55 re-
spectively at starting point x1 = (1,1, · · · ,1)> in [3]. By Algorithm 1, let the starting param-
eters ε = 10−4,σ1 = 5,N = 100,ααα j = (0,0, · · · ,0)>, and www0

j = (1,1,1, · · · ,1)> be taken. So,
at iteration step 1, numerical results are obtained by Algorithm 1 as shown in Tables 5, 6, and
7 respectively when n = 50,200 and 1000. In Tables 5, 6, and 7, the best objective value of
(Ex4.5) is obtained when n = 2p. It is worth noting that the solutions are effective in Tables 5-7
because (Ex4.5) is an unconstrained optimization problem.

TABLE 5. Numerical results obtained by Algorithm 1 when n = 50.

e p fn(xxxk) ‖ggg(xxxk,yyyk)‖ Running time(s)
50 1 -38.2547 0.0593 4.2525
25 2 -36.8531 0.0472 5.6183
10 5 -39.4672 0.0001 10.8266
5 10 -35.8447 0.0000 24.6390
2 25 -40.8154 0.0000 47.2351

TABLE 6. Numerical results obtained by Algorithm 1 when n = 200.

e p fn(xxxk) ‖ggg(xxxk,yyyk)‖ Running time(s)
20 10 -159.4185 0.04810 25.5085
10 20 -159.4124 0.00101 37.1376
5 40 -145.9025 0.00002 82.4633
4 50 -156.7485 0.00000 93.6619
2 100 -166.0306 0.00000 151.7478

By Algorithm 1, a solution x̃xx = (0.6897,0.4153,0.4965,0.5386,0.4707) with its objective
value f5(x̃xx)=−3.0766 is obtained at n= 5 and p= 1. And another solution x̂xx=(0.6772,0.49930)
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TABLE 7. Numerical results obtained by Algorithm 1 when n = 1000.

e p fn(xxxk) ‖ggg(xxxk,yyyk)‖ Running time(s)
10 100 -805.0714 0.00108 271.2822
5 200 -726.9435 0.00002 566.6910
4 250 -783.3616 0.00001 589.5969
2 500 -833.6333 0.00002 717.9175

with its objective value f2(x̂xx) =−0.8749 is obtained at n = 2 and p = 1. In Table 8, the solution
xxxk in the first three columns is composed of x̃xx repeated p times, such as xxxk =(x̃xx, x̃xx, x̃xx, x̃xx, x̃xx, x̃xx, x̃xx, x̃xx, x̃xx, x̃xx)
at e = 5 and p = 10 in line 1, where fn(xxxk) is the objective value of xxxk. In Table 8, the solution
xxxk in columns 4 to 6 is composed of x̂xx repeated p times. In Table 8, the values in the last six
columns are obtained by Algorithm 1 (See Tables 5, 6, and 7). Numerical results show that for
large-scale unconstrained optimization problems, a better solution can be obtained directly by
Algorithm 1 by solving small-scale subproblems of it when the structure of all the subproblems
are similar, i.e. the constraint structure of all the equality subproblems is the same as those in
Examples 4.3, 4.4, and 4.5. This decomposable method is effective in examples 4.4 and 4.5.

TABLE 8. Numerical results obtained by Algorithm 1.

e p fn(xxxk) e p fn(xxxk) e p fn(xxxk) e p fn(xxxk)

5 10 -37.8238 2 25 -41.1109 5 10 -35.8447 2 25 -40.8154
5 40 -153.6478 2 100 -166.8484 5 40 -145.9025 2 100 -166.0306
5 200 -771.3758 2 500 -837.4484 5 200 -726.9435 2 500 -833.6333
5 1000 -3860.0158 2 2500 -4190.4484 5 1000 -3647.9851 2 2500 -4171.0713
5 2000 -7720.8158 2 5000 -8381.6984 5 2000 -7295.0801 2 5000 -8343.5399

Algorithm 1 demonstrates that when these parameters ε > 0,σ1 > 0,N > 1,(xxx0
j ,yyy

0
j) ( j =

1,2, · · · , p), ααα1
j( j = 1,2, · · · , p) are properly selected. We obtain an approximate optimal solu-

tion to an unconstrained optimization problem with CN function, the above examples demon-
strate that the scale problem of (CNP) can be avoided and reduced by solving the subproblems
in Algorithm 1. If (CNP) is a small-scale problem for p = 1 or the number of variables in (CNP)
is very small, Algorithm 1 may obtain an approximate solution to (CNP).

5. CONCLUSION

This paper discusses three difficulties relating to unconstrained nonconvex or nonsmooth op-
timization problems. (1) An unconstrained, nonconvex, and nonsmooth optimization problem
is transformed into a constrained optimization problem, where its objective function and con-
strained functions are convex and smooth. A new concept - weak uniform or decomposable
CN optimization - is proposed, which covers many nonconvex nonsmooth functions, even dis-
continuous nonconvex functions. (2) The optimality conditions of the global optimal solution
to unconstrained nonconvex or nonsmooth problems are obtained. The sufficient conditions of
the global optimal solution are proved for the weak uniform or decomposable CN optimization
problems. (3) A decomposable algorithm for unconstrained nonconvex or nonsmooth opti-
mization problem is proposed based on the augmented Lagrange penalty function of (CNP).
The results of numerical examples demonstrate that Algorithm 1 may obtain an approximate
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global optimal solution after properly selecting the initial parameters. Another advantage of the
algorithm is that it does not need to use subgradient and smoothing techniques such that Mat-
lab, the optimization software, is directly usable, which makes this method easy for engineers
to use. This paper provides a new method for solving nonconvex unconstrained optimization
problems, which shows its potential importance in many application fields. There are at least
three directions worthy of further study in terms of weak uniform CN optimization problems
(CNP):

(1) decomposable Newton algorithms or decomposable SQP algorithms for (CNP),
(2) Lagrangian multiplier alternating algorithms for (CNP),
(3) some special structures of (CNP), for example when f is a weak uniform CN function

with f = [g,g1,g2, · · · ,gr], where g,g1,g2, · · · ,gr are quadratic functions.
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