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Abstract. This paper is devoted to the approximate optimality condition and mixed type duality for
DC composite optimization problems in locally convex Hausdorff topological vector spaces. By using
the properties of the Fréchet subdifferential, a new constraint qualification is introduced. Under this
constraint qualification, some approximate optimality conditions of the quasi (α,ε)-optimal solution for
DC compose optimization problem and associated mixed type duality theorems are established, which
extend and improve the corresponding results in the previous papers.
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1. INTRODUCTION

Let X ,Y , and Z be real locally convex Hausdorff topological vector spaces with dual spaces,
X∗,Y ∗, and Z∗, endowed with the weak∗-topology w∗(X∗,X), w∗(Y ∗,Y ), and w∗(Z∗,Z), respec-
tively. Let Y and Z be partially ordered by closed convex cones K ⊆ Y and S ⊆ Z, respectively.
Denote Y • = Y ∪{∞Y} and Z• = Z ∪{∞Z}, where ∞Y and ∞Z are the greatest elements with
respect to the partial orders ≤K and ≤S, respectively. Let C ⊆ X be a nonempty convex subset,
T be an arbitrary (possibly infinite) index set, f1 : Y → R := R∪{+∞} be a proper convex K-
increasing function, f2 : X →Y • be a proper K-convex function, g1 : Z→R be a proper convex
S-increasing function, g2 : X → Z• be a proper S-convex function, and ht : X → R, t ∈ T be a
proper convex function.

Consider the following DC composite optimization problem

(P)
inf {( f1 ◦ f2)(x)− (g1 ◦g2)(x)}
s.t. ht(x)≤ 0, t ∈ T,

x ∈C.
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This problem was studied extensively and numerous problems in optimization and approxima-
tion theory, such as the classical convex optimization problems, convex composite optimization
problems, DC optimization problems, and the best approximation with restricted ranges can be
recast into the form of (P); see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9] and the references therein.

Recently, a great deal of attention has been focused on the optimality conditions for the DC
composite optimization problem. But, as one knows, it may not be always possible to find the
point of minimizers in optimization problems or it is computationally expensive from a com-
putational point of view. In these situations, we have to find an approximate solution for these
optimization problems. Due to this, the study of approximate solutions becomes an important
and interesting area. Numerous interesting results on the characterizations of approximate solu-
tions to various types of optimization problems were obtained; see, e.g., ε-optimal solutions for
convex programming or robust convex programming in [10, 11, 12, 13] and for composite con-
vex optimization problems in [1, 14], quasi ε-optimal solutions for robust convex programming
in [15] and for DC programming in [1], and quasi (α,ε)-optimal solutions for robust convex
programming in [16] and for composite convex optimization problem in [17]. Note that, the
above approximate optimality conditions are mainly focused on robust convex programming
and composite convex optimization problems. To the best of our knowledge, not many results
are known for DC composite optimization problem.

Motivated and inspired by the works in [1, 16, 17], we continue to study DC composite
optimization problem (P) and devote this paper to some new characterizations of approximate
optimality conditions and mixed type duality theorems. Our main aim in this paper is to give
some constraint qualifications by using the properties of ε-subdifferential, and then establish
some new characterizations for the quasi (α,ε)-optimal solutions to problem (P). Based on the
approximate optimality conditions, we propose a mixed type approximate dual problem of (P)
and then provide some mixed type duality theorems between problem (P) and its mixed type
approximate dual problem.

The paper is organized as follows. In Section 2, we recall some necessary notations and
preliminary results. In Section 3, some new regularity conditions are provided and several rela-
tionships among them are given. Under the new regularity conditions, quasi (α,ε)-optimality
conditions for DC composite optimization problems are established. Approximate mixed type
duality theorems are established in the last section, Section 4.

2. NOTATIONS AND PRELIMINARY RESULTS

The notations used in the present paper are standard (see [18]). In particular, we assume
throughout the whole paper that X , Y , and Z are real locally convex Hausdorff topological vector
spaces with their dual spaces X∗, Y ∗, and Z∗, endowed with the weak∗-topology w∗(X∗,X),
w∗(Y ∗,Y ), and w∗(Z∗,Z), respectively. By 〈x∗,x〉, we denote the value of the functional x∗ ∈ X∗

at x ∈ X , that is, 〈x∗,x〉= x∗(x). We endow X∗×R with the product topology of w∗(X∗,X) and
the usual Euclidean topology. The symbol B∗ stands for the closed unit ball in X∗. The norm of
ξ ∈ X is denoted by ‖ξ‖, i.e.,

‖ξ‖ := sup{〈ξ ,d〉|d ∈ X ,‖d‖ ≤ 1} .

Let Y and Z be partially ordered by closed convex cones K ⊆Y and S⊆ Z, respectively. Denote
Y • = Y ∪{∞Y} and Z• = Z∪{∞Z}, where ∞Y and ∞Z are the greatest elements with respect to
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the partial orders ≤K and ≤S, respectively. The following operations are defined on Y • (resp.
Z•): for any y ∈Y (resp. z ∈ Z), y+∞Y = ∞Y +y = ∞Y and t∞Y = ∞Y (resp. z+∞Z = ∞Z + z =
∞Z and t∞Z = ∞Z) for any t > 0. Recall that a function ψ : Y → R is said to be K-increasing if,
for any x,y ∈Y such that y≤K x, ψ(y)≤ ψ(x), and ϕ : X →Y is said to be K-convex, if for any
x,y ∈ domϕ := {x ∈ X : ϕ(x) ∈ Y} and every t ∈ [0,1],

ϕ(tx+(1− t)y)≤K tϕ(x)+(1− t)ϕ(y).

Let C be a nonempty subset in X . The closure of C is denoted by clC. The dual cone C∗ and the
indicator function δC of C are defined, respectively, by

C∗ := {x∗ ∈ X∗ : 〈x∗,x〉 ≥ 0 for each x ∈C} ,

and

δC(x) :=
{

0, x ∈C,
+∞, otherwise.

Moreover, we use R(T ) to denote the space of real tuples λ = (λt)t∈T with only finitely many
λt 6= 0, and let R(T )

+ denote the nonnegative cone in R(T )
+ , that is,

R(T )
+ :=

{
(λt)t∈T ∈ R(T ) : λt ≥ 0 for each t ∈ T

}
.

Let f : X → R be a proper convex function. The effective domain, conjugate function, and
epigraph of f are denoted by dom f , f ∗, and epi f , respectively, and they are defined by dom f :=
{x ∈ X : f (x) < +∞}, f ∗(x∗) := sup{〈x∗,x〉− f (x) : x ∈ X} for each x∗ ∈ X∗, and epi f :=
{(x,r) ∈ X ×R : f (x) ≤ r}. Then f is called proper if dom f 6= /0. It can easily seen that the
following Young-Fenchel inequality holds:

f (x)+ f ∗(x∗)≥ 〈x,x∗〉 for each pair (x,x∗) ∈ X×X∗. (2.1)

The subdifferential of f at x ∈ dom f is defined by

∂ f (x) := {x∗ ∈ X∗ : f (x)+ 〈x∗,y− x〉 ≤ f (y) for all y ∈ X} ,

and for any ε ≥ 0, the ε-subdifferential of f at x ∈ dom f is defined by

∂ε f (x) := {x∗ ∈ X∗ : f (x)+ 〈x∗,y− x〉 ≤ f (y)+ ε for all y ∈ X} . (2.2)

Then, for each ε ≥ 0 and x ∈ dom f ,

x∗ ∈ ∂ε f (x)⇔ f (x)+ f ∗(x∗)≤ 〈x∗,x〉+ ε. (2.3)

In particular, if ε = 0, the set ∂ f (x) = ∂0 f (x) is the classical subdifferential of convex analysis.
By definition, the following Young’s equality holds:

x∗ ∈ ∂ f (x)⇔ f (x)+ f ∗(x∗) = 〈x∗,x〉. (2.4)

If 0≤ ε1≤ ε2, then ∂ε1 f (x)⊆ ∂ε2 f (x) for each x∈ dom f . If f is lsc, then f ∗∗= f . Furthermore,
the normal cone N(x0;C) and the ε-normal cone Nε(x0;C) of a convex set C ⊆ X at the point
x0 ∈C are defined, respectively, by

N(x0;C) := ∂δC(x0) = {x∗ ∈ X∗ : 〈x∗,x− x0〉 ≤ 0 for all x ∈C} ,

and
Nε(x0;C) := ∂εδC(x0) = {x∗ ∈ X∗ : 〈x∗,x− x0〉 ≤ ε for all x ∈C} .
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For a function h : X → Z•, the S-epigraph of h is defined by

epiSh := {(x,y) ∈ X×Y : y ∈ h(x)+S}.

Then h is called S-epi-closed if epiSh is closed, and h is star S-lower semi-continuou (S-lsc in
brief) if λh is lsc for each λ ∈ S∗. Note that if h is star S-lsc, then it is S-epi-closed.

Note that an element p ∈ X∗ can be naturally regarded as a function on X in such a way that
p(x) := 〈p,x〉 for each x ∈ X . Thus the following facts are clear for any r ∈ R and any function
f : X → R :

( f + p+ r)∗(x∗) = f ∗(x∗− p)− r for each x∗ ∈ X∗

and
epi( f + p+ r)∗ = epi f ∗+(p,−r).

Below we drop the convexity assumption and consider the generalized differentials for ar-
bitrary proper extend real value functions. Let ϕ : X → R∪ {±∞} be an extended real val-
ued function, and let x0 ∈ domϕ with |ϕ(x0)| < ∞. Following [19], one defines the analytic
ε-subdifferential of ϕ at x0 by

∂̂εϕ(x0) :=
{

x∗ ∈ X∗ : lim inf
x→x0

ϕ(x)−ϕ(x0)−〈x∗,x− x0〉
‖x− x0‖

≥ −ε

}
,ε ≥ 0.

If ε = 0, then ∂̂ϕ(x0) := ∂̂εϕ(x0) is known as the Fréchet subdifferential of ϕ at x0 and reduces
in the convex case to the classical subdifferential of convex analysis. Moreover, if ϕ1,ϕ2 are
finite at x0 and ∂̂ϕ2(x0) 6= /0, then it follows from [19, Theorem 3.1] that

∂̂ (ϕ1−ϕ2)(x0)⊆
⋂

x∗∈∂̂ϕ2(x0)

[∂̂ϕ1(x0)− x∗].

Furthermore, by the definition of Fréchet subdifferential, we can obtain the following result.

Proposition 2.1. Let ε1,ε2 ≥ 0. Assume that ϕ1,ϕ2 : X → R are finite at x0 and ∂̂ε2ϕ2(x0) 6= /0.
Then the following assertion holds:

∂̂ε1(ϕ1−ϕ2)(x0)⊆
⋂

x∗∈∂̂ε2ϕ2(x0)

[∂̂ε1+ε2ϕ1(x0)− x∗]. (2.5)

Proof. Take u∗ ∈ ∂̂ε1(ϕ1−ϕ2)(x0) and x∗ ∈ ∂̂ε2ϕ2(x0). Let γ > 0 and η > 0. Then, by [20,
Proposition 1.84 (ii)], there exist neighborhoods U1 and U2 of x0 such that

(ϕ1−ϕ2)(x)− (ϕ1−ϕ2)(x0)−〈u∗,x− x0〉+(ε1 + γ)‖x− x0‖ ≥ 0 for each x ∈U1

and
ϕ2(x)−ϕ2(x0)−〈x∗,x− x0〉+(ε2 +η)‖x− x0‖ ≥ 0 for all x ∈U2.

Adding the above inequalities, we have that, for each x ∈U1∩U2,

ϕ1(x)−ϕ1(x0)−〈x∗+u∗,x− x0〉+(ε1 + ε2 + γ +η)‖x− x0‖ ≥ 0.

Let ξ = η + γ > 0. Then

ϕ1(x)−ϕ1(x0)−〈x∗+u∗,x− x0〉+(ε1 + ε2 +ξ )‖x− x0‖ ≥ 0 for all x ∈U1∩U2,

which implies that x∗+u∗ ∈ ∂̂ε1+ε2ϕ1(x0), that is, u∗ ∈ ∂̂ε1+ε2ϕ1(x0)− x∗. Since x∗ ∈ ∂̂ε2ϕ2(x0)
is arbitrarily, it follows that (2.5) holds. The proof is complete. �



OPTIMALITY CONDITIONS OF QUASI (α,ε)-SOLUTIONS 133

Lemma 2.1. [14] Let f :Y •→R and h : X→Y • be proper functions. Assume that h−1(dom f ) 6=
/0. Then, for any x∗ ∈ X∗ and ξ ∈ dom f ∗, ( f ◦h)∗(x∗)≤ f ∗(ξ )+(ξ h)∗(x∗).

Lemma 2.2. [5] Let f ,g : X → R be proper functions. Suppose that g is a lsc convex function.
Then, for each p ∈ X∗,

( f −g)∗(p) = sup
u∗∈domg∗

{ f ∗(p+u∗)−g∗(u∗)}.

Consequently,

epi( f −g)∗ =
⋂

u∗∈domg∗
{epi f ∗− (u∗,g∗(u∗))}.

Lemma 2.3. [18] Let f : X → R be a proper convex function. If x ∈ dom f , then

epi f ∗ =
⋃
ε≥0

{(v,〈v,x〉+ ε− f (x))|v ∈ ∂ε f (x)}.

3. APPROXIMATE OPTIMALITY CONDITIONS

Throughout this paper, unless explicitly stated otherwise, we always assume that C ⊆ X is a
nonempty convex subset, T is an arbitrary (possibly infinite) index set, f1 : Y •→ R is a proper
convex K-increasing function, f2 : X → Y • is a proper K-convex function, g1 : Z• → R is a
proper convex S-increasing function, g2 : X → Z• is a proper S-convex function and ht : X →R
is a proper convex function for each t ∈ T .

Let A := {x ∈ C : ht(x) ≤ 0, t ∈ T} be the feasible set of problem (P). To avoid triviality,
we always assume that A∩dom( f1 ◦ f2−g1 ◦g2) 6= /0. To establish the approximate optimality
condition for problem (P), we first introduce the following new constraint qualification. For
simpleness, let ε ≥ 0, x ∈ A, and ∂ (g1 ◦g2)(x) 6= /0 and denote

Ω(x;ε) :=
⋂

β ∈ ∂g1(g2(x))
x∗ ∈ ∂ (βg2)(x)

( ⋃
λ ∈ R(T )

+ ,ε1,ε2,ε3,εt ≥ 0,ξ ∈ ∂ε3 f1( f2(x))
ε1 + ε2 + ε3 +∑t∈T λt εt = ε +∑t∈T λt ht(x)

{
∂ε1(ξ f2)(x)

+Nε2(x;C)+ ∑
t∈T

λt∂εt ht(x)− x∗
})

.

Definition 3.1. Let ε ≥ 0 and x ∈ A∩dom( f1 ◦ f2−g1 ◦g2). It is said that { f1, f2,g1,g2,δC;ht :
t ∈ T} satisfies the approximate basic constraint qualification with Fréchet subdifferential ((F-
ABCQ)ε in brief) at x if ∂̂ε( f1 ◦ f2−g1 ◦g2+δA)(x)⊆Ω(x;ε). Moreover, we say that the family
{ f1, f2,g1,g2,δC;ht : t ∈ T} satisfies condition (F-ABCQ)ε if it satisfies condition (F-ABCQ)ε

at each point x ∈ A.

Recall that the authors in [17] introduced the following generalized regularity condition
(GRC)

epi( f1 ◦ f2 +δA)
∗ =

⋃
ξ∈dom f ∗1

epi(ξ f2)
∗+(0, f ∗1 (ξ ))+ epiδ ∗C + cone(

⋃
t∈T

epih∗t )
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and the Approximate Moreau-Rockafellar formula (AMRF)

∂ε( f1 ◦ f2 +δA)(x)

=
⋃

λ ∈ R(T )
+ ,ε1,ε2,ε3,εt ≥ 0,ξ ∈ ∂ε3 f1( f2(x))

ε1 + ε2 + ε3 +∑t∈T λt εt = ε +∑t∈T λt ht(x)

{
∂ε1(ξ f2)(x)+Nε2(x;C)+ ∑

t∈T
λt∂εt ht(x)

}
,

where ε ≥ 0 and x ∈ A. Let ε ≥ 0. By [17, Proposition 3.3], we see that the condition (AMRF)
is weaker than the condition (GRC). Moreover, inspired by [7], we can introduce the following
regularity condition

(CC) epi( f1 ◦ f2−g1 ◦g2 +δA)
∗ = Λ,

where

Λ :=
⋂

(β ,x∗)∈domg∗1×domg∗2

{ ⋃
ξ∈dom f ∗1

epi(ξ f2)
∗+(0, f ∗1 (ξ ))+ epiδ ∗C + cone(

⋃
t∈T

epih∗t )

− (x∗,g∗1(β )+(βg2)
∗(x∗))

}
.

The following Propositions 3.1 and 3.2 establish the relationships among the constraint quali-
fications (CC), (GRC) and (F-ABCQ)ε . Since the proof of Proposition 3.1 is similar to that of
[7, Lemma 3.3], we omit it here.

Proposition 3.1. Let f1◦ f2 be a proper convex function and g1◦g2 a proper lsc convex function.
Suppose that

(g1 ◦g2)
∗(x∗) = min

β∈domg∗1
{g∗1(β )+(βg2)

∗(x∗)} for each x∗ ∈ X∗. (3.1)

Then, the following implication holds:

the condition (GRC)⇒ the condition (CC).

Proposition 3.2. The following implication holds:

the condition (CC)⇒ the condition (F-ABCQ)ε .

Proof. Assume that condition (CC) holds. Let x ∈ A∩ dom( f1 ◦ f2− g1 ◦ g2) and p ∈ ∂ε( f1 ◦
f2−g1 ◦g2 +δA)(x). By Lemma 2.3, we have

(p,〈p,x〉+ ε− ( f1 ◦ f2−g1 ◦g2 +δA)(x)) ∈ epi( f1 ◦ f2−g1 ◦g2 +δA)
∗.

Let (β ,x∗) ∈ ∂g1(g2(x))×∂ (βg2)(x). It follows that (β ,x∗) ∈ domg∗1×domg∗2. By the condi-
tion (CC), we obtain

(p,〈p,x〉+ ε− ( f1 ◦ f2−g1 ◦g2 +δA)(x))

∈
⋃

ξ∈dom f ∗1

epi(ξ f2)
∗+(0, f ∗1 (ξ ))+ epiδ ∗C + cone(

⋃
t∈T

epih∗t )− (x∗,g∗1(β )+(βg2)
∗(x∗)).

This implies that there exist ξ ∈ dom f ∗1 and λ ∈ R(T )
+ such that

(p,〈p,x〉+ ε− ( f1 ◦ f2−g1 ◦g2 +δA)(x))

∈epi(ξ f2)
∗+(0, f ∗1 (ξ ))+ epiδ ∗C + ∑

t∈T
λtepih∗t − (x∗,g∗1(β )+(βg2)

∗(x∗)).
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Thus there exist (x∗1,r1) ∈ epi(ξ f2)
∗, (x∗2,r2) ∈ epiδ ∗C, (x

∗
t ,rt) ∈ epih∗t , t ∈ T, such that

p+ x∗ = x∗1 + x∗2 + ∑
t∈T

λtx∗t , (3.2)

and

〈p,x〉+ε− ( f1 ◦ f2−g1 ◦g2+δA)(x) = r1+ r2+ ∑
t∈T

λtrt + f ∗1 (ξ )−g∗1(β )− (βg2)
∗(x∗). (3.3)

While, by (2.4), we have g1(g2(x))+g∗1(β ) = 〈β ,g2(x)〉, and (βg2)(x)+(βg2)
∗(x∗) = 〈x,x∗〉.

Therefore, g1(g2(x))−〈x,x∗〉 = −g∗1(β )− (βg2)
∗(x∗), which together with (3.3) and the fact

δA(x) = 0 implies that

〈p+ x∗,x〉+ ε− f1( f2(x)) = r1 + r2 + ∑
t∈T

λtrt + f ∗1 (ξ ). (3.4)

Moreover, by Lemma 2.3, there exist ε1,ε2,εt ≥ 0, t ∈ T , such that

x∗1 ∈ ∂ε1(ξ f2)(x),r1 = ε1 + 〈x∗1,x〉− (ξ f2)(x),

x∗2 ∈ Nε2(x;C),r2 = ε2 + 〈x∗2,x〉,
and

x∗t ∈ ∂εt ht(x),rt = εt + 〈x∗t ,x〉−ht(x) for each t ∈ T.

Combining this with (3.2) and (3.4), we arrive at

p+ x∗ ∈ ∂ε1(ξ f2)(x)+Nε2(x;C)+ ∑
t∈T

λt∂εt ht(x),

and
ε = ε1 + ε2 + ∑

t∈T
λtεt−∑

t∈T
λtht(x)+ f1( f2(x))+ f ∗1 (ξ )− (ξ f2)(x). (3.5)

Let ε3 := f1( f2(x))+ f ∗1 (ξ )− (ξ f2)(x). Then, by the Young-Fenchel inequality (2.1), we have
that ε3≥ 0 and ξ ∈ ∂ε3 f1( f2(x)). Moreover, by (3.5), ε1+ε2+ε3+∑t∈T λtεt = ε+∑t∈T λtht(x).
Therefore, p ∈Ω(x;ε). Consequently, the condition (F-ABCQ)ε holds. The proof is complete.

�

To characterize the approximate optimal solution to problem (P), we introduce the following
definition.

Definition 3.2. Let α,ε ≥ 0. A point x0 ∈ A is said to be a quasi (α,ε)-optimal solution of (P)
if ( f1 ◦ f2)(x0)− (g1 ◦g2)(x0)≤ ( f1 ◦ f2)(x)− (g1 ◦g2)(x)+α‖x− x0‖+ ε, ∀x ∈ A.

Theorem 3.1. Let α,ε ≥ 0 and x0 ∈ A∩dom( f1 ◦ f2−g1 ◦g2).
(i) Assume that { f1, f2,g1,g2,δC;ht : t ∈ T} satisfies the condition (F-ABCQ)ε at x0. If x0 is

a quasi (α,ε)-optimal solution to (P), then, for each β ∈ ∂g1(g2(x0)),x∗ ∈ ∂ (βg2)(x0), there
exist λ̄ ∈ R(T )

+ ,ε1,ε2,ε3,εb,εt ≥ 0, ξ̄ ∈ Y ∗,u,w,vt ∈ X∗, t ∈ T and b ∈ B∗ such that
(a) 0≤ (ξ̄ f2)

∗(u)+(ξ̄ f2)(x0)−〈u,x0〉 ≤ ε1;
(b) 0≤ δ ∗C(w)+δC(x0)−〈w,x0〉 ≤ ε2;
(c) 0≤ f ∗1 (ξ̄ )+ f1( f2(x0))−〈ξ̄ , f2(x0)〉 ≤ ε3;
(d) 0≤ h∗t (vt)+ht(x0)−〈vt ,x0〉 ≤ εt , t ∈ T ;
(e) ε1 + ε2 + ε3 +∑t∈T λ̄tεt + εb = ε +∑t∈T λ̄tht(x0);
( f ) x∗ = u+w+∑t∈T λ̄tvt +αb.
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(ii) Assume that g1 ◦ g2 is lsc and the equation (3.1) holds. If, for each (β ,x∗) ∈ domg∗1×
X∗, there exist λ̄ ∈ R(T )

+ ,ε1,ε2,ε3,εb,εt ≥ 0, ξ̄ ∈ Y ∗,u,w,vt ∈ X∗, t ∈ T and b ∈ B∗ such that
assertions (a)-( f ) hold at x0, then x0 is a quasi (α,ε)-optimal solution of (P).

Proof. (i) Suppose that x0 is a quasi (α,ε)-optimal solution of the problem (P). Then, by
the definition of ε-subdifferential, we have 0 ∈ ∂̂ε( f1 ◦ f2−g1 ◦g2 +α‖ ·−x0‖+δA)(x0). This
together with the condition (F-ABCQ)ε at x0 implies that, for each β ∈ ∂g1(g2(x0)),x∗ ∈
∂ (βg2)(x0), there exist λ̄ ∈ R(T )

+ , ε1,ε2,ε3,εb,εt ≥ 0, t ∈ T and ξ̄ ∈ ∂ε3 f1( f2(x0)) such that

x∗ ∈ ∂ε1(ξ̄ f2)(x0)+Nε2(x0;C)+ ∑
t∈T

λ̄t∂εt ht(x0)+∂εb(α‖ ·−x0‖)(x0), (3.6)

and
ε1 + ε2 + ε3 + ∑

t∈T
λ̄tεt + εb = ε + ∑

t∈T
λ̄tht(x0).

Then (e) holds. Note that ∂εb(α‖ ·−x0‖)(x0) = αB∗. This together with (3.6) implies that

x∗ ∈ ∂ε1(ξ̄ f2)(x0)+Nε2(x0;C)+ ∑
t∈T

λ̄t∂εt ht(x0)+αB∗. (3.7)

Moreover, since ξ̄ ∈ ∂ε3 f1( f2(x0)), it follows from (2.1) and (2.3) that (a) holds. By (3.7),
there exist u ∈ ∂ε1(ξ̄ f2)(x0),w ∈ Nε2(x0;C),vt ∈ ∂εt ht(x0), t ∈ T and b ∈ B∗ such that x∗ =
u+w+∑t∈T λ̄tvt +αb, that is, ( f ) holds. Again by (2.1) and (2.3), we can conclude that
assertions (b)-(d) hold.

(ii) Suppose that, for each (β ,x∗)∈ domg∗1×X∗, there exist λ̄ ∈R(T )
+ ,ε1,ε2,ε3,εb,εt ≥ 0, ξ̄ ∈

Y ∗,u,w,vt ∈ X∗, t ∈ T and b ∈ B∗ such that (a)-( f ) hold. Then by (2.3), we have that u ∈
∂ε1(ξ̄ f2)(x0), w ∈ ∂ε2δC(x0), ξ̄ ∈ ∂ε3 f1( f2(x0)) and vt ∈ ∂εt ht(x0) for each t ∈ T . Moreover, by
the definition of ε-subdifferential, it follows that, for each x ∈ X ,

(ξ̄ f2)(x)− (ξ̄ f2)(x0)≥ 〈u,x− x0〉− ε1,

δC(x)−δC(x0)≥ 〈w,x− x0〉− ε2,

f1( f2(x))− f1( f2(x0))≥ 〈ξ̄ , f2(x)− f2(x0)〉− ε3,

and

∑
t∈T

λ̄tht(x)−∑
t∈T

λ̄tht(x0)≥ ∑
t∈T

λ̄t〈vt ,x− x0〉−∑
t∈T

λ̄tεt .

Thus, by assertions (e) and ( f ) , we see that, for each x ∈ A,

f1( f2(x))− f1( f2(x0))

≥〈u+w+ ∑
t∈T

λ̄tvt ,x− x0〉− ε1− ε2− ε3−∑
t∈T

λ̄tεt−∑
t∈T

λ̄t(ht(x)−ht(x0))

=〈x∗−αb,x− x0〉+ εb− ε−∑
t∈T

λ̄tht(x)

≥〈x∗,x− x0〉−α‖x− x0‖+ εb− ε−∑
t∈T

λ̄tht(x)

≥〈x∗,x− x0〉−α‖x− x0‖− ε,
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where the last inequality holds by εb ≥ 0 and λ̄tht(x)≤ 0 for each t ∈ T . This implies that, for
each (β ,x∗) ∈ domg∗1×X∗ and x ∈ A,

( f1 ◦ f2)(x0)−〈x∗,x0〉+g∗1(β )+(βg2)
∗(x∗)

≤( f1 ◦ f2)(x)−〈x∗,x〉+g∗1(β )+(βg2)
∗(x∗)+α‖x− x0‖+ ε.

Since (β ,x∗) ∈ domg∗1×X∗ is arbitrarily, we have that, for each x ∈ A,

inf
(β ,x∗)∈domg∗1×X∗

{
( f1 ◦ f2)(x0)−〈x∗,x0〉+g∗1(β )+(βg2)

∗(x∗)
}

≤ inf
(β ,x∗)∈domg∗1×X∗

{
( f1 ◦ f2)(x)−〈x∗,x〉+g∗1(β )+(βg2)

∗(x∗)+α‖x− x0‖+ ε

}
.

This implies from (3.1) that

inf
x∗∈X∗

{
( f1 ◦ f2)(x0)−〈x∗,x0〉+(g1 ◦g2)

∗(x∗)
}

≤ inf
x∗∈X∗

{
( f1 ◦ f2)(x)−〈x∗,x〉+(g1 ◦g2)

∗(x∗)+α‖x− x0‖+ ε

}
.

Again by definition of the conjugate function and the fact that g1 ◦ g2 is a lsc function, we see
that

( f1 ◦ f2)(x0)− (g1 ◦g2)(x0)≤ ( f1 ◦ f2)(x)− (g1 ◦g2)(x)+α‖x− x0‖+ ε for each x ∈ A.

Therefore, x0 is a quasi (α,ε)-optimal solution to problem (P). The proof is complete. �

In the case that g1 = g2 = 0, optimization problem (P) becomes

(P)
inf ( f1 ◦ f2)(x)
s.t. ht(x)≤ 0, t ∈ T,

x ∈C,

and condition (F-ABCQ)ε for { f1, f2,g1,g2,δC;ht : t ∈ T} reduces to condition (AMRF) for the
family { f1, f2,δC;ht : t ∈ T}. Therefore, it follows from Theorem 3.1 that we have the following
corollary directly, which was given in [17, Theorem 3.6].

Corollary 3.1. Let α,ε ≥ 0 and x0 ∈ A∩ f−1
2 (dom f1). Assume that { f1, f2,δC;ht : t ∈ T}

satisfies the condition (AMRF) at x0. Then x0 is a quasi (α,ε)-optimal solution of (P) if and
only if there exist λ̄ ∈ R(T )

+ ,ε1,ε2,ε3,εb,εt ≥ 0, ξ̄ ∈ Y ∗,u,w,vt ∈ X∗, t ∈ T and b ∈ B∗ such that
the assertions (a)-(e) in Theorem 3.1 and the following assertion hold:
( f1) u+w+∑t∈T λ̄tvt +αb = 0.

In the case that X = Y = Z and f2 = g2 = IdX, optimization problem (P) turns into

(P)
inf f1(x)−g1(x)
s.t. ht(x)≤ 0, t ∈ T,

x ∈C.

Note that, for each ξ ∈ dom f ∗1 ,β ∈ domg∗1, (ξ f2)
∗ = δ{ξ} and (βg2)

∗ = δ{β}. Consequently,⋃
ξ∈epi f ∗1

(epi(ξ f2)
∗+(0, f ∗1 (ξ ))) = epi f ∗1 .
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Moreover, let ε ≥ 0, x ∈ A∩ dom( f1 − g1). Then, for any β ∈ ∂g1(g2(x)) = ∂g1(x),ξ ∈
∂ε f1( f2(x)) = ∂ε f1(x), one has that ∂ (βg2)(x) = {β} and ∂ε(ξ f2)(x) = {ξ}. Hence, condi-
tion (CC) becomes

(CC) epi( f1−g1 +δA)
∗ =

⋂
β∈domg∗1

(
epi f ∗1 + epiδ ∗C + cone(

⋃
t∈T

epih∗t )− (β ,g∗1(β ))
)
,

and condition(F-ABCQ)ε becomes (F-ABCQ)ε :

∂ε( f1−g1 +δA)(x)⊆
⋂

β ∈ ∂g1(x)

( ⋃
λ ∈ R(T )

+

ε1,ε2,εt ≥ 0
ε1 + ε2 +∑t∈T λt εt = ε +∑t∈T λt ht(x)

{
∂ε1 f (x)

+Nε2(x;C)+ ∑
t∈T

λt∂εt ht(x)−β

})
for each x ∈ A.

Therefore, by Theorem 3.1, we have the following corollary straightforwardly.

Corollary 3.2. Let ε ≥ 0 and x0 ∈A∩dom( f1−g1). Assume that { f1,g1,δC;ht : t ∈ T} satisfies
the condition (F-ABCQ)ε at x0. If x0 is an ε-optimal solution to (P), then, for each β ∈ ∂g1(x0),

there exist λ̄ ∈ R(T )
+ ,ε1,ε2,εt ≥ 0, t ∈ T , such that

β ∈ ∂ε1 f1(x0)+Nε2(x0;C)+ ∑
t∈T

λ̄t∂εt ht(x0),

and
ε1 + ε2 + ∑

t∈T
λ̄tεt + εb = ε + ∑

t∈T
λ̄tht(x0).

Remark 3.1. Recall that the authors in [21, Theorem 3.3] obtained the similar result via con-
dition (CC). While, by Proposition 3.2, we see that condition (CC) is stronger than condition
(F-ABCQ)ε . Thus, Corollary 3.2 improves the result in [21, Theorem 3.3].

4. MIXED TYPE APPROXIMATE DUALITY THEOREMS

This section is devoted to the mixed type approximate duality for problem (P). In the case
that g1 is a S-increasing lsc function and g2 is a star S-epi-closed function, the standard convex-
ification technique can be applied. In fact, in this case, problem (P) can be reformulated as the
following one:

(P) inf
σ∈H∗

inf
x∈A
{ f1( f2(x))−〈x∗,x〉+g∗1(β )+(βg2)

∗(x∗)},

where σ := (β ,x∗) and H∗ := domg∗1×X∗. Now, we defined the Lagrange function Lσ : C×
R(T )
+ ×dom f ∗1 → R by

Lσ (y,λ ,ξ ) =− f ∗1 (ξ )+(ξ f2)(y)−〈x∗,y〉+g∗1(β )+(βg2)
∗(x∗)+ ∑

t∈T
λtht(y)

for each (y,λ ,ξ ) ∈ C×R(T )
+ × dom f ∗1 . Then, mixed type dual problem (D) for (P) can be

defined as follows:
(D) inf

σ∈H∗
max

(y,λ ,µ,ξ )∈Fσ

Lσ (y,λ ,ξ ),
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where

Fσ =

{
(y,λ ,µ,ξ ) ∈C×R(T )

+ ×R(T )
+ ×dom f ∗1 : x∗ ∈ ∂ε1(ξ f2)(y)+Nε2(y;C)

+ ∑
t∈T

(λt +µt)∂εt ht(y)+αB∗,µtht(y)≥ 0, , t ∈ T,ξ ∈ ∂ε3 f1( f2(y)),

ε1 + ε2 + ε3 + ∑
t∈T

(λt +µt)εt + εb ≤ ε

}
.

Moreover, for each σ ∈ H∗, the subproblem of (D) is defined by

(Dσ ) max
(y,λ ,µ,ξ )∈Fσ

Lσ (y,λ ,ξ ).

Definition 4.1. Let α,ε ≥ 0 and σ ∈ H∗. (y0, λ̄ , µ̄, ξ̄ ) ∈ Fσ is said to be a quasi (α,ε)-optimal
solution to (Dσ ) if, for any (y,λ ,µ,ξ ) ∈ Fσ , Lσ (y0, λ̄ , ξ̄ )≥ Lσ (y,λ ,ξ )−α‖y0− y‖− ε.

Theorem 4.1. Let α,ε ≥ 0 and x0 ∈A∩dom( f1◦ f2−g1◦g2) be a quasi (α,ε)-optimal solution
to (P). If, for each σ ∈ H∗, there exist λ̄ ∈ R(T )

+ , ξ̄ ∈ dom f ∗1 ,ε1,ε2,ε3,εb,εt ≥ 0,u,w,x∗,vt ∈
X∗, t ∈ T and b ∈ B∗ such that λ̄tht(x0) = 0 and assertions (a)-( f ) in Theorem 3.1 hold, then
(x0, λ̄ ,0, ξ̄ ) and (x0,0, λ̄ , ξ̄ ) are quasi (α,2ε)-optimal solutions to (Dσ ).

Proof. Let σ ∈ H∗, λ̄ ∈ R(T )
+ , ξ̄ ∈ dom f ∗1 ,ε1,ε2,ε3,εb,εt ≥ 0,u,w,x∗,vt ∈ X∗, t ∈ T , b ∈ B∗ be

such that λ̄tht(x0) = 0 and (a)-( f ) in Theorem 3.1 hold. Obviously, (x0, λ̄ ,0, ξ̄ ) and (x0,0, λ̄ , ξ̄ )
are feasible solutions of (Dσ ). Then, by (2.1), (2.2) and Lemma 2.1, we have

Lσ (x0, λ̄ , ξ̄ ) = − f ∗1 (ξ̄ )+(ξ̄ f2)(x0)−〈x∗,x0〉+g∗1(β )+(βg2)
∗(x∗)

≥ f1( f2(x0))− ε3−〈x∗,x0〉+g∗1(β )+(βg2)
∗(x∗)

≥ f1( f2(x0))−〈x∗,x0〉+g∗1(β )+(βg2)
∗(x∗)− ε.

(4.1)

Take (y,λ ,µ,ξ ) ∈ Fσ . Then there exist ε1,ε2,ε3,εb,εt ≥ 0, t ∈ T such that ξ ∈ ∂ε3 f1( f2(y)),

x∗ ∈ ∂ε1(ξ f2)(y)+Nε2(y;C)+ ∑
t∈T

(λt +µt)∂εt ht(y)+αB∗,

λt ≥ 0,µt ≥ 0,µtht(y)≥ 0, t ∈ T,
and

ε1 + ε2 + ε3 + ∑
t∈T

(λt +µt)εt + εb ≤ ε. (4.2)

Therefore, there exist u ∈ ∂ε1(ξ f2)(y),w ∈ Nε2(y;C),vt ∈ ∂εt ht(y) and b ∈ B∗ such that

x∗ = u+w+ ∑
t∈T

(λt +µt)vt +αb. (4.3)

By the definition of the ε-subdifferential, we see that

(ξ f2)(x0)− (ξ f2)(y)≥ 〈u,x0− y〉− ε1, (4.4)

δC(x0)−δC(y)≥ 〈w,x0− y〉− ε2, (4.5)

f1( f2(x0))− f1( f2(y))≥ 〈ξ , f2(x0)− f2(y)〉− ε3, (4.6)
and

∑
t∈T

(λt +µt)ht(x0)−∑
t∈T

(λt +µt)ht(y)≥ ∑
t∈T

(λt +µt)〈vt ,x0− y〉−∑
t∈T

(λt +µt)εt . (4.7)
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Summing up (4.4)-(4.7) and combining with (4.2)-(4.3), we obtain that, for each x ∈ A,
f1( f2(x0))− f1( f2(y))

≥ 〈u+ ∑
t∈T

(λt +µt)vt +w,x0− y〉−∑
t∈T

(λt +µt)(ht(x0)

−ht(y))−∑
t∈T

(λt +µt)εt− ε1− ε2− ε3

≥ 〈x∗−αb,x0− y〉+ ∑
t∈T

λtht(y)− ε + εb

≥ 〈x∗,x0− y〉+ ∑
t∈T

λtht(y)−α‖x0− y‖− ε,

where the second inequality holds by (4.2), ∑t∈T (λt + µt)ht(x0) ≤ 0, and µtht(y) ≥ 0 for each
t ∈ T . Hence, by (2.1), we have that

f1( f2(x0))−〈x∗,x0〉+g∗1(β )+(βg2)
∗(x∗)

≥ f1( f2(y))−〈x∗,y〉+g∗1(β )+(βg2)
∗(x∗)+ ∑

t∈T
λtht(y)−α‖x0− y‖− ε

≥− f ∗1 (ξ )+(ξ f2)(y)−〈x∗,y〉+g∗1(β )+(βg2)
∗(x∗)+ ∑

t∈T
λtht(y)−α‖x0− y‖− ε,

that is,

−Lσ (y,λ ,ξ )≥− f1( f2(x0))+ 〈x∗,x0〉−g∗1(β )− (βg2)
∗(x∗)−α‖x0− y‖− ε.

This together with (4.1) implies that

Lσ (x0, λ̄ , ξ̄ )−Lσ (y,λ ,ξ )≥−α‖x0− y‖−2ε.

Note that (y,λ ,µ,ξ ) ∈ Fσ is arbitrary. It follows that (x0, λ̄ ,0, ξ̄ ) and (x0,0, λ̄ , ξ̄ ) are quasi
(α,2ε)-optimal solutions to (Dσ ). The proof is complete. �

Theorem 4.2. Let α,ε ≥ 0. Suppose that g1 ◦ g2 is lsc and equation (3.1) holds. If, for each
σ ∈H∗, there exist x0 ∈ A∩dom( f1◦ f2−g1◦g2), λ̄ ∈R(T )

+ , ξ̄ ∈ dom f ∗1 such that λ̄tht(x0) = 0
and (x0, λ̄ ,0, ξ̄ ) ∈ Fσ or (x0,0, λ̄ , ξ̄ ) ∈ Fσ , then x0 is a quasi (α,ε)-optimal solution to problem
(P).

Proof. Take σ ∈ H∗. Let x0 ∈ A∩ dom( f1 ◦ f2− g1 ◦ g2), λ̄ ∈ R(T )
+ , ξ̄ ∈ dom f ∗1 be such that

λ̄tht(x0) = 0 and (x0, λ̄ ,0, ξ̄ ) or (x0,0, λ̄ , ξ̄ ) ∈ Fσ . Then ξ̄ ∈ ∂ε3 f1( f2(x0)), and there exist
ε1,ε2,ε3,εb,εt ≥ 0,u ∈ ∂ε1(ξ f2)(x0),w ∈ Nε2(x0;C),vt ∈ ∂εt ht(x0),b ∈ B∗, t ∈ T such that

x∗ = u+w+ ∑
t∈T

λ̄tvt +αb, (4.8)

and
ε1 + ε2 + ε3 + ∑

t∈T
λ̄tεt + εb ≤ ε. (4.9)

If, on the contrary, x0 is not a quasi (α,ε)-optimal solution to problem (P), then there exists
x̄ ∈ A such that

( f1 ◦ f2)(x̄)− (g1 ◦g2)(x̄)+α‖x̄− x0‖+ ε < ( f1 ◦ f2)(x0)− (g1 ◦g2)(x0). (4.10)

While, by the definition of ε-subdifferential, we have

(ξ̄ f2)(x̄)− (ξ̄ f2)(x0)≥ 〈u, x̄− x0〉− ε1,
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δC(x̄)−δC(x0)≥ 〈w, x̄− x0〉− ε2,

f1( f2(x̄))− f1( f2(x0))≥ 〈ξ̄ , f2(x̄)− f2(x0)〉− ε3,

and

∑
t∈T

λ̄tht(x̄)−∑
t∈T

λ̄tht(x0)≥ ∑
t∈T

λ̄t〈vt , x̄− x0〉−∑
t∈T

λ̄tεt .

Adding the above inequalities and combining with (4.8)-(4.9), we arrive at

f1( f2(x̄))− f1( f2(x0))

≥ 〈u+w+ ∑
t∈T

λ̄tvt , x̄− x0〉−∑
t∈T

λ̄t(ht(x̄)−ht(x0))− ε1− ε2− ε3−∑
t∈T

λ̄tεt

≥ 〈x∗−αb, x̄− x0〉+ εb− ε

≥ 〈x∗, x̄− x0〉−α‖x̄− x0‖− ε,

where the second inequality holds by (4.9), λ̄tht(x̄) ≤ 0 and λ̄tht(x0) = 0 for each t ∈ T . This
means that

( f1 ◦ f2)(x0)−〈x∗,x0〉+g∗1(β )+(βg2)
∗(x∗)

≤ ( f1 ◦ f2)(x̄)−〈x∗, x̄〉+g∗1(β )+(βg2)
∗(x∗)+α‖x̄− x0‖+ ε.

Note that the above inequality holds for each σ ∈ H∗, it follows that

inf
σ∈H∗
{( f1 ◦ f2)(x0)−〈x∗,x0〉+g∗1(β )+(βg2)

∗(x∗)}

≤ inf
σ∈H∗
{( f1 ◦ f2)(x)−〈x∗,x〉+g∗1(β )+(βg2)

∗(x∗)+α‖x− x0‖+ ε}.

Then, by (3.1) and the assumption that g1 ◦g2 is a lsc function, we have

( f1 ◦ f2)(x0)− (g1 ◦g2)(x0)≤ ( f1 ◦ f2)(x̄)− (g1 ◦g2)(x̄)+α‖x̄− x0‖+ ε,

which contradicts (4.10). Therefore, x0 is a quasi (α,ε)-optimal solution to problem (P). The
proof is complete. �

In the case that g1 = g2 = 0, the corresponding Lagrange function and mixed type dual prob-
lem of problem (P) can be expressed respectively as

L (y,λ ,ξ ) :=− f ∗1 (ξ )+(ξ f2)(y)+ ∑
t∈T

λtht(y)

for each (y,λ ,ξ ) ∈C×R(T )
+ ×dom f ∗1 and

(D) max
(y,λ ,µ,ξ )∈F

L (y,λ ,ξ ),

where

F =

{
(y,λ ,µ,ξ ) ∈C×R(T )

+ ×R(T )
+ ×dom f ∗1 : 0 ∈ ∂ε1(ξ f2)(y)+Nε2(y;C)

+ ∑
t∈T

(λt +µt)∂εt ht(y)+αB∗,ξ ∈ ∂ε3 f1( f2(y)),µtht(y)≥ 0, t ∈ T,

ε1 + ε2 + ε3 + ∑
t∈T

(λt +µt)εt + εb ≤ ε

}
.

Then, by Theorems 4.1 and 4.2, we have the following corollaries straightforwardly, which
were given in [17, Theorems 4.3-4.4].
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Corollary 4.1. Let α,ε ≥ 0 and x0 ∈ A∩ f−1
2 (dom f1) be a quasi (α,ε)-optimal solution to

(P). Suppose that there exist λ̄ ∈R(T )
+ , ξ̄ ∈ dom f ∗1 ,ε1,ε2,ε3,εb,εt ≥ 0,u,w,vt ∈ X∗, t ∈ T and

b ∈ B∗ such that λ̄tht(x0) = 0 and assertions (a)-(e) in Theorem 3.1 and ( f1) in Corollary 3.1
hold. Then (x0, λ̄ ,0, ξ̄ ) and (x0,0, λ̄ , ξ̄ ) are quasi (α,2ε)-optimal solutions to (D).

Corollary 4.2. Suppose that (x0, λ̄ ,0, ξ̄ ) or (x0,0, λ̄ , ξ̄ ) ∈ F satisfies λ̄tht(x0) = 0. If x0 ∈
A∩ f−1

2 (dom f1), then x0 is a quasi (α,ε)-optimal solution to problem (P).
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