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EXISTENCE OF RADIAL SIGN-CHANGING SOLUTIONS FOR FRACTIONAL
KIRCHHOFF-TYPE PROBLEMS IN R3

MENGYUN ZHOU, YONGYI LAN∗

School of Sciences, Jimei University, Xiamen 361021, China

Abstract. In this paper, the following fractional Kirchhoff-type problem(
a+b

∫
R3
|(−∆)

s
2 u|2dx

)
(−∆)su+V (x)u = f (x,u), x ∈ R3,

where a,b> 0 are constants, s∈ (3
4 ,1), 2∗s =

6
3−2s , V :R3→R is a continuous function, and f :R3×R→

R is a continuous function, is considered. It is demonstrated that the fractional Kirchhoff-type equation
has a radial sign-changing solution ub and a radial solution ub when f does not satisfy the subcritical
growth condition and the usual Nehari-type monotonicity condition. The main tools are the constraint
variational method and some analysis techniques.
Keywords. Fractional Kirchhoff type problems; Sign-changing solution; Variational method.

1. INTRODUCTION AND MAIN RESULTS

This paper is concerned with the existence of radial sign-changing solutions for the following
fractional Kirchhoff-type problem(

a+b
∫
R3
|(−∆)

s
2 u|2dx

)
(−∆)su+V (x)u = f (x,u), x ∈ R3, (1.1)

where a and b are positive parameters, s ∈ (3
4 ,1), and 2∗s = 6

3−2s is the Sobolev embedding
exponent. The fractional Laplacian operator (−∆)s is defined by

(−∆)su =C3,sP.V.
∫
R3

u(x)−u(y)
|x− y|3+2s dy =−

C3,s

2

∫
R3

u(x+ y)+u(x− y)−2u(x)
|y|3+2s dy, u ∈S (R3),

where C3,s is a normalization constant depending on 3 and s, P.V. stands for the Cauchy principal
value of the integration, and S (R3) is the Schwartz space of rapidly decaying functions.

For the potential V (x), we impose the following conditions:
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(V1)V ∈ C (R3) satisfies infx∈R3 V (x) ≥ V0 > 0, where V0 is a positive constant; V (x) =
V (|x|), and the operator (−∆)s +V (x) : Hs(R3)→ H−s(R3) satisfies

inf
u∈Hs(R3),‖u‖2=1

∫
R3

(
a|(−∆)

s
2 u|2 +V (x)u2

)
dx > 0;

(V2) there exists a sequence {tn} ⊂ (0,∞) such that tn→ ∞ and supx∈R3,n∈N
V (tnx)

t5−4s
n V (x)

< ∞.
For the nonlinearity f , we assume that:
(F1) f (x, t) = o(|t|) as t→ 0 uniformly in x ∈ R3;
(F2) f ∈ C (R3×R,R), and lim|t|→∞

f (x,t)
t2∗s−1 = 0 uniformly in x ∈ R3;

(F3) lim|t|→∞

|t|4s−3 f (x,t)
t3 =+∞ uniformly in x ∈ R3;

(F4)
f (x,t)−V (x)t
|t|3 is nondecreasing in t on both (−∞,0) and (0,∞) for every x ∈ R3.

In (1.1), if we set s= 1, V (x) = 0, and replace R3 by a bounded domain Ω⊂RN , respectively,
we gave the following Dirichlet problem of Kirchhoff type:{

−
(
a+b

∫
Ω
|∇u|2dx

)
∆u = f (x,u) inΩ,

u = 0 on∂Ω.
(1.2)

In recent years, the following fractional Kirchhoff type equation:

−

(
a+b

∫
R3
|(−∆)

s
2 u|2dx

)
(−∆)su = f (u) ,x ∈ RN ,

was studied extensively by using various nonlinear analytical methods. We refer to [1] when
f is subcritical growth, and to [2] for the critical nonlinearity f . For more existence results of
fractional Kirchhoff type problems, we refer to [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references
therein.

When a = 1 and b = 0, then problem (1.1) reduces to the following fractional Schrödinger
equation

(−∆)su+V (x)u = f (x,u) inRN . (1.3)

This was proposed by Laskin [13] in fractional quantum mechanics as a result of the extension
of Feynman integrals from the Brownian like to the Lèvy like quantum mechanical paths. For
the existence, the multiplicity, and the behavior of solutions to (1.3), we refer the reader to
[14, 15, 16, 17, 18] and the references therein.

In recent years, Cheng and Gao [19] studied the existence and asymptotic behavior of sign-
changing solutions for (1.1), where f satisfies (F1) and the following assumptions:

(F2′) f ∈ C (R3×R,R) and there exist C0 > 0 and 2 < p < 2∗s such that | f (x, t)| ≤C0(1+
|t|p−1), ∀(x, t) ∈ R3×R;

(F3′) lim|t|→∞

f (x,t)
t3 =+∞ uniformly in x ∈ R3;

(F4′)
f (x,t)
|t|3 is nondecreasing in t on both (−∞,0) and (0,∞) for every x ∈ R3.

Recently, Chen, Tang and Liao [20] proved the existence of radial sign-changing solutions
of (1.1) when f satisfies (F1), (F2′), (F3), and (F4). The inspiration of this paper mainly
comes from [20]. It is worthwhile pointing out that, under our assumptions, condition (F2)
is weaker than condition (F2′). The main purpose of this paper is to study the existence of radial
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sign-changing solutions of problem (1.1) when f does not satisfy the subcritical growth con-
dition and the usual Nehari-type monotonicity condition. Based on the constraint variational
method and some analysis techniques, we prove the same result under more generic condi-
tions, which generalizes the results presented in [20]. From the technical points of view, the
difficulty in finding sign-changing solutions of (1.1) results from two nonlocal terms: (−∆)su
and ‖(−∆)

s
2 u‖2

2(−∆)su. In this sense, (1.1) is different from the classical case s = 1 and the
methods of finding sign-changing solutions for (1.3) with s ∈ (0,1], and (1.2) cannot be di-
rectly applied to (1.1). This gives rise to some mathematical difficulties that make the study of
the sign-changing solutions for (1.1) particularly interesting. In this paper, by combining the
constraint variational method with some new inequalities, we prove that (1.1) with b≥ 0 has a
radial sign-changing solution ub and a radial solution ub.

Before stating our main result, let us consider the fractional Laplacian in the weak sense. As
a rule, for any s ∈ (0,1), we have∫

R3
(−∆)

s
2 u(−∆)

s
2 v =C3,s

∫
R3

∫
R3

[u(x)−u(y)][v(x)− v(y)]
|x− y|3+2s dxdy

and

‖(−∆)
s
2 u‖2

2 =C3,s

∫
R3

∫
R3

[u(x)−u(y)]2

|x− y|3+2s dxdy,

and define the fractional Sobolev space Hs(R3) as follows Hs(R3) =
{

u ∈ L2(R3) : (−∆)
s
2 u ∈

L2(R3)
}
, equipped with the scalar product (u,v)Hs(R3) =

∫
R3

[
(−∆)

s
2 u(−∆)

s
2 v+uv

]
dx, and the

corresponding norm

‖u‖Hs(R3) =

(∫
R3

[
|(−∆)

s
2 u|2 +u2

]
dx

) 1
2

.

Throughout this paper, we define Hs
r (R3) =

{
u ∈ Hs(R3) : u(x) = u(|x|)

}
, and denote the

fractional Sobolev space for (1.1) by H =
{

u ∈ Hs
r (R3) :

∫
R3 V (x)u2dx < ∞

}
, where the scalar

product is given by (u,v) =
∫
R3

[
a(−∆)

s
2 u(−∆)

s
2 v+V (x)uv

]
dx, and the associated norm is

‖u‖=

(∫
R3

[
a|(−∆)

s
2 u|2 +V (x)u2

]
dx

) 1
2

.

Under the condition (V1) and a > 0, the embedding H ↪→Hs
r (R3) is continuous. We know from

[21] that the embedding H ↪→ Lq(R3) is compact for 2 < q < 2∗s when s ∈ (0,1).
We say that u ∈ H is a weak solution to (1.1) if

0 = 〈I′b(u),ϕ〉

=
∫
R3

[
a(−∆)

s
2 u(−∆)

s
2 ϕ +V (x)u(x)ϕ(x)

]
dx

+b
∫
R3
|(−∆)

s
2 u|2dx

∫
R3
(−∆)

s
2 u(−∆)

s
2 ϕdx−

∫
R3

f (x,u)ϕ(x)dx

(1.4)
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for any ϕ ∈ H. We will omit weak throughout this paper for convenience. Define the corre-
sponding energy functional Ib : H→ R to problem (1.1) as below:

Ib(u) =
1
2

∫
R3

[
a|(−∆)

s
2 u|2 +V (x)u2

]
dx+

b
4

(∫
R3
|(−∆)

s
2 u|2dx

)2

−
∫
R3

F(x,u)dx. (1.5)

Analogously to [22, 23, 24, 25], also in the case that the nonlinear term does not satisfy the
subcritical growth condition, by (F1) and (F2), for any ε > 0, there exists Cε > 0 such that
|F(x, t)| ≤ εt2 +Cε |t|2

∗
s for all (x, t) ∈ R3×R. It is easy to see that Ib belongs to C 1(H,R) and

the critical points of Ib are the solutions to (1.1). Furthermore, if u ∈H is a solution to (1.1) and
u± 6= 0, we say that u is a radial sign-changing solution of (1.1), where u+(x) = max{u(x),0}
and u−(x) = min{u(x),0}.

Our goal in this paper is to seek the sign-changing solutions of (1.1). So, we borrow some
ideals from [19, 20, 26, 27, 28]. We first try to seek a minimizer of the energy functional Ib over
the following constraints:

Mb := {u ∈ H : u± 6= 0,〈I′b(u),u+〉= 〈I′b(u),u−〉= 0},
mb := inf

u∈Mb
Ib(u), ∀b≥ 0,

Nb := {u ∈ H : u 6= 0,〈I′b(u),u〉= 0},
cb := inf

u∈Nb
Ib(u), ∀b≥ 0,

and then prove that the minimizers of mb is radial sign-changing solutions of (1.1) and the
minimizers of cb are ground state solutions to (1.1).

When s = 1,b = 0, and a = 1, (1.1) turns out to be the (1.3) mentioned above. There are
several ways in the literature to obtain sign-changing solution for (1.3); see [29, 30, 31, 32] and
the references therein. However, there only exist few results on the sign-changing solutions of
(1.1). Indeed, in the case s ∈ (0,1), we have the following decomposition:

‖(−∆)
s
2 u++(−∆)

s
2 u−‖2

2 = ‖(−∆)
s
2 u+‖2

2 +‖(−∆)
s
2 u−‖2

2

−4C3,s

∫
R6

u+(x)u−(y)
|x− y|3+2s dxdy, ∀u ∈ Hs(R3). (1.6)

Since 〈u+,u−〉Hs(R3) > 0 when u± 6= 0, a straightforward computation yields that

Ib(u) = Ib(u+)+ Ib(u−)+2aP(u+,u−)+
b
2
‖(−∆)

s
2 u+‖2

2‖(−∆)
s
2 u−‖2

2

+2bP(u+,u−)
[
‖(−∆)

s
2 u+‖2

2 +‖(−∆)
s
2 u−‖2

2 +2P(u+,u−)
]

> Ib(u+)+ Ib(u−), (1.7)

〈I′b(u),u+〉> 〈I′b(u+),u+〉 and 〈I′b(u),u−〉> 〈I′b(u−),u−〉,
∀u ∈ H, u+,u− 6= 0,

where

P(u+,u−) :=−C3,s

∫
R3

∫
R3

u+(x)u−(y)
|x− y|3+2s dxdy > 0, ∀u ∈ H, u+,u− 6= 0,

which implies that u± /∈Nb for u ∈Mb.
The main result can be stated as follows.
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Theorem 1.1. Suppose that (V1)− (V2) and (F1)− (F4) hold. Then problem (1.1) has a radial
sign-changing solution ub ∈Mb such that Ib(ub) = infMb Ib > 0 and has a radial solution ub ∈
Nb such that Ib(ub) = infNb Ib > 0.

Remark 1.1. We know that (F2) is obviously weaker than (F2′). There exist functions satisfying
the generalized subcritical condition (F2) and not satisfying the subcritical growth condition
(F2′). For example, for the sake of simplicity, drop the x-dependence. Let F(t) = t2∗s

ln(e+t2)
. Then

f (t) =
2∗s t2∗s−1(e+ t2) ln(e+ t2)−2t2∗s+1

(e+ t2)(ln(e+ t2))2 .

Moreover, when limx∈R3 V (x) ≥ 1, there exist functions satisfying (F3) and (F4), but do not
satisfy (F3′) or (F4′). For example, f (x, t) = K(x)t3−|t| 32 t + |t|t, where K ∈ C (R3, [m,n]) with
m,n > 0. Then,

lim
|t|→∞

f (x, t)
t3 = lim

|t|→∞

K(x)t3−|t| 32 t + |t|t
t3 = lim

|t|→∞

K(x)− 1

|t| 12
+

1
|t|

= K(x) ∈ [m,n] 6=+∞,

and

lim
|t|→∞

|t|4s−3 f (x, t)
t3 = lim

|t|→∞

K(x)t3|t|4s−3−|t|4s− 3
2 t + |t|4s−2t

t3

= lim
|t|→∞

K(x)|t|4s−3−|t|4s− 7
2 + |t|4s−4 =+∞,

where s∈ (3
4 ,1). Therefore, f (x, t) satisfies (F3) but not (F3′). Similarly, when infx∈R3 V (x)≥ 1,

we can prove by some simple computation that f (x, t) satisfies (F4) but not (F4′).

This paper is organized as follows. In Section 2, we give the proof to Theorem 1.1 by com-
bining the constraint variational method with some new inequalities. Throughout this paper,
we use the following notations: ‖u‖p denotes the Lp-norm of the space Lp(R3) for p ≥ 2;
Br(x) = {y∈R3 : |y−x|< r}; and Ci(i = 1,2, ...) are some positive constant could change from
line to line.

2. PROOF OF THEOREM 1.1

Proof of theorem 1.1. The proof is split into three steps.
We first prove that, for b≥ 0, the following sets

Eb :=

{
u ∈ H : b‖(−∆)

s
2 u‖2

2

∫
R3
(−∆)

s
2 u(−∆)

s
2 u±dx

+
∫
R3

[
V (x)(u±)2− f (x,u±)u±

]
dx < 0

}
and

E b :=

{
u ∈ H : b‖(−∆)

s
2 u‖4

2 +
∫
R3

[
V (x)u2− f (x,u)u

]
dx < 0

}
are not empty by scaling technique (see [20, Lemma 2.5]).
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STEP 1. for each u∈ Eb, there is a unique pair (αu,βu)∈ (R+×R+) such that αuu++βuu− ∈
Mb; and for each u ∈ E b, there is a unique β u > 0 such that β uu ∈Nb.

To prove STEP 1, let us first prove Mb 6= /0. Let

g1(α,β ) = 〈I′b(αu++βu−),αu+〉

= a
∫
R3
(−∆)

s
2 (αu++βu−)(−∆)

s
2 αu+dx

+
∫
R3

[
V (x)(αu+)2− f (x,αu+)αu+

]
dx

+b‖(−∆)
s
2 (αu++βu−)‖2

2

∫
R3
(−∆)

s
2 (αu++βu−)(−∆)

s
2 (αu+)dx (2.1)

and

g2(α,β ) = 〈I′b(αu++βu−),βu−〉

= a
∫
R3
(−∆)

s
2 (αu++βu−)(−∆)

s
2 βu−dx

+
∫
R3

[
V (x)(βu−)2− f (x,βu−)βu−

]
dx

+b‖(−∆)
s
2 (αu++βu−)‖2

2

∫
R3
(−∆)

s
2 (αu++βu−)(−∆)

s
2 (βu−)dx. (2.2)

By (F4), one has f (x,ατ)ατ ≥ f (x,τ)τα4−V (x)(α2− 1)(ατ)2 for all x ∈ R3,α ≥ 1,τ ∈ R,
which implies∫

R3

[
V (x)(αu+)2− f (x,αu+)αu+

]
dx≤ α

4
∫
R3

[
V (x)(u+)2− f (x,u+)u+

]
dx, ∀α ≥ 1. (2.3)

From (2.1) and (2.3), we derive that

g1(α,α) = aα
2
[
‖(−∆)

s
2 u+‖2

2 +2P(u+,u−)
]
+bα

4
φ(u,u+)

+
∫
R3

[
V (x)(αu+)2− f (x,αu+)αu+

]
dx

≤ aα
2
[
‖(−∆)

s
2 u+‖2

2 +2P(u+,u−)
]
+α

4

{
bφ(u,u+)

+
∫
R3

[
V (x)(u+)2− f (x,u+)u+

]
dx

}
, ∀α ≥ 1. (2.4)

where
φ(u,u+) := ‖(−∆)

s
2 u‖2

2

∫
R3
(−∆)

s
2 u(−∆)

s
2 u+dx, ∀u ∈ H.

Using (2.4), it is easy to prove that g1(α,α)< 0 for α large due to u ∈ Eb. Similarly, we have
g2(β ,β )< 0 for β large. Combining (2.1) with (2.2), we prove that there exists r ∈ (0,R) such
that

g1(r,r)> 0, g1(R,R)< 0; g2(r,r)> 0, g2(R,R)< 0. (2.5)

From (2.1) and (2.2), we have that g1(α, ·) is increasing for any fixed α > 0, and g2(·,β ) is
increasing for any fixed β > 0. Hence, it follows from (2.1), (2.2), and (2.5) that

g1(r,β )> g1(r,r)> 0, g1(R,β )< g1(R,R)< 0, ∀β ∈ [r,R],
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and
g2(α,r)> g2(r,r)> 0, g2(α,R)< g2(R,R)< 0, ∀α ∈ [r,R].

Therefore, by applying Miranda’s Theorem [33], there exists some point (αu,βu)∈ [r,R]× [r,R]
such that g1(αu,βu) = g2(αu,βu) = 0. So, αuu++βuu− ∈Mb.

Now, we prove the uniqueness of the pair (αu,βu). Let (α1,β1) and (α2,β2) such that αiu++
βiu− ∈Mb, i = 1,2. In view of [20, Lemma 2.2], one has

Ib(α1u++β1u−)

≥ Ib(α2u++β2u−)+
a(α2

1 −α2
2 )

2

α2
1

‖(−∆)
s
2 u+‖2

2 +
a(β 2

1 −β 2
2 )

2

β 2
1

‖(−∆)
s
2 u−‖2

2,

and

Ib(α2u++β2u−)

≥ Ib(α1u++β1u−)+
a(α2

1 −α2
2 )

2

α2
2

‖(−∆)
s
2 u+‖2

2 +
a(β 2

1 −β 2
2 )

2

β 2
2

‖(−∆)
s
2 u−‖2

2.

The above inequalities imply (α1,β1) = (α2,β2).
Furthermore, we let g(β ) = 〈I′b(βu),βu〉 for u ∈ E b. From (1.4) and (F4), we derive that

g(β )≤ aβ
2‖(−∆)

s
2 u‖2

2 +β
4

{
b‖(−∆)

s
2 u‖4

2 +
∫
R3

[
V (x)u2− f (x,u)u

]
dx

}
,∀β ≥ 1,

which demonstrates that there exists R0 > 0 sufficiently large such that g(R0) < 0. Choosing
r0 > 0 sufficiently small, we see that g(r0) > 0. Thus there exists β u > 0 such that g(β u) = 0
for u ∈ E b. Similarly, we can deduce that β u is unique. So we obtain that, for u ∈ E b, there
exists a unique β u > 0 such that β uu ∈Nb . The proof of STEP 1 is complete.

STEP 2. mb = infu∈Mb Ib(u)> 0 and cb = infu∈Nb Ib(u)> 0 are achieved.
By (F1) and (F2), we see that, for every ε > 0, there exists Cε > 0 such that

| f (x, t)t| ≤ εt2 +Cε |t|2
∗
s , |F(x, t)| ≤ εt2 +Cε |t|2

∗
s , ∀(x, t) ∈ R3×R. (2.6)

By (V1), there exists γ0 > 0 such that

γ0‖u‖2
Hs(R3) ≤ ‖u‖

2, ∀u ∈ H. (2.7)

First, we prove that mb > 0 and cb > 0. For u ∈Mb, it follows from (1.4), (2.6), (2.7), [20,
Lemma 2.1], the expression for P(u+,u−), and [19, Lemma 2.1] that

γ0‖u±‖2
Hs(R3) ≤ ‖u

±‖2 ≤ a‖(−∆)
s
2 (u±)‖2 +2aP(u+,u−)+

∫
R3

V (x)(u±)2dx

+b‖(−∆)
s
2 u‖2

2

∫
R3
(−∆)

s
2 u(−∆)

s
2 u±dx

=
∫
R3

f (x,u±)u±dx

≤ γ0

2
‖u±‖2

2 +C1‖u±‖
2∗s
2∗s

≤ γ0

2
‖u±‖2

Hs(R3)+C2∗s‖u
±‖2∗s

Hs(R3)
. (2.8)
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We can then deduce that there exists a constant µ > 0 independent of b such that

‖u±‖ ≥
√

γ0‖u±‖Hs(R3) ≥ µ, ∀u ∈Mb. (2.9)

Similarly, there exists a constant µ0 > 0 independent of b such that ‖u‖ ≥ √γ0‖u‖Hs(R3) ≥ µ0,
∀u ∈Nb. Since Mb ⊂Nb, we have mb ≥ cb. Note that

Ib(u)≥ Ib(tu)+
1− t4

4
〈I′b(u),u〉+

a(1− t2)2

4
‖(−∆)

s
2 u‖2

2, ∀u ∈ H, t ≥ 0.

With t = 0 (see [20, Lemma 2.3]), one has

Ib(u) = Ib(u)−
1
4
〈I′b(u),u〉 ≥

a
4
‖(−∆)

s
2 u‖2

2, ∀u ∈Nb, (2.10)

which implies cb = infu∈Nb Ib(u)≥ 0.
We now demonstrate that cb > 0. To this end, we choose {un} ⊂Nb such that Ib(un)→ cb.

There are two possible cases: (1) infn∈N ‖(−∆)
s
2 un‖2 > 0 and (2) infn∈N ‖(−∆)

s
2 un‖2 = 0.

Case 1. infn∈N ‖(−∆)
s
2 un‖2 = µ1 > 0.

In this case, we conclude from (2.10) that cb +o(1) = Ib(un)≥ a
4‖(−∆)

s
2 un‖2

2 ≥
a
4 µ2

1 .

Case 2. infn∈N ‖(−∆)
s
2 un‖2 = 0.

Since ‖un‖2 ≥ µ2
0 > 0, up to a subsequence, one has

‖(−∆)
s
2 un‖2→ 0,

∫
R3

V (x)u2
ndx≥ µ2 > 0 for some constant µ2 > 0. (2.11)

Let tn =
[∫

R3 V (x)u2
ndx
]− 1

2 . It follows from (2.11) that tn ≤ µ
− 1

2
2 . By (2.6), (2.7), and the

Sobolev inequality, we obtain that∣∣∣∣∣
∫
R3

F(x, tnun)dx

∣∣∣∣∣ ≤
∫
R3

[
γ0

4
t2
n u2

n +C3|tnun|2
∗
s

]
dx

≤ t2
n
4
‖un‖2 +C3|tn|2

∗
s S
− 2∗s

2
s ‖(−∆)

s
2 un‖

2∗s
2 , (2.12)

where

Ss = inf
u∈D s,2(R3)\{0}

∫
R3 |(−∆)

s
2 u|2dx(∫

R3 |u|2∗s dx
) 2

2∗s

.

Since un ∈Nb, it follows from (1.5), (2.11), (2.12), and [20, Corollary 2.4] that

cb +o(1) = Ib(un)≥ Ib(tnun)

=
at2

n
2
‖(−∆)

s
2 un‖2

2 +
t2
n
2

∫
R3

V (x)u2
ndx+

bt4
n

4
‖(−∆)

s
2 un‖4

2−
∫
R3

F(x, tnun)dx

≥ t2
n
4

∫
R3

V (x)u2
ndx−C3|tn|2

∗
s S
− 2∗s

2
s ‖(−∆)

s
2 un‖

2∗s
2 =

1
4
+o(1).

Case 1 and 2 imply that cb = infu∈Nb Ib(u)> 0. Therefore, mb ≥ cb > 0.
Next, we prove that mb can be achieved. Let {un} ⊂Mb be a minimizing sequence such that

Ib(un)→ mb. Then, (2.10) implies that

mb +o(1)≥ Ib(un)−
1
4
〈I′b(un),un〉 ≥

a
4
‖(−∆)

s
2 un‖2

2.
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So {‖(−∆)
s
2 un‖2} is bounded. In order to obtain the boundedness of {un}, we have to prove

that
∫
R3 V (x)u2

ndx is bounded. By contradiction, we assume that
∫
R3 V (x)u2

ndx→ ∞. Let

tn =
2(mb +1)

1
2(∫

R3 V (x)u2
ndx
) 1

2
.

Then tn→ 0, and (2.12) still holds. Using (1.5), (2.12), and [20, Corollary 2.4], we have that

mb +o(1) = Ib(un)≥ Ib(tnun)

=
at2

n
2
‖(−∆)

s
2 un‖2

2 +
t2
n
2

∫
R3

V (x)u2
ndx+

bt4
n

4
‖(−∆)

s
2 un‖4

2−
∫
R3

F(x, tnun)dx

≥ t2
n
4

∫
R3

V (x)u2
ndx−C3|tn|2

∗
s S
− 2∗s

2
s ‖(−∆)

s
2 un‖

2∗s
2

= mb +1+o(1). (2.13)

This contradiction demonstrates that {un} is bounded in H. Up to a subsequence, we have
u±n ⇀ u±b weakly in H and u±n → u±b strongly in Lq(R3) for q ∈ (2,2∗s ). By [23, Lemma 2.4],
we have ∫

R3
F(x,u±n )dx =

∫
R3

F(x,u±n −u±b )dx+
∫
R3

F(x,u±b )dx+o(1). (2.14)

Using (2.6), we obtain∣∣∣∣∫R3
F(x,u±n −u±b )dx

∣∣∣∣≤ ε

∫
R3
|u±n −u±b |

2dx+Cε |u±n −u±b |
2∗s dx = εJ1 +CεJ2,

where J1 =
∫
R3 |u±n −u±b |

2dx and J2 =
∫
R3 |u±n −u±b |

2∗s dx. Since ‖un‖ is bounded, in connection
with Minkowski inequality, one has |J1| ≤ C1 and |J2| ≤ C1, where C1 > 0. So,

∫
R3 F(x,u±n −

u±b )dx→ 0 as n→∞. Furthermore, it follows from (2.14) that
∫
R3 F(x,u±n )dx=

∫
R3 F(x,u±b )dx+

o(1), which implies ∫
R3

f (x,u±n )u
±
n dx =

∫
R3

f (x,u±b )u
±
b dx+o(1). (2.15)

From (2.8), (2.9), and (2.15), we deduce that

0 < µ
2 ≤ ‖u±n ‖2 ≤

∫
R3

f (x,u±n )u
±
n dx =

∫
R3

f (x,u±b )u
±
b dx+o(1),

which yields u±b 6= 0. From (2.15), [20, Lemma 2.1], the weak semicontinuity of norm, and the
Fatou’s Lemma, we conclude that

a‖(−∆)
s
2 (u±b )‖2 +2aP(u+b ,u

−
b )+

∫
R3

V (x)(u±b )
2dx+b‖(−∆)

s
2 ub‖2

2

∫
R3
(−∆)

s
2 ub(−∆)

s
2 u±b dx

≤ liminf
n→∞

[
a‖(−∆)

s
2 (u±n )‖2 +2aP(u+n ,u

−
n )+

∫
R3

V (x)(u±n )
2dx

+b‖(−∆)
s
2 un‖2

2

∫
R3
(−∆)

s
2 un(−∆)

s
2 u±n dx

]
= liminf

n→∞

∫
R3

f (x,u±n )u
±
n dx =

∫
R3

f (x,u±b )u
±
b dx,
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which demonstrates that 〈I′b(ub),u±b 〉 ≤ 0. Moreover, by (1.4), it is easy to verify that ub ∈ Eb.
In STEP 1, there exist αub,βub > 0 such that αubu+b +βubu−b ∈Mb. By (F4), one has

1− t2

4
τ f (x,τ)+F(x, tτ)−F(x,τ)+

V (x)
4

(1− t2)2
τ

2

=
∫ 1

t

[
f (x,τ)−V (x)τ

τ3 − f (x,ατ)−V (x)ατ

(ατ)3

]
α

3
τ

4dα ≥ 0

for all t ≥ 0 and τ ∈ R\{0}. Letting t = 0 in the equality above, we have 1
4 f (x,τ)τ−F(x,τ)+

1
4V (x)τ2 ≥ 0, x ∈ R3 and τ ∈ R. Thus, by (1.4), (1.5), [20, Lemmas 2.2 and 2.7], the weak
semicontinuity of norm, and the Fatou’s Lemma, we have

mb = lim
n→∞

[
Ib(un)−

1
4
〈I′b(un),un〉

]

= lim
n→∞

{
a
4
‖(−∆)

s
2 un‖2

2 +
∫
R3

[
1
4

f (x,un)un−F(x,un)+
1
4

V (x)u2
n

]
dx

}

≥ a
4
‖(−∆)

s
2 ub‖2

2 +
∫
R3

[
1
4

f (x,ub)ub−F(x,ub)+
1
4

V (x)u2
b

]
dx

= Ib(ub)−
1
4
〈I′b(ub),ub〉

≥ sup
α,β≥0

[
Ib(αu+b +βu−b )+

1−α4

4
〈I′b(ub),u+b 〉+

1−β 4

4
〈I′b(ub),u−b 〉

]
− 1

4
〈I′b(ub),ub〉

≥ sup
α,β≥0

Ib(αu+b +βu−b )

≥ Ib(αubu+b +βubu−b )

≥ mb,

which implies that Ib(ub) = mb and ub ∈Mb. Similarly, we can prove that there exists ub ∈Nb
such that Ib(ub) = cb. The proof of STEP 2 is complete.

STEP 3. Critical point of Ib.
Using [20, Lemma 2.9], we let ub ∈Mb and ub ∈Nb satisfy Ib(ub) = mb = infu∈Mb Ib(u) and

Ib(ub) = cb = infu∈Nb Ib(u). So we prove that ub and ub are critical point of Ib. Moreover, ub is a
radial sign-changing solution to problem (1.1) and ub is a radial solution to problem (1.1). �
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