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Abstract. In this paper, we study the existence of global entropy solutions for the Cauchy problem of
an isentropic gas dynamics system with the special pressure P(ρ) = 1

1−ρ
. After the gas density ρ is

fixed in the region ρ ∈ (0,1), by the method of the artificial viscosity and the maximum principle, this
system is nonstrictly hyperbolic and genuinely nonlinear, and its global entropy solutions are obtained by
the famous compactness framework introduced by DiPerna in the paper ”Convergence of approximate
solutions to conservation laws ” ( Arch. Rat. Mech. Anal., (82) (1983), 27-70).
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1. INTRODUCTION

Systems of hyperbolic conservation laws are very important mathematical models for a va-
riety of physical phenomena that appear in traffic flow, theory of elasticity, gas dynamics, fluid
dynamics, and so on [1, 2]. In general, the classical solution of the Cauchy problem for nonlin-
ear hyperbolic conservation laws exists only locally in time even if the initial data are small and
smooth. This means that shock waves always appear in the solution for a suitable large time.
Since the solution is discontinuous and does not satisfy the given partial differential equations
in the classical sense, we have to study the generalized solutions, or functions which satisfy the
equations in the sense of distributions.

An important aspect of the theory of nonlinear system of conservation laws is the question of
existence of solutions to these equations. It helps to answer the question if the modelling of the
natural phenomena at hand has been done correctly, and if the problem is well posed.

It is well-known that there are three most important arguments to study the global existence
of weak solutions for a given nonlinear hyperbolic conservation systems. They are: (1) the
Glimm’s scheme method [3]; (2) the compensated compactness method [4, 5]; and (3) BV
estimates coupled with the vanishing viscosity method [6]. One could use the Glimm’s scheme
to construct a subsequence converging to a weak solution of a hyperbolic system of arbitrary
number equations, but the global existence result is valid for small BV initial data and for
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strictly hyperbolic system. If, instead of a BV bound, only an uniform bound on the L∞ norm
of solutions is available, one can use the compensated compactness argument to construct a
subsequence converging pointwisely to a weak solution of a nonstrictly hyperbolic system.

In the last four decades, there has been a growing interest in the application of compensated
compactness method to system of conservation laws. We mention here that Tartar [4] first used
this technique to scalar conservation law. Later, many people considered using this technique to
prove the existence of solution to system of two conservation laws (cf. [7, 8, 9, 10, 11, 12, 13]
and the references cited therein).

In [7], DiPerna started the study of the Cauchy problem for general hyperbolic systems of
two equations

ut + f (u,v)x = 0, vt +g(u,v)x = 0, (1.1)

with bounded measurable initial data

(u(x,0),v(x,0)) = (u0(x),v0(x)), (1.2)

where u and v are in R. We let U = (u,v) and F(U) = ( f ,g) so that the equations in (1.1) can
be written as

Ut +dF(U)Ux = 0, (1.3)

where dF(U) is the Jacobian matrix of F . The following definitions can be found from Smoller’s
book [2].

Definition 1.1. We say that system (1.1) is hyperbolic if dF has two real eigenvalues λ1and
λ2. System (1.1) is called strictly hyperbolic if λ1 and λ2 are distinct, i.e., λ1 < λ2. If λ1
and λ2 coincide at some points or domains, system (1.1) is called nonstrictly hyperbolic or
hyperbolically degenerate.

Let lλ1, lλ2,rλ1 , and rλ2 denote the corresponding left and right eigenvectors.

Definition 1.2. We say that (1.1) is genuinely nonlinear in the λ1 characteristic field if ∇λ1 ·
rλ1 6= 0 and genuinely nonlinear in the λ2 characteristic field if ∇λ2 · rλ2 6= 0. If ∇λ1 · rλ1 = 0 or
∇λ2 · rλ2 = 0 at some domain D, then system (1.3) is called linearly degenerate in D in the λ1
characteristic field or in the λ2 characteristic field.

Furthermore, we add a small parabolic perturbation term to the right-hand side of (1.1) and
consider the Cauchy problem of the following parabolic system

ut + f (u,v)x = εuxx, vt +g(u,v)x = εvxx, (1.4)

with initial data (1.2), where ε > 0 is a constant. Then the famous compactness framework of
DiPerna is as follows:

Theorem 1.1. (R.J. DiPerna 1983) Suppose that the viscosity solutions (uε ,vε) of the Cauchy
problem (1.4) and (1.2) are in a uniformly bounded domain D ∈ R2, and system (1.1) is strictly
hyperbolic and genuinely nonlinear in D. Then there exists a subsequence (still labelled)
(uε(x, t),vε(x, t)) such that (uε(x, t),vε(x, t))→ (u(x, t),v(x, t)) a.e. on Ω, where Ω ⊂ R×R+

is any bounded open set, and (u(x, t),v(x, t)) is a weak solution of Cauchy problem (1.1) and
(1.2).
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The above DiPerna’s theorem is for general hyperbolic systems of two conservation laws.
However, to the best of our knowledge, it seems not easy to find a conservation system, with
physical background, whose two eigenvalues are distinct, two characteristic fields are genuinely
nonlinear in D, and especially, whose viscosity solutions are also in the same bounded domain
D.

The aim of this paper is to look for hyperbolic systems satisfying all the conditions in
DiPerna’s theorem.

2. MAIN RESULTS

In this section, we introduce our main results in this paper and their proofs.
We consider the following isentropic gas dynamics system of two conservation laws in Euler-

ian coordinates {
ρt +(ρu)x = 0,
(ρu)t +(ρu2 +P(ρ))x = 0,

(2.1)

with bounded measurable initial data

(ρ(x,0),u(x,0)) = (ρ0(x),u0(x)), 0≤ ρ0(x)≤ ρ̄ < 1, (2.2)

where ρ is the density of gas, ρ̄ is a constant, u is the velocity, and P = P(ρ) is the pressure
satisfying P′(ρ)≥ 0. For the polytropic gas, P takes the special form P(ρ) = cργ , where γ > 1
corresponds to the adiabatic exponent and c is a positive constant.

The ideas of compensated compactness developed in [4, 5] were used in [8] to establish
a global existence theorem for the Cauchy problem (2.1) with large initial data for γ = 1+ 2

N ,
where N≥ 5 is odd, with the use of the viscosity method. The convergence of the Lax-Friedrichs
scheme and the existence of a global solution in L∞ for large initial data with adiabatic exponent
γ ∈ (1, 5

3 ] were proved in [9, 10, 11]. In [12], the global existence of a weak solution was proved
for γ ≥ 3 with the use of the kinetic setting in combination with the compensated compactness
method. The method in [12] was finally improved in [13] to fill the gap γ ∈ (5

3 ,3), and a new
proof of the existence of a global solution for all γ > 1 was given there.

The main contribution of this paper is to verify that system (2.1) satisfies all the conditions
in DiPerna’s theorem if the pressure function P(ρ) = 1

1−ρ
when ρ ∈ (0,1).

By simple calculations, two eigenvalues of system (2.1) are

λ1 =
m
ρ
−
√

P′(ρ) =
m
ρ
− 1

1−ρ
, λ2 =

m
ρ
+
√

P′(ρ) =
m
ρ
+

1
1−ρ

, (2.3)

where m = ρu denotes the momentum, with corresponding right eigenvectors

r1 = (1,λ1)
T , r2 = (1,λ2)

T

and

∇λ1 · r1 = (− m
ρ2 −

P′′(ρ)

2
√

P′(ρ)
,

1
ρ
)(1,λ1)

T

=−ρP′′(ρ)+2P′(ρ)

2ρ
√

P′(ρ)
=− 1

ρ(1−ρ)2 ,

(2.4)
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∇λ2 · r2 = (− m
ρ2 +

P′′(ρ)

2
√

P′(ρ)
,

1
ρ
)(1,λ2)

T

=
ρP′′(ρ)+2P′(ρ)

2ρ
√

P′(ρ)
=

1
ρ(1−ρ)2 .

(2.5)

Therefore, system (2.1) is strictly hyperbolic from (2.3), and genuinely nonlinear from (2.4)-
(2.5) when ρ ∈ (0,1).

Now, we consider the following parabolic system{
ρt +mx = ερxx

mt +(m2

ρ
+P(ρ))x = εmxx,

(2.6)

with the initial data
(ρε(x,0),mε(x,0)) = (ρε

0 (x),m
ε
0(x)), (2.7)

where
(ρε

0 (x),m
ε
0(x)) = (ρ0(x)+ ε,ρ0(x)u0(x))∗Gε

and Gε is a mollifier. Then
(ρε

0 (x),m
ε
0(x)) ∈C∞×C∞,

(ρε
0 (x),m

ε
0(x))→ (ρ0(x),m0(x)) a.e., as ε → 0,

and

ε ≤ ρ
ε
0 (x)≤M1 < 1, |uε

0(x)|= |
mε

0(x)
ρε

0 (x)
| ≤M2

for a suitable large constant M2, which depends only on the L∞ bound of (ρ0(x),u0(x)), but is
independent of ε .

We have the main result in this paper as follows.

Theorem 2.1. Let the initial data (ρ0(x),u0(x)) be bounded measurable and 0≤ ρ0(x)≤ ρ̄ <
1,P(ρ) = 1

1−ρ
. Then, for fixed ε > 0, the smooth viscosity solution (ρε(x, t),mε(x, t)) of the

Cauchy problem (2.6), (2.7) exists and satisfies

0 < c(ε, t)≤ ρ
ε(x, t)< 1, |uε(x, t)|= |m

ε(x, t)
ρε(x, t)

| ≤M3, (2.8)

where M3 is a positive constant, being independent of ε; and c(ε, t) is a positive function, which
could tend to zero as ε tends to zero or t tends to infinity. Moreover, there exists a subsequence
(still labelled) (ρε(x, t),ρε(x, t)uε(x, t)) which converges almost everywhere on any bounded
and open set Ω⊂ R×R+:

(ρε(x, t),ρε(x, t)uε(x, t))→ (ρ(x, t),ρ(x, t)u(x, t)), as ε ↓ 0+, (2.9)

where the limit pair of functions (ρ(x, t),ρ(x, t)u(x, t)) is a weak solution to Cauchy problem
(2.1), (2.2).

Proof of Theorem 2.1. The Riemann invariants of (2.1) are functions w(ρ,m) and z(ρ,m)
satisfying the equations

(wρ ,wm) ·dF = λ2(wρ ,wm) and (zρ ,zm) ·dF = λ1(zρ ,zm). (2.10)
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One solution of (2.10) is

w(ρ,m) =
m
ρ
+ ln

ρ

1−ρ
, z(ρ,m) =

m
ρ
− ln

ρ

1−ρ
.

To prove the existence of smooth viscosity solutions (ρε(x, t),mε(x, t)) for the Cauchy problem
(2.6), (2.7), by Theorem 2.1, we only need to prove the a priori estimates given in (2.8).

We multiply (2.6) by (wρ ,wm) and (zρ ,zm), respectively, to obtain

wt +λ2wx = εwxx +
2ε

ρ
ρxwx− 1

ρ2(1−ρ)2 ρ2
x ≤ εwxx +

2ε

ρ
ρxwx, (2.11)

and

zt +λ1zx = εzxx +
2ε

ρ
ρxzx +

1
ρ2(1−ρ)2 ρ2

x ≥ εzxx +
2ε

ρ
ρxzx. (2.12)

Since the conditions on the initial data, we may choose a suitable large constant M such that
w(ρε

0 (x),m
ε
0(x)) ≤ M,z(ρε

0 (x),m
ε
0(x)) ≥ −M. By applying the maximum principle to (2.11)

and (2.12), we obtain immediately w(ρε(x, t),mε(x, t)) ≤ M,z(ρε(x, t),mε(x, t)) ≥ −M. This
demonstrates that the region

Σ = {(ρ,m) : w(ρ,m)≤M, z(ρ,m)≥−M}

is an invariant region. Thus we obtain the estimates 0≤ ρε ≤ ρ0 < 1 and |uε(x, t)|= |m
ε (x,t)

ρε (x,t) | ≤
M3 for a suitable constant M3, where ρ0 satisfies ln ρ0

1−ρ0
= M or ρ0 = 1− 1

eM+1 < 1.
After we obtain the upper bound of uε(x, t), we have the positive lower bound estimate

ρε(x, t)≥ c(ε, t)> 0 by using the method given in the book [14].
We rewrite the first equation in (2.6) as follows:

vt +uvx +ux = ε(vxx + v2
x),

where v = logρ . Then

vt = εvxx + ε(vx−
u

2ε
)2−ux−

u2

4ε
. (2.13)

We can represent the solution v of (2.13) with initial data v0(x)= log(ρ0(x)) by a Green function
G(x− y, t) = 1√

πεt exp(− (x−y)2

4εt ):

v =
∫

∞

−∞

G(x− y, t)v0(y)dy

+
∫ t

0

∫
∞

−∞

(
ε(vx−

u
2ε

)2− u2

4ε
−ux

)
G(x− y, t− s)dyds.

(2.14)

Since ∫
∞

−∞

G(x− y, t)dy = 1,
∫

∞

−∞

|Gy(x− y, t)|dy≤ M√
εt
,
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it follows from (2.14) that

v ≥
∫

∞

−∞

G(x− y, t)v0(y)dy

+
∫ t

0

∫
∞

−∞

(− u2

4ε
−ux)G(x− y, t− s)dyds

=
∫

∞

−∞

G(x− y, t)v0(y)dy

+
∫ t

0

∫
∞

−∞

(
g(u)Gy(x− y, t− s)− u2

4ε
G(x− y, t− s)

)
dyds

≥ logc0− Mt
ε
− M1t

1
2

ε
1
2
≥−C(t,c0,ε)>−∞.

Thus ρε has a positive lower bound c(t,c0,ε) for any fixed ε and t < ∞.
Therefore, the first part about the smooth viscosity solutions in Theorem 2.1 is proved.

Since system (2.1) is strictly hyperbolic and genuinely nonlinear when P(ρ) = 1
1−ρ

and ρ ∈
(0,1), the DiPerna’s compactness framework given in Theorem 1.1 deduces the convergence of
(ρε(x, t),ρε(x, t)uε(x, t)). Theorem 2.1 is proved.
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