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Abstract. Let ν be a positive Borel measure on the interval [0,∞). Let Hν = (νn,k)n,k≥0 be the Hankel
matrix with entries νn,k =

∫
[0,∞)

tn+k

n! dν(t). The matrix Hν induces formally the operator Hν( f )(z) =
∑

∞
n=0(∑

∞
k=0 νn,kak)zn on the space of all entire functions f (z) = ∑

∞
n=0 anzn. In this paper, we investigate

those positive Borel measures such that Hν( f )(z) =
∫
[0,∞) f (t)etz dν(t), z ∈C for all f ∈ F p, and among

them we characterize those for which Hν is a bounded (resp., compact) operator from the Fock space
F p into the space Fq (0 < p,q < ∞).
Keywords. Fock spaces; Fock Carleson measure; Hankel matrices.

1. INTRODUCTION

Let C be the complex plane, and let H(C) be the space of entire functions. For 0 < p < ∞,
the Fock space F p is defined by

F p =
{

f ∈ H(C) : ‖ f‖p
p =

p
2π

∫
C

∣∣ f (z)e− 1
2 |z|

2∣∣p dA(z)< ∞

}
,

where dA is the Lebesgue area measure on C. Set

F∞ =
{

f ∈ H(C) : ‖ f‖∞ = esssup
z∈C

| f (z)|e−
1
2 |z|

2
< ∞

}
.

In particular, F2 is a reproducing kernel Hilbert space. The function Kz(w) = ezw is the repro-
ducing kernel for F2 and

kz(w) =
Kz(w)√
K(z,z)

= ezw− 1
2 |z|

2

is the normalized kernel.
Let f ∞ denote the space of entire functions such that

lim
z→∞
| f (z)|e−

1
2 |z|

2
= 0.
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If 0 < p < q < ∞, then F p ⊂ Fq ⊂ f ∞ ⊂ F∞, and each inclusion is proper. Interested readers
can refer to [1] for the theory of Fock spaces.

The Hilbert operator Hν induced by the Hilbert matrix ( 1
n+k+1)n,k≥0 was studied on Hardy

spaces [2] and Bergman spaces [3] in the unit disk. Let ν be a positive Borel measure on [0,1).
In [4], Galanopoulos and Peláez investigated the boundedness and compactness of the operator
Hν induced by Hankel matrix Hν = (νn,k)n,k≥0(νn,k =

∫
[0,1) tn+k dν(t)) on the Hardy space H1

and the Bergman space A2. Chatzifountas, Girela and Peláez [5] characterized the operator Hν

on Hardy spaces H p. In [6, 7], Girela and Merchán also studied the operator Hν acting on some
analytic function spaces in the unit disk.

Recently, Ye and Zhou considered a new operator, which is called Derivative-Hilbert oper-
ator, with a close relation to the Hilbert operator Hν , induced by Hankel matrix on analytic
function spaces in [8, 9]. For more results on the operator induced by a Hankel matrix, we refer
to [2, 10, 11].

Let ν be a positive Borel measure on the interval [0,∞). Let Hν = (νn,k)n,k≥0 denote the
Hankel matrix with entries

νn,k =
1
n!

∫
[0,∞)

tn+k dν(t).

For f (z) = ∑
∞
n=0 anzn ∈ H(C), we define

Hν( f )(z) =
∞

∑
n=0

(
∞

∑
k=0

νn,kak)zn. (1.1)

If the right hand side makes sense and defines a function in H(C), the Hankel matrix Hν induces
formally an operator (which will be also denoted Hν ) on H(C).

One of purpose of this work is to discuss those positive Borel measures ν on [0,∞) for which
the operators Hν are well defined on Fock spaces F p (0 < p < ∞). In Section 3, we prove that,
for fixed ε > 1

2 , if eε|·|2ν is a (p, p)-Fock Carleson measure, then the power series in (1.1) is
well defined on C for every f ∈ F p. Furthermore, we can rewrite

Hν( f )(z) =
∫
[0,∞)

f (t)etz dν(t), z ∈ C.

The second purpose of this work is to find out the condition of ν such that the operator Hν is
bounded acting on Fock spaces by using the integral representation of Hν . In Section 4, we
completely characterize the measure ν for which Hν is a bounded (resp., compact) operator
from the Fock space F p into Fq (0 < p,q < ∞).

Throughout this paper, for any given p > 1, p′ denotes the conjugate exponent of p, that is,
1/p+ 1/p′ = 1. We say that A . B if there exists a constant C (independent of A and B) such
that A ≤ CB. The symbol A ' B means that A . B . A. C denotes a finite constant that may
change value from one occurrence to the next.

2. PRELIMINARIES

In this section, we state some lemmas for the proof of our main results. The following two
lemmas can be found in [12].

Lemma 2.1. For every positive integer n,

c
(
n!
) p

2 n−
p
4+

1
2 ≤

∫
∞

0
rnpe−

p
2 r2

r dr ≤C
(
n!
) p

2 n−
p
4+

1
2 .
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Lemma 2.2. Let f (z) = ∑anzn be an entire function.
(i) For 0 < p≤ 2,

∞

∑
n=0
|an|p

(
n!
) p

2 n−
p
4+

1
2 < ∞⇒ f ∈ F p⇒

∞

∑
n=1
|an|p

(
n!
) p

2 n
3p
4 −

3
2 < ∞.

(ii) For 2≤ p < ∞,
∞

∑
n=0
|an|p

(
n!
) p

2 n
3p
4 −

3
2 < ∞⇒ f ∈ F p⇒

∞

∑
n=1
|an|p

(
n!
) p

2 n−
p
4+

1
2 < ∞.

Lemma 2.3. [1, Lemma 2.32] For any 0< p,R<∞, there exists a positive constant C =C(p,R)
such that

| f (z)e−
1
2 |z|

2
|p ≤ C

r2

∫
D(z,r)

∣∣∣ f (z)e− 1
2 |z|

2
∣∣∣p dA(z)

for all entire functions f , all complex numbers z, and all r ∈ (0,R]. Here D(z,r) = {w ∈ C :
|w− z|< r} denotes the Euclidean disk centered at z with radius r.

Lemma 2.4. [1, Theorem 2.7] Let 0 < p ≤ ∞ and f ∈ F p. Then | f (z)| ≤ ‖ f‖pe
1
2 |z|

2
for all

z ∈ C.

Lemma 2.5. [1, Lemma 2.33] Let 0 < p≤ ∞. Each ka is a unit vector in F p.

Lemma 2.6. [13, Lemma 2.4] Let 0< p≤∞. For λ = {λ j}∞
j=1 ∈ lp, set S(λ )(z)=∑

∞
j=1 λ jka j(z),

z ∈ C, then S is a bounded operator from lp to F p.

Lemma 2.7. [1, Theorem 2.29] Suppose 1≤ p0 ≤ p1 ≤ ∞ and 0≤ θ ≤ 1. Then [F p0,F p1]θ =
F p, where 1

p = 1−θ

p0
+ θ

p1
.

Lemma 2.8. [1, Corollary 2.25 and Theorem 2.26] Set

〈 f ,g〉= 1
π

∫
C

f (w)g(w)e−|z|
2
dA(w).

If 1 ≤ p < ∞ and let p′ be the conjugate exponent of p, then the dual space of F p can be
identified with F p′ under the pairing 〈 f ,g〉. If 0 < p < 1, then the dual space of F p can be
identified with F∞ under the pairing 〈 f ,g〉. The dual space of f ∞ can be identified with F1

under the pairing 〈 f ,g〉.

Let 0 < p,q < ∞ and let µ ≥ 0. Recall that µ a (p,q)-Fock Carleson measure if there exists
some constant C such that, for all f ∈ F p,(∫

C

∣∣∣ f (z)e− 1
2 |z|

2
∣∣∣q dµ(z)

) 1
q

≤C‖ f‖p.

When p = q, µ is exactly the Fock Carleson measure for F p (see [1, 14]). Also, µ is called a
vanishing (p,q)-Fock Carleson measure if

lim
j→∞

∫
C

∣∣∣ f j(z)e−
1
2 |z|

2
∣∣∣q dµ(z) = 0

whenever
{

f j
}

is a bounded sequence in F p that converges to 0 uniformly on compact subsets
of C as j→ ∞.
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Let µ̂r(z) =
µ(D(z,r))
|D(z,r)| , where |E| means the area of any measurable set E ⊂ C with respect

to the normalized area measure dA. Given r > 0, a sequence {ak} in C is called an r-lattice if
∪∞

k=1D(ak,r) covers C and the disks {D(ak,r/3)}∞
k=1 are pairwise disjoint. For any δ > 0, there

exists a positive integer m (depending only on r and δ ) such that every point in C belongs to at
most m of the sets D(ak,δ ); see [1].

The following two lemmas characterize the (p,q)-Fock Carleson measure and vanishing
(p,q)-Fock Carleson measure for 0 < p,q < ∞, which can be found in [13].

Lemma 2.9. Let 0 < p≤ q < ∞, and let µ ≥ 0.
(1) µ is a (p,q)-Fock Carleson measure if and only if µ̂r(z) is bounded on C for some (or any)
r > 0.

(2) µ is a vanishing (p,q)-Fock Carleson measure if and only if µ̂r(z)→ 0 as z→ ∞ for some
(or any) r > 0.

Lemma 2.10. Let 0 < q < p < ∞ and let µ ≥ 0. Set s = p
q and s′ to be the conjugate exponent

of s. Then the following statements are equivalent:
(1) µ is a (p,q)-Fock Carleson measure;
(2) µ is a vanishing (p,q)-Fock Carleson measure;
(3) µ̂r(z) ∈ Ls′(dA) for some (or any) r > 0.
(4) ∑

∞
k=1 µ̂r(ak)

s′ for some (or any) r > 0, where {ak} is reserved for this lattice and ak→ ∞ as
k→ ∞.

In the light of above two lemmas, the notion of (vanishing) (p,q)-Fock Carleson measures
does not depend on the particular value of p,q, but depends only on the ratio s = p

q in the case
0 < q < p < ∞. Let Λs be the class of all (p,q)-Fock Carleson measures and Λs

0 be the class of
all vanishing (p,q)-Fock Carleson measures. When 0 < s≤ 1 (equivalently, p≤ q), we simply
write Λ and Λ0 for Λs and Λs

0 respectively. That is

Λ = {µ ≥ 0 : µ̂r ∈ L∞ f or some r > 0}

and

Λ0 = {µ ≥ 0 : lim
|z|→∞

µ̂r(z) = 0 f or some r > 0}.

Notice that Λs ⊂ Λ and Λs
0 ⊂ Λ0 for all s > 0.

3. CONDITIONS SUCH THAT Hν IS WELL DEFINED

In this section, we investigate the sufficient conditions or necessary conditions for operator
Hν to be well defined on Fock spaces.

Theorem 3.1. Suppose 0 < p < ∞. Let ν be a positive Borel measure on [0,∞). If eε|·|2ν ∈ Λ

for any fixed ε > 1
2 , then the power series in (1.1) is a well defined entire function for every

f ∈ F p. Furthermore,

Hν( f )(z) =
∫
[0,∞)

f (t)etz dν(t), z ∈ C, f ∈ F p. (3.1)
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Proof. Fix f (z) = ∑
∞
n=0 anzn ∈ F p and z with |z| ≤ r, 0 < r < ∞. Since eε|·|2ν ∈ Λ, it might as

well assume that eε|·|2ν is (s,s)-Fock Carleson measure for any 0 < s < ∞. By Lemma 2.4, we
deduce that

∫
[0,∞)
| f (t)etz|dν(t)

≤ ‖ f‖p

∫
[0,∞)
|etz|e

1
2 |t|

2
dν(t)

= ‖ f‖p

∫
[0,∞)
|etz|e(

1
2−ε)|t|2eε|t|2 dν(t)

≤ ‖ f‖p

∫
C
|etz|e(

1
2−ε)|t|2 dA(t)≤ ‖ f‖pe

|r|2
4ε−2 .

So the integral in (3.1) uniformly converges on any compact subset of C, the resulting function
is analytic in C and, for every z ∈ C,

∫
[0,∞)

f (t)etz dν(t) =
∞

∑
n=0

∫
[0,∞)

f (t)
tn

n!
dν(t)zn

=
∞

∑
n=0

1
n!

∫
[0,∞)

∞

∑
k=0

aktn+k dν(t)zn.

(3.2)

For any 1 < s < ∞, the definition of Fock Carleson measure, Hölder’s inequality, and Lemma
2.1 imply that

|νn,k| ≤
1
n!

∫
[0,∞)
|t|n+k dν(t)

≤ 1
n!

(∫
[0,∞)
|tke−

1
2 |t|

2
|seε|t|2 dν(t)

)1/s(∫
[0,∞)
|tne(

1
2−ε)|t|2 |s

′
eε|t|2 dν(t)

)1/s′

≤ 1
n!

(∫
C
|tke−

1
2 |t|

2
|s dA(t)

)1/s(∫
C
|tne(

1
2−ε)|t|2|s

′
dA(t)

)1/s′

(3.3)

.
1
n!
(
k!
) 1

2 k−
1
4+

1
2s

(
n!

(ε− 1
2)

n

) 1
2

n−
1
4+

1
2s′ .

In particular, when k = 0,1 and s = 2, the above inequality can be rewritten as

|νn,0| ' |νn,1|.
1
n!

(
n!

(ε− 1
2)

n

) 1
2

. (3.4)
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Suppose that 0 < p≤ 2. (3.3) with s = 4, (3.4), and (i) in Lemma 2.2 indicate that, for every n,

|
∞

∑
k=0

νn,kak| ≤ |νn,0a0|+
∞

∑
k=1
|νn,kak|= |νn,0a0|+

∞

∑
k=1
|νn+1,k−1ak|

.|a0|
1
n!

(
n!

(ε− 1
2)

n

) 1
2

+
1
n!

(
(n+1)!

(ε− 1
2)

n+1

) 1
2

(n+1)
1
8

∞

∑
k=1
|ak|
(
(k−1)!

) 1
2 (k−1)−

1
8

.|a0|
1
n!

(
n!

(ε− 1
2)

n

) 1
2

+
1
n!

(
(n+1)!

(ε− 1
2)

n+1

) 1
2

(n+1)
1
8

∞

∑
k=1
|ak|
(
k!
) 1

2 k−
5
8

.|a0|
1
n!

(
n!

(ε− 1
2)

n

) 1
2

+
1
n!

(
(n+1)!

(ε− 1
2)

n+1

) 1
2

(n+1)
1
8

(
∞

∑
k=1
|ak|2k!

∞

∑
k=1

k−
5
4

) 1
2

.
1
n!

(
(n+1)!

(ε− 1
2)

n+1

) 1
2

(n+1)
1
8 .

Arguing as in the preceding one, if 2 < p < ∞, (3.3) with s = p, (3.4), (ii) in Lemma 2.2, and
Hölder’s inequality show that, for every n,

|
∞

∑
k=0

νn,kak|. (|a0|+ |a1|)
1
n!

(
n!

(ε− 1
2)

n

) 1
2

+
1
n!

(
(n+2)!

(ε− 1
2)

n+2

) 1
2

(n+2)−
1
4+

1
2p′

·
∞

∑
k=2
|ak|
(

k!
) 1

2

(k)−
1
4+

1
2p (k2− k)−

1
2

. (|a0|+ |a1|)
1
n!

(
n!

(ε− 1
2)

n

) 1
2

+
1
n!

(
(n+2)!

(ε− 1
2)

n+2

) 1
2

(n+2)−
1
4+

1
2p′

·
(

∞

∑
k=2
|ak|p

(
k!
) p

2 (k)−
p
4+

1
2

)1/p( ∞

∑
k=2

(k2− k)−
p′
2

)1/p′

.
1
n!

(
(n+2)!

(ε− 1
2)

n+2

) 1
2

(n+2)−
1
4+

1
2p′ .

In each of the cases above, we have that the series in (1.1) is well defined for all z ∈ C, and
∞

∑
k=0

akνn,k =
1
n!

∫
[0,∞)

f (t)tn dν(t).

By (3.2), we obtain Hν( f )(z) =
∫
[0,∞) f (t)etz dν(t), z ∈ C. This proves the desired result. �

Theorem 3.2. Suppose 0< p<∞ and let ν be a positive Borel measure on [0,∞) which satisfies∫
[0,∞)

∫
[0,t)

e2ts dν(s)dν(t)< ∞, i f 0 < p≤ 2, (3.5)

or ∫
[0,∞)

∫
[0,t)

(ts)2e2ts dν(s)dν(t)< ∞, i f 2 < p≤ ∞. (3.6)

Then the power series in (1.1) is well defined for every f ∈ F p and (3.1) holds.
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Proof. Assume that 0 < p ≤ 2 and ν satisfies (3.5). Fix f (z) = ∑
∞
n=0 anzn ∈ F p ⊂ F2. By

Cauchy-Schwarz’s inequality, we obtain that for any n ∈ N

∞

∑
k=0
|νn,kak| ≤

(
∞

∑
k=0
|ak|2k!

) 1
2
(

∞

∑
k=0

1
k!
|νn,k|2

) 1
2

. (3.7)

From the definition of νn,k, it is easy to see that

∞

∑
k=0

1
k!
|νn,k|2 =

( 1
n!
)2

∞

∑
k=0

1
k!

(∫
[0,∞)

tn+k dν(t)
)2

(3.8)

=
( 1

n!
)2

∞

∑
k=0

1
k!

∫
[0,∞)

∫
[0,∞)

sn+ktn+k dν(s)dν(t)

.
( 1

n!
)2

∞

∑
k=0

1
k!

∫
[0,∞)

∫
[0,t)

(st)k(st)n dν(s)dν(t)

.
( 1

n!
)2
∫
[0,∞)

∫
[0,t)

est(st)n dν(s)dν(t).

By Lemma 2.2, (3.5), and (3.7), it suffices to prove that

∞

∑
k=0

akνn,k =
1
n!

∫
[0,∞)

f (t)tn dν(t).

Furthermore,∣∣∣∣ ∞

∑
n=0

(
∞

∑
k=0

νn,kak)zn
∣∣∣∣≤ ∞

∑
n=0

(
∞

∑
k=0
|ak|2k!

) 1
2
(( 1

n!
)2
∫
[0,∞)

∫
[0,t)

est(st)n dν(s)dν(t)
) 1

2

|z|n

≤
(

∞

∑
k=0
|ak|2k!

) 1
2
(

∞

∑
n=0

1
n!
|z|2n

) 1
2
(

∞

∑
n=0

1
n!

∫
[0,∞)

∫
[0,t)

est(st)n dν(s)dν(t)
) 1

2

=

(
∞

∑
k=0
|ak|2k!

) 1
2
(∫

[0,∞)

∫
[0,t)

e2st dν(s)dν(t)
) 1

2
(

∞

∑
n=0

1
n!
|z|2n

) 1
2

,

for each z ∈ C. This shows that the power series in (1.1) represents an analytic function in C
and

Hν( f )(z) =
∫
[0,∞)

f (t)etz dν(t), z ∈ C.

If 2≤ p < ∞ and ν satisfies (3.6), the proof is similar to the preceding one with replacing (3.7)
and (3.8) by

|
∞

∑
k=2

νn,kak| ≤
∞

∑
k=2
|ak|
(
k!
) 1

2 k−
1
4+

1
2p k

1
4−

1
2p
( 1

k!
) 1

2 |νn,k|

≤
(

∞

∑
k=2
|ak|p

(
k!
) p

2 k−
p
4+

1
2

) 1
p
(

∞

∑
k=2

( 1
k!
) p′

2 k
p′
4 −

p′
2p |νn,k|p

′
) 1

p′
,



242 Z. ZHUO, C. SHEN, D. LI, S. LI

and

∞

∑
k=2

( 1
k!
) p′

2 k
p′
4 −

p′
2p |νn,k|p

′
=
( 1

n!
)p′

∞

∑
k=2

( 1
k!
) p′

2 k
p′
4 −

p′
2p

(∫
[0,∞)

tn+k dν(t)
)2· p

′
2

.
( 1

n!
)p′

∞

∑
k=2

k
p′
4 −

p′
2p−p′

(
1

(k−2)!

∫
[0,∞)

∫
[0,t)

(st)k(st)n dν(s)dν(t)
) p′

2

.
( 1

n!
)p′
(

∞

∑
k=2

k(−
3
4−

1
2p )

2p′
2−p′

) 2−p′
2
(

∞

∑
k=2

1
(k−2)!

∫
[0,∞)

∫
[0,t)

(st)k(st)n dν(s)dν(t)
) p′

2

.
( 1

n!
)p′
(

∞

∑
k=2

k(−
3
4−

1
2p )

2p′
2−p′

) 2−p′
2
(∫

[0,∞)

∫
[0,t)

(st)2est(st)n dν(s)dν(t)
) p′

2

,

respectively, where (−3
4 −

1
2p)

2p′
2−p′ <−

3
2 . The case of k = 0,1 requires different treatments.

∞

∑
n=0
|νn,0a0zn|= a0

∞

∑
n=0

( 1
n!
) 1

2 |z|n
( 1

n!
) 1

2

∫
[0,∞)
|t|n dν(t)

. a0

(
∞

∑
n=0

1
n!
|z|2n

) 1
2
(

∞

∑
n=0

1
n!

∫
[0,∞)

∫
[0,t)

(st)n dν(s)dν(t)
) 1

2

. a0

(
∞

∑
n=0

1
n!
|z|2n

) 1
2
(∫

[0,∞)

∫
[0,t)

(st)2e2st dν(s)dν(t)
) 1

2

.

The same arguments demonstrate that

∞

∑
n=0
|νn,1a1zn|. a0

(
∞

∑
n=0

1
n!
|z|2n

) 1
2
(∫

[0,∞)

∫
[0,t)

(st)2e2st dν(s)dν(t)
) 1

2

.

This completes the proof of the theorem. �

The following theorem together with Theorem 3.1 reveals that the necessary condition and the
sufficient condition for Hν with integral representation are closely related in some situations.

Theorem 3.3. Suppose 0 < p < ∞. Let ν be a positive Borel measure on [0,∞). If, for any
f ∈ F p and z ∈ C, the integral in (3.1) converges absolutely, then e

1
2 |·|

2
dν is a (p,1)-Fock

Carleson measure.

Proof. Fix 0 < p < ∞. The assumption implies that the integral
∫
[0,∞) f (t)etz dν(t) converges

for z = 0, i.e., for all f ∈ F p,∣∣∣∣∫
[0,∞)

f (t)dν(t)
∣∣∣∣≤ ∫

[0,∞)
| f (t)|e−

1
2 |t|

2
e

1
2 |t|

2
dν(t)< ∞.

Therefore, by the closed graph theorem, the identity mapping is bounded from F p into L1(e−
1
2 |·|

2
dν),

which implies the desired estimate. �

Using the method employed in [4, Proposition 1.4], we obtain the following result.
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Theorem 3.4. Suppose 1 < p < ∞. Let ν be a Borel measure on [0,∞). If, for any f ∈ F p and
z ∈ C, the integral in (3.1) converges absolutely, then∫

[0,∞)

∫
[0,t)

eθst dν(s)dν(t)< ∞,

for any θ such that 0 < θ < 1 and θ ≤ 1
p−1 .

Proof. Assume that the integral in (3.1) converges absolutely for each z ∈ C for any f ∈ F p.
Taking z = 0, there is C > 0 such that∣∣∣∫

[0,r)
f (t)dν(t)

∣∣∣≤ ∫
[0,r)
| f (t)|dν(t)<

∫
[0,∞)
| f (t)|dν(t)<C,

for all r ∈ (0,∞). Specially, choosing f = 1, we have
∫
[0,∞) dν(t) < ∞, which means that

ν is a finite Borel measure. On the other hand, an elementary calculation demonstrates that
‖Kt‖p′ = e

1
2 |t|

2
. Using this and Hölder’s inequality, we obtain that∫

[0,r)

∫
C
| f (z)etz̄|e−|z|

2
dA(z)dν(t)≤ ‖ f‖p

∫
[0,r)
‖Kt‖p′ dν(t)

= ‖ f‖p

∫
[0,r)

e
1
2 |t|

2
dν(t)< ∞.

For any f ∈ F p, the reproducing property and Fubini’s theorem imply that∫
[0,r)

f (t)dν(t) =
∫
[0,r)

∫
C

f (z)etz̄e−|z|
2
dA(z)dν(t)

=
∫
C

f (z)
∫
[0,r)

etz dν(t)e−|z|
2
dA(z) = 〈 f ,gr〉, (3.9)

where gr(z) =
∫
[0,r) etz dν(t). By Lemma 2.8 and the uniform boundedness principle, we obtain

supr ‖gr‖p′ <C. Let 0 < θ < 1 and θ ≤ 1
p−1 . By Hölder’s inequality, it is easy to see that∫

C
|gθ

r (z)e
− 1

2 |z|
2
|p dA(z) =

∫
C
|gr(z)e−

1
2 |z|

2
|pθ e(θ−1)p 1

2 |z|
2
dA(z)

=

(∫
C
|gr(z)e−

1
2 |z|

2
|p
′
dA(z)

) pθ

p′
(∫

C
e(

p′
pθ

)′(θ−1)p 1
2 |z|

2
dA(z)

)1/( p′
pθ

)′

<C.

This demonstrates that gθ
r ∈ F p. Replacing gθ

r into (3.9), we obtain that∫
C
|gr(z)|θ+1e−|z|

2
dA(z)≥

∣∣∣∣∫C gθ
r (z)gr(z)e−|z|

2
dA(z)

∣∣∣∣
=
∫
[0,r)

(
∫
[0,r)

est dν(s))θ dν(t).

On the other hand, the Hölder’s inequality implies that∫
C
|gr(z)|θ+1e−|z|

2
dA(z) =

∫
C
|gr(z)e−

1
2 |z|

2
|θ+1e(θ−1) 1

2 |z|
2
dA(z). ‖gr‖θ+1

p′ <C.
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Combining this with the previous inequality and letting r→ ∞, we obtain that∫
[0,∞)

(∫
[0,∞)

est dν(s)
)θ

dν(t)<C.

Since ν is a Borel measure on [0,∞) and 0 < θ < 1, it follows from the Hölder’s inequality that

C >
∫
[0,∞)

(∫
[0,∞)

est dν(s)
)θ

dν(t)≥
∫
[0,∞)

∫
[0,∞)

eθst dν(s)dν(t)

= 2
∫
[0,∞)

∫
[0,t)

eθst dν(s)dν(t).

This proves the desired result. �

4. BOUNDEDNESS AND COMPACTNESS OF Hν

In this section, we mainly characterize those measures ν for which Hν are bounded (resp.,
compact) operators from F p into Fq for some q and p.

Theorem 4.1. Suppose 0 < p≤ q < ∞. Let ν be a positive Borel measure on [0,∞) that satisfies
the condition in Theorem 3.1. Then Hν is bounded from F p into Fq if and only if e|·|

2
ν ∈ Λ.

Proof. Suppose that Hν is a bounded operator from F p into Fq. Given r > 0, Lemmas 2.3 and
2.5 demonstrate that, for any a ∈ [0,∞), there exists a C > 0 such that

C > ‖Hνka‖q & |Hνka(a)e−
1
2 |a|

2
|

≥
∫
[0,∞)
|eta− 1

2 |a|
2
|2 dν(t) =

∫
[0,∞)

e−|t−a|2e|t|
2
dν(t)

&
∫
|t−a|<r

e|t|
2
dν(t). (4.1)

This proves that e|·|
2
ν ∈ Λ by Lemma 2.9.

Conversely, suppose e|·|
2
ν ∈ Λ. For any f ∈ F p, g ∈ F∞ and 0 < ρ < 1,∫

C
|Hν( f )(ρz)g(ρz)|e−|z|

2
dA(z)≤

∫
C

∫
[0,∞)
| f (t)|eρtz dν(t)|g(ρz)|e−|z|

2
dA(z)

≤
∫
C
‖ f‖p

∫
[0,∞)
|eρtze−

1
2 |t|

2
|e|t|

2
dν(t)|g(ρz)|e−|z|

2
dA(z)

≤‖ f‖p‖g‖∞

∫
C

e|ρz|2e−|z|
2
dA(z)

.‖ f‖p‖g‖∞.

Therefore, Fubini’s theorem and the reproducing property imply that∫
C

Hν( f )(ρz)g(ρz)e−|z|
2
dA(z) =

∫
C

∫
[0,∞)

f (t)eρtz̄ dν(t)g(ρz)e−|z|
2
dA(z) (4.2)

=
1

ρ2

∫
[0,∞)

∫
C

etw̄g(w)e
− 1

ρ2 |w|
2

dA(w) f (t)dν(t)

=
1

ρ2

∫
[0,∞)

g(ρ2t) f (t)dν(t), 0 < ρ < 1, f ∈ F p, g ∈ F∞.

For clarity, we now break the proof into three cases: 0 < q < 1, q = 1, and 1 < q < ∞.
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Case 1 < q < ∞. Combining (4.2) with Lemma 2.8, we conclude that Hν is a bounded
operator from F p into Fq if and only if there exists a positive constant C such that∣∣∣∣∫

[0,∞)
f (t)g(t)dν(t)

∣∣∣∣≤C‖ f‖p‖g‖q′, f ∈ F p, g ∈ Fq′.

Note that p≤ 1+ p
q′ and q′ ≤ 1+ q′

p by the fact that p≤ q. By Lemma 2.9, e|·|
2
ν is a (p,1+ p

q′ )-

Fock Carleson measure or (q′,1+ q′
p )-Fock Carleson measure. Thus, by Hölder’s inequality,∫

[0,∞)
| f (t)g(t)|dν(t)

≤
(∫

[0,∞)
| f (t)e−

1
2 |t|

2
|

q′+p
q′ e|t|

2
dν(t)

) q′
q′+p
(∫

[0,∞)
|g(t)e−

1
2 |t|

2
|

q′+p
p e|t|

2
dν(t)

) p
q′+p

.‖ f‖p‖g‖q′.

This implies that Hν is bounded.
Case q = 1. From Lemma 2.8 we see that ( f ∞)∗ = F1 under the pairing 〈 f ,g〉. It follows

that Hν is a bounded operator from F p into F1 if and only if there exists a positive constant C
such that ∣∣∣∣∫

[0,∞)
f (t)g(t)dν(t)

∣∣∣∣≤C‖ f‖p‖g‖∞, f ∈ F p, g ∈ f ∞.

By Lemma 2.9, e|·|
2
ν is a (p,1)-Fock Carleson measure. Thus,∫

[0,∞)
| f (t)g(t)|dν(t)≤ ‖g‖∞

∫
[0,∞)
| f (t)e−

1
2 |t|

2
|e|t|

2
dν(t)≤C‖ f‖p‖g‖∞.

We see that Hν is bounded.
Case 0 < q < 1. For given some r > 0, there exists a sequence {a j}∞

k=1 in [0,∞) such that
a j = 2 jr. According to our condition and Lemma 2.9, we have∫

[a j−r,a j+r]
e|t|

2
dν(t)≤ ‖(̂e|·|2ν)r‖L∞

for all a j. Combining this inequality with Lemma 2.3, we deduce

|Hν( f )(z)|q ≤
(∫

[0,∞)
| f (t)etze−|t|

2
|e|t|

2
dν(t)

)q

≤
∞

∑
j=1

(
sup

t∈[a j−r,a j+r]
| f (t)etze−|t|

2
|
∫
[a j−r,a j+r]

e|t|
2
dν(t)

)q

. ‖(̂e|·|2ν)r‖
q
L∞

∞

∑
j=1

sup
t∈[a j−r,a j+r]

| f (t)etze−|t|
2
|q

. ‖(̂e|·|2ν)r‖
q
L∞

∞

∑
j=1

∫
D(a j,2r)

| f (t)etze−|t|
2
|q dA(t)

. ‖(̂e|·|2ν)r‖
q
L∞

∫
C
| f (t)etze−|t|

2
|q dA(t).
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Thus, ∫
C
|Hν( f )(z)e−

1
2 |z|

2
|q dA(z)

.‖(̂e|·|2ν)r‖
q
L∞

∫
C

∫
C
| f (t)etze−|t|

2
e−

1
2 |z|

2
|q dA(t)dA(z)

=‖(̂e|·|2ν)r‖
q
L∞

∫
C
| f (t)e−

1
2 |t|

2
|q
∫
C
|etze−

1
2 |t|

2
e−

1
2 |z|

2
|q dA(z)dA(t)

=‖(̂e|·|2ν)r‖
q
L∞

∫
C
| f (t)e−

1
2 |t|

2
|q dA(t).

That is,

‖Hν( f )‖q . ‖(̂e|·|2ν)r‖L∞‖ f‖q . ‖(̂e|·|2ν)r‖L∞‖ f‖p,

where the last step follows from Lemma 2.4. The proof of the theorem is complete. �

The proof of the following lemma is similar to that of [15, Proposition 3.11]. We omit the
details.

Lemma 4.1. Suppose that 0< p,q<∞ and Hν is bounded from F p into Fq. Then Hν is a com-
pact operator if and only if, for any bounded sequence { fn} in F p which converges uniformly
to 0 on every compact subset of C, Hν( fn)→ 0 as n→ 0 in Fq.

Theorem 4.2. Suppose 0 < p≤ q < ∞. Let ν be a positive Borel measure on [0,∞) that satisfies
the condition in Theorem 3.1. Then Hν is a compact operator from F p into Fq if and only if
e|·|

2
ν ∈ Λ0.

Proof. Assume that Hν is a compact operator from F p into Fq. Using Lemmas 4.1 and 2.5,
we obtain that {Hν(ka)} converges to 0 in Fq when α → ∞. Hence, by (4.1) we deduce that∫
|t−a|<r e|t|

2
dν(t)→ 0. This proves e|·|

2
ν ∈ Λ0.

Conversely, suppose that e|·|
2
ν ∈ Λ0. If 1 < q < ∞, similarly to the proof of Theorem 4.1,

by Lemma 2.9 we see that e|·|
2
ν is a vanishing (p,1+ p

q′ )-Fock Carleson measure or vanishing

(q′,1+ q′
p )-Fock Carleson measure. Let { f j} be a bounded sequence in F p that converges to 0

uniformly on compact subsets of C as j→ ∞. Then by Hölder’s inequality, we have

∫
[0,∞)
| f j(t)g(t)|dν(t)≤

(∫
[0,∞)
| f j(t)e−

1
2 |t|

2
|

q′+p
q′ e|t|

2
dν(t)

) q′
q′+p
‖g‖q′ → 0,

as j→ ∞ for g ∈ Fq′ . It follows from (4.2) that lim j→∞

∫
CHν( f j)(z)g(z)e−|z|

2
dA(z)→ 0 for

all g ∈ Fq′. Therefore Hν : F p→ Fq is compact.
The proof for q = 1 is similar to that of 1 < q < ∞, we omit the details here.
Now we prove the case q < 1. Let { fn} be a bounded sequence in F p that converges to

0 uniformly on compact subsets of C as n→ ∞. Give some r > 0 and set a j = 2 jr. Since
e|·|

2
ν ∈ Λ0 for any ε > 0, there exists J > 0 such that, for all j > J,∫

[a j−r,a j+r]
e|t|

2
dν(t)< ε.
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Combining this inequality with Lemma 2.3, we obtain

|Hν( fn)(z)|q ≤
J

∑
j=1

(
sup

t∈[a j−r,a j+r]
| fn(t)etze−|t|

2
|
∫
[a j−r,a j+r]

e|t|
2
dν(t)

)q

+
∞

∑
j=J+1

(
sup

t∈[a j−r,a j+r]
| fn(t)etze−|t|

2
|
∫
[a j−r,a j+r]

e|t|
2
dν(t)

)q

.‖(̂e|·|2ν)r‖
q
L∞

∫
D(0,2(J+1)r)

| fn(t)etze−|t|
2
|q dA(t)+ ε

q
∫
C
| fn(t)etze−|t|

2
|q dA(t).

Thus, Fubini’s theorem implies that∫
C
|Hν( fn)(z)e−

1
2 |z|

2
|q dA(z)

.‖(̂e|·|2ν)r‖
q
L∞

∫
C

∫
D(0,2(J+1)r)

| fn(t)etze−|t|
2
e−

1
2 |z|

2
|q dA(t)dA(z)

+ ε
q
∫
C

∫
C
| fn(t)etze−|t|

2
e−

1
2 |z|

2
|q dA(t)dA(z)

=‖(̂e|·|2ν)r‖
q
L∞

∫
D(0,2(J+1)r)

| fn(t)e−
1
2 |t|

2
|q dA(t)+ ε

q
∫
C
| fn(t)e−

1
2 |t|

2
|q dA(t)

≤ε
q‖(̂e|·|2ν)r‖

q
L∞ + ε

q
∫
C
| fn(t)e−

1
2 |t|

2
|q dA(t)

=ε
q‖(̂e|·|2ν)r‖

q
L∞ + ε

q‖ fn‖q
p.

Therefore, by the arbitrariness of ε , we see that Hν : F p→ Fq is compact. �

Theorem 4.3. Suppose 0 < q < p < ∞. Let ν be a positive Borel measure on [0,∞) that satisfies
the condition in Theorem 3.1. Then the following statements are equivalent:

(i) Hν is a bounded operator from F p into Fq;
(ii) Hν is a compact operator from F p into Fq;

(iii) e|·|
2
ν ∈ Λ

pq′
p+q′ .

Proof. (ii)⇒ (i). The implication is trivial.
(i)⇒ (iii). We first prove the case q≥ 1. By the assumption that Hν : F p→ Fq is bounded,

we see that the operator Hν : Fq′ → F p′ is bounded. By Lemma 2.7 we see that Hν : F2m→
F(2m)′ is bounded, where 1

m = 1
p +

1
q′ . By duality argument,∣∣∣∫

[0,∞)
f (t)g(t)dν(t)

∣∣∣≤C‖ f‖2m‖g‖2m, f ∈ F2m, g ∈ F2m.

Specifically, letting g = f , we have∫
[0,∞)
| f (t)|2 dν(t)≤C‖ f‖2

2m, f ∈ F2m,

which demonstrates that e|·|
2
ν ∈ Λm.

Now we prove the case q < 1. Given any {λ j}∞
j=1 ∈ lp and r-lattice {a j}∞

j=1, Lemma 2.6
demonstrates that f (z)=∑

∞
j=1 λ jka j(z)∈F p with ‖ f‖p. ‖{λ j} j‖lp . By Khinchine’s inequality
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and the boundedness of Hν , we have∫
C

( ∞

∑
j=1
|λ jHν(ka j)(z)|

2) q
2 e−

q
2 |z|

2
dA(z)

.
∫ 1

0

∫
C

∣∣ ∞

∑
j=1

ψ j(t)λ jHν(ka j)(z)
∣∣qe−

q
2 |z|

2
dA(z)dt

.
∫ 1

0
‖Hν‖q

F p→Fq‖
∞

∑
j=1

ψ j(t)λ jka j‖
q
p dt

.‖Hν‖q
F p→Fq‖{ψ j(t)λ j} j‖q

lp . ‖Hν‖q
F p→Fq‖{λ j} j‖q

lp,

where ψ j(t) is the j-th Rademacher function on [0,1]. Meanwhile, by Lemma 2.3 we obtain∫
C

( ∞

∑
j=1
|λ jHν(ka j)(z)|

2) q
2 e−

q
2 |z|

2
dA(z)

&
∞

∑
k=1

∫
D(ak,r)

( ∞

∑
j=1
|λ jHν(ka j)(z)|

2) q
2 e−

q
2 |z|

2
dA(z)

&
∞

∑
k=1

∫
D(ak,r)

|λkHν(kak)(z)|
qe−

q
2 |z|

2
dA(z)

&
∞

∑
k=1
|λk|q|Hν(kak)(ak)|qe−

q
2 |ak|2 &

∞

∑
k=1
|λk|q(̂e|·|

2
ν)r(ak)

q.

Setting βk = |λk|q, then {βk}∞
k=1 ∈ l

p
q . Therefore,

∞

∑
k=1

βk(̂e|·|
2
ν)r(ak)

q . ‖Hν‖q
F p→Fq‖{β j} j‖

l
p
q
.

The duality argument shows that {(̂e|·|2ν)r(ak)}∞
k=1 ∈ l

pq
p−q . Hence, e|·|

2
ν ∈ Λ

pq′
p+q′ by Lemma

2.10.

(iii)⇒ (ii). Suppose e|·|
2
ν ∈ Λ

pq′
p+q′ . First we consider the case q ≥ 1. Note that p > 1+ p

q′

and q′ > 1+ q′
p since p > q. By Lemma 2.10, e|·|

2
ν is a vanishing (p,1+ p

q′ )-Fock Carleson

measure or vanishing (q′,1+ q′
p )-Fock Carleson measure. Then for any bounded sequence { fn}

in F p that converges to 0 uniformly on compact subsets of C as n→ ∞, we have

∫
[0,∞)
| fn(t)g(t)|dν(t)≤

(∫
[0,∞)
| fn(t)e−

1
2 |t|

2
|

q′+p
q′ e|t|

2
dν(t)

) q′
q′+p
‖g‖q′ → 0,

as n→ ∞ for all g ∈ Fq′(or g ∈ f ∞ when q = 1). Then (4.2) implies that

lim
n→∞

∫
C

Hν( fn)(z)g(z)e−|z|
2
dA(z) = 0,

for all g ∈ Fq′(or g ∈ f ∞). Therefore, Hν : F p→ Fq is compact.
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Finally, we consider the case q < 1. Give some r > 0. Set a j = 2 jr. Then for any bounded
sequence { fn} in F p that converges to 0 uniformly on compact subsets of C as n→ ∞, we have

|Hν( fn)(z)|q ≤
∞

∑
j=1

(∫
[a j−r,a j+r]

e|t|
2
dν(t) sup

t∈[a j−r,a j+r]
| fn(t)etze−|t|

2
|
)q

.
∞

∑
j=1

(∫
[a j−r,a j+r]

e|t|
2
dν(t)

)q ∫
D(a j,2r)

| fn(w)ewze−|w|
2
|q dA(w)

.
∞

∑
j=1

∫
D(a j,2r)

|µ̂3r(w) fn(w)ewze−|w|
2
|q dA(w),

where µ̂3r(w) =
∫
[w−3r,w+3r] e

|t|2 dν(t). By Lemma 2.10, for any positive ε , there exists a R > 0

such that
∫
C\D(0,R) |µ̂3r(w)|

pq
p−q dA(w)< ε . Thus,∫

C
|Hν( fn)(z)e−

1
2 |z|

2
|q dA(z)

.
∫
C

∫
C
|µ̂3r(w) fn(w)ewze−|w|

2
e−

1
2 |z|

2
|q dA(w)dA(z)

=
∫
C
|µ̂3r(w) fn(w)e−

1
2 |w|

2
|q
∫
C
|ewze−

1
2 |w|

2
e−

1
2 |z|

2
|q dA(z)dA(w)

=
(∫

D(0,R)
+
∫
C\D(0,R)

)
|µ̂3r(w) fn(w)e−

1
2 |w|

2
|q dA(w)

≤
(∫

D(0,R)
|µ̂3r(w)|

pq
p−q dA(w)

) p−q
p (∫

D(0,R)
| fn(w)e−

1
2 |w|

2
|p dA(w)

) q
p

+

(∫
C\D(0,R)

|µ̂3r(w)|
pq

p−q dA(w)
) p−q

p
(∫

C\D(0,R)
| fn(w)e−

1
2 |w|

2
|p dA(w)

) q
p

≤ε
q
(∫

C
|µ̂3r(w)|

pq
p−q dA(w)

) p−q
p

+ ε
p−q

p

(∫
C
| fn(w)e−

1
2 |w|

2
|p dA(w)

) q
p

,

which implies that Hν : F p→ Fq is compact. �
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