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Abstract. This paper aims to study the convergence of Picard’s iteration to a best proximity pair for a
class of noncyclic mappings with the help of projections in hyperbolic uniformly convex metric spaces.
Some sufficient conditions are provided to guarantee the existence of a common best proximity pair
for a pair of noncyclic mappings. Moreover, the existence and convergence of best proximity pairs for
asymptotic pointwise noncyclic orbital contractions is studied. The main conclusions are supported with
illustrative examples.
Keywords. Asymptotic pointwise noncyclic orbital contractions; Best proximity pair; Hyperbolic uni-
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1. INTRODUCTION

Banach contraction principle plays a pivotal role in numerous branches of applied mathemat-
ics and physical sciences. This important result was extended in various directions. One of the
extensions was given by Kirk, Srinivasan, and Veeramani [1] for a cyclic mapping. One recalls
that a mapping T : A∪B→ A∪B, where A and B are two nonempty subsets of a metric space
(X ,d), is said to be cyclic if T (A)⊆ B and T (B)⊆ A. Whereas, a mapping T : A∪B→ A∪B is
said to be noncyclic if T (A)⊆ A and T (B)⊆ B.

Very recently, the following extension of the Banach contraction principle was proved in [2].

Theorem 1.1. [2, Proposition 3.1] Let A and B be two nonempty closed subsets of a complete
metric space (X ,d) and T : A∪B→ A∪B be a noncyclic mapping. Suppose that there exists
α ∈ (0,1) such that d(T x,Ty)≤ αd(x,y) for all (x,y) ∈ A×B. Then T has a unique fixed point
in A∩B.

Indeed, the contractive condition on the noncyclic mapping T ensures that A∩B is nonempty
and it follows from the Banach contraction principle that T has a unique fixed point in A∩B.
The situation becomes different when we assume that A∩B = /0. Then it is interesting to study
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the existence of best proximity pairs for the non-self mapping T , that is, a point (p,q) ∈ A×B
such that

p = T p, q = T q and d(p,q) = dist(A,B) := inf{d(x,y) : (x,y) ∈ A×B}.
In this case, the existence of a best proximity pair for noncyclic mapping T is equivalent to the
existence of a solution to the following minimization problem: Find

min
x∈A

d(x,T x), min
y∈B

d(y,Ty) and min
(x,y)∈A×B

d(x,y). (1.1)

An existence result for best proximity pairs was first established in [3]. Recall that a noncyclic
mapping T : A∪B→ A∪B is said to be relatively nonexpansive if d(T x,Ty) ≤ d(x,y) for all
(x,y) ∈ A×B.

Theorem 1.2. Let A and B be nonempty, bounded, closed, and convex subsets of a uniformly
convex Banach space X and T a noncyclic relatively nonexpansive mapping defined on A∪B.
Then T has a best proximity pair.

We mention that the existence result of Theorem 1.2 is based on the fact that every nonempty,
bounded closed, and convex pair of subsets of a uniformly convex Banach space X has proximal
normal structure (see [3, Proposition 2.1 and Theorem 2.2]).

Definition 1.1. Let A and B be nonempty subsets of a metric space (X ,d). A self-mapping
T : A∪B→ A∪B is said to be a noncyclic contraction if T is a noncyclic mapping satisfying

d(T x,Ty)≤ αd(x,y)+(1−α)dist(A,B),

for some α ∈ (0,1) and for every (x,y) ∈ A×B.

Clearly, this class of noncyclic mappings is stronger than the class of relatively nonexpansive
mappings. The following existence theorem was established in [4] for noncyclic contractions
without the geometric notion of the proximal normal structure on the convex pair (A,B) of
subsets of a Banach space.

Theorem 1.3. [4, Theorem 3.10] Let (A,B) be a nonempty, weakly compact, and convex pair
in a strictly convex Banach space X. Assume that T : A∪B→ A∪B is a noncyclic contraction
mapping. Then T has a best proximity pair.

Note that in Theorem 1.3 the only problem is the existence of best proximity pairs. Gabeleh
[5] proved the convergence of Picard’s iteration to best proximity pairs for the noncyclic con-
traction mappings in the framework of uniformly convex Banach spaces. In this paper, we gen-
eralize the results of [5] in twofold. The first one is to extend the class of noncyclic contractions
to noncyclic ϕ-contractions by considering an appropriate control function ϕ , and the second
one is to shift from uniformly convex Banach spaces to uniformly convex hyperbolic metric
spaces. We also refer to [6, 7] for more information related to the existence and convergence of
best proximity points (pairs).

This article is organized as follows. In Section 2, we recall some basic concepts, which are
required to prove our existence and convergence results. The Section 3 presents existence and
convergence of best proximity pairs for the noncyclic ϕ-contraction in the setting of hyperbolic
uniformly convex metric spaces. In Section 4, we discuss the existence of best proximity pairs
for the asymptotic pointwise noncyclic orbital contractions. The existence and convergence
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results for common best proximity pairs for the classes of mappings are established in Section
5, the last section. We also mention that all the concepts and results are equipped with examples
for better understanding of this paper.

2. PRELIMINARIES

In this section, we recall some definitions and notations which will be used next.
The notion of convexity in metric spaces was introduced by Takahashi [8].

Definition 2.1. [8] Let (X ,d) be a metric space and I := [0,1]. A mapping W : X ×X × I→ X
is said to be a convex structure on X provided that, for each (x,y;λ ) ∈ X×X× I and u ∈ X ,

d(u,W (x,y;λ ))≤ λd(u,x)+(1−λ )d(u,y).

It follows from this definition that W (x,x,λ ) = x whenever x ∈ X and λ ∈ I.
A metric space (X ,d) together with a convex structure W is called a convex metric space,

which is denoted by (X ,d,W ). For instance, Banach spaces and each of their convex subsets
are convex metric spaces. But a Fréchet space is not necessarily a convex metric space. The
examples of convex metric spaces which are not imbedded in any Banach space can be found
in [8].

Definition 2.2. [9] A convex metric space (X ,d,W ) is called a hyperbolic space if, for each
x,y,z,w ∈ X and λ1,λ2 ∈ I, the following conditions hold:
(i) d

(
W (x,y;λ1),W (x,y;λ2)

)
= |λ1−λ2| ·d(x,y),

(ii) W (x,y;λ ) = W (y,x;1−λ ),
(iii) d

(
W (x,z;λ ),W (y,w;λ )

)
≤ λd(x,y)+(1−λ )d(z,w).

Definition 2.3. [8] A subset K of a convex metric space (X ,d,W ) is said to be a convex set
provided that W (x,y;λ ) ∈ K for all x,y ∈ K and λ ∈ I.

Definition 2.4. [8] A convex metric space (X ,d,W ) is said to have property (C) if every
bounded decreasing net of nonempty closed convex subsets of X has a nonempty intersection.

For example, every bounded, closed, and convex subset of a reflexive Banach space X has
property (C). Let A and B be two nonempty subsets of a convex metric space (X ,d,W ). We say
that a pair (A,B) in a convex metric space (X ,d,W ) satisfies a property if both A and B satisfy
that property. For instance, (A,B) is closed if and only if both A and B are closed. The closed
and convex hull of a set A is denoted by con(A) and defined as below

con(A) :=
⋂
{C : C is a closed and convex subset of X such that C ⊇ A}.

The proximal pair of the pair (A,B) is denoted by (A0,B0) and is defined by

A0 := {x ∈ A : d(x,y′) = dist(A,B), for some y′ ∈ B},

B0 := {y ∈ B : d(x′,y) = dist(A,B), for some x′ ∈ A}.
Note that if (A,B) is a nonempty bounded, closed, and convex pair in a reflexive Banach space
X , then the pair (A0,B0) is too and it is easy to see that dist(A0,B0) = dist(A,B).

Here, we recall two geometric notions on convex metric spaces which have important roles
next.
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Definition 2.5. [10] A convex metric space (X ,d,W ) is said to strictly convex provided that,
for each x,y,z ∈ X with x 6= y if d(z,x)≤ r and d(z,y)≤ r, then d(z,W (x,y, 1

2))< r.

Clearly, every strictly convex Banach space is a strictly convex metric space.

Definition 2.6. [11] A convex metric space (X ,d,W ) is said to be uniformly convex if, for every
ε ∈ (0,2], there exists δ = δ (ε) ∈ (0,1] such that, for all r > 0 and x,y,z ∈ X with d(z,x) ≤
r,d(z,y) ≤ r and d(x,y) ≥ rε , d

(
z,W (x,y, 1

2)
)
≤ (1− δ )r. The function δ : (0,2]→ (0,1] is

called a modulus of convexity of a convex metric space (X ,d,W ).

Obviously, uniformly convex Banach spaces are uniformly convex metric spaces. Also any
CAT(0) space is uniformly convex (see [12] for more information).

Theorem 2.1. [11, Theorem 1] Let (X ,d,W ) be a complete and uniformly convex metric space.
Then X has the property (C) in the sense of Definition 2.4.

Let (X ,d) be a metric space and A be a nonempty subset of X . The metric projection operator
PA : X → 2A is defined as

PA(x) :=
{

y ∈ A : d(x,y) = dist(x,A)
}
, (2.1)

where 2A denotes the set of all subsets of A.

Lemma 2.1. [13, Lemma 3.1] Let A be a nonempty, closed, and convex subset of a strictly
convex metric space (X ,d,W ). If X has the property (C), then metric projection PA : X → 2A

is single-valued.

In what follows, we present a useful lemma which guarantees the nonemptyness of the prox-
imal pairs.

Lemma 2.2. [13, Lemma 3.2] Let (A,B) be a nonempty, closed, and convex pair in a convex
metric space (X ,d,W ). If A is bounded and X has the property (C), then (A0,B0) is nonempty,
bounded, closed, and convex.

Remark 2.1. It is worth noticing that, in the main statement of Lemma 2.2, the condition of
boundedness of the set A was omitted whereas it was used in the process of the proof.

The following geometric concept was introduced in [14].

Definition 2.7. Let (A,B) be a pair of nonempty subsets of a metric space (X ,d) with A0 6= /0.
The pair (A,B) is said to have the P-property if and only if{

d(x1,y1) = dist(A,B)
d(x2,y2) = dist(A,B)

⇒ d(x1,x2) = d(y1,y2),

where x1,x2 ∈ A0 and y1,y2 ∈ B0.

The following lemma presents some sufficient conditions to realizing the P-property.

Lemma 2.3. [13, Lemma 3.6] Let (A,B) be a nonempty, closed, and convex pair in a strictly
convex hyperbolic metric space (X ,d,W ). If A is bounded and X has the property (C), then
(A,B) has the P-property.

Here, we recall another geometric notion, which was introduced in [15].
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Definition 2.8. Let (A,B) be a nonempty pair in a metric space (X ,d). Then (A,B) is said to
satisfy property UC if the following holds:
If {xn} and {zn} are sequences in A and {yn} is a sequence in B such that

lim
n

d(xn,yn) = dist(A,B) = lim
n

d(zn,yn),

then limn d(xn,zn) = 0.

The following two lemmas related to the property UC will be used in the sequel.

Lemma 2.4. (Compare with [16, Lemma 3.8]) Let (A,B) be a nonempty pair in a uniformly
convex metric space (X ,d,W ) such that A is convex. Then (A,B) has the property UC.

Proof. Assume that (A,B) has no property UC. Then there exist sequences {xn} and {zn} in A, a
sequence {yn} in B, and ε0 > 0 such that, for every k ∈N, there is nk ≥ k so that d(xnk ,znk)≥ ε0,
whereas limn→∞ d(xn,yn) = limn→∞ d(zn,yn) = dist(A,B). Suppose r > dist(A,B), put ε1 := ε0

r ,
and consider ε > 0 such that 0 < ε < min{r−dist(A,B), δ (ε1)

1−δ (ε1)
dist(A,B)}. Let N ∈N be such

that max{d(xnk ,ynk),d(znk ,ynk)} ≤ dist(A,B)+ ε for all nk ≥ N. Uniformly convexity of X and
convexity of the set A imply that

dist(A,B)≤ d
(
ynk ,W (xnk ,znk ,

1
2
)
)

≤
(
1−δ (ε1)

)(
dist(A,B)+ ε

)
< (1−δ (ε1)

)
dist(A,B)+δ (ε1)dist(A,B)

= dist(A,B), ∀k ≥ N,

which is a contradiction. �

Lemma 2.5. [15] Let (A,B) be a nonempty pair of subsets of a metric space (X ,d). Assume
that (A,B) satisfies the property UC. Let {xn} and {yn} be sequences in A and B, respectively,
such that either of the following holds:

lim
m→∞

sup
n≥m

d(xm,yn) = dist(A,B) or lim
n→∞

sup
m≥n

d(xm,yn) = dist(A,B).

Then {xn} is a Cauchy sequence.

At the end of this section, we state the following important result.

Proposition 2.1. ([5, 17]) Let (A,B) be a nonempty, closed, and convex pair in a strictly convex
hyperbolic convex metric space (X ,d,W ) with the property (C) such that A is bounded. Define
P : A0∪B0→ A0∪B0 as

P(x) =

{
PA0(x) if x ∈ B0,

PB0(x) if x ∈ A0.

Then the following statements hold.
(1) d(x,Px) = dist(A,B) for any x ∈ A0∪B0 and P(A0)⊆ B0,P(B0)⊆ A0;
(2) The restriction of P on both A0 and B0 are isometry, that is, d(Px,Py) = d(x,y) for

all (x,y) ∈ (A0×A0)∪ (B0×B0);
(3) The restriction of P on both A0 and B0 are affine;
(4) The restriction of P on both A0 and B0 are continuous.
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3. NONCYCLIC ϕ -CONTRACTIONS

We begin our discussions with the following definition.

Definition 3.1. Let (A,B) be a nonempty pair in a metric space (X ,d). A mapping T : A∪B→
A∪B is said to be a noncyclic ϕ-contraction if T is a noncyclic mapping and, for a strictly
increasing mapping ϕ : [0,∞)→ [0,∞), it satisfies

d(T x,Ty)≤ d(x,y)−ϕ
(
d(x,y)

)
+ϕ

(
dist(A,B)

)
,

for every (x,y) ∈ A×B.

It is worth noticing that if ϕ(t) = (1−α)t for t ≥ 0 and 0 < α < 1, then T is a noncyclic
contraction in the sense of Definition 1.1. The following example demonstrates that the class of
noncyclic ϕ-contractions contains the class of noncyclic contractions as a subclass.

Example 3.1. Let X = R with the usual metric. For A = B = [0,1], define T : A∪B→ A∪B
with

T x =


x

1+ x
, if x ∈ A;

x
1− x

, if x ∈ B.

Clearly, dist(A,B) = 0 and T is noncyclic mapping. Now, with ϕ(t) = t2

1+t2 ,

d(T x,Ty) =
∣∣∣∣ x
1+ x

− y
1− y

∣∣∣∣≤ |x− y|
1+ |x− y|

= |x− y|− |x− y|2

1+ |x− y|
= |x− y|−ϕ(|x− y|)

= d(x,y)−ϕ(d(x,y))+ϕ
(
dist(A,B)

)
.

Therefore T is a noncyclic ϕ-contraction with ϕ(t) = t2

1+t2 . T is not a noncyclic contraction

because, for x = 1
2 and y = 2

3 , d(T x,Ty)
d(x,y) ≥ 10 and hence no value of 0 < α < 1 satisfies the

condition of Definition 1.1.

Remark 3.1. If T : A∪B→ A∪B is a noncyclic ϕ-contraction. Then, for any (x,y) ∈ A×B,
by the fact that the control function ϕ is increasing, we have

d(T x,Ty)≤ d(x,y)−ϕ
(
d(x,y)

)
+ϕ

(
dist(A,B)

)
≤ d(x,y),

that is, T is a noncyclic relatively nonexpansive mapping.

The following example demonstrates that the reverse of Remark 3.1 does not hold in general.

Example 3.2. Let X = {u = (u j) j≥1 ∈RN : ∑ j≥1 |u j|
1
2 < ∞}. Suppose that {e j} be a canonical

basis of X . Let d(u,v) =
√
|u1|2 + |u2|2 + · · ·+ |u j|2. Then (X ,d) is a metric space. Let us

define set A =
{

e2 +
1
2e1,e2 + e j : j ∈ N \ {0,1,2}

}
and B = {e1,e2}. Then dist(A,B) = 1√

2
.

Let us define T : A∪B→ A∪B as follows:

Tu =


e2 +

1
2e1, if u = e2 +

1
2e1;

e2 + e3, if u 6= e2 +
1
2e1 & u ∈ A;

e2, if u ∈ B.
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Then clearly T is a noncyclic mapping. Now,
• if u = e2 +

1
2e1 and v ∈ B, then

d(Tu,T v) = |e2 +
1
2

e1− e2|=
√

1/2≤ d(u,v);

• if u = e2 + e j and v ∈ B, then

d(Tu,T v) = |e2 + e3− e2|= 1 <
√

3 = d(u,v).

Thus T is a noncyclic relatively nonexpansive mapping. But T is not a noncyclic ϕ-contraction
because if we take u = e2 +e j ∈ A, j ∈N and v = e2 ∈ B, then d(Tu,T v)−d(u,v) = 1−1 = 0,
and since ϕ is increasing, −ϕ(d(u,v))+ϕ(dist(A,B)) = −ϕ(1)+ϕ(1

2) < 0. Thus there does
not exist any ϕ such that d(T x,Ty)≤ d(x,y)−ϕ

(
d(x,y)

)
+ϕ

(
dist(A,B)

)
.

The following theorem is the main result of this section.

Theorem 3.1. Let (A,B) be a nonempty, closed, and convex pair in a complete hyperbolic
uniformly convex metric space (X ,d,W ) such that A is bounded. Assume that T is a noncyclic
ϕ-contraction defined on A∪B. Suppose x0 ∈ A0 and define{

xn = T nx0,

yn = Pxn,
(3.1)

for all n ∈ N, where P is the projection mapping defined in (2.1). Then {(xn,yn)} ⊆ A0×B0
converges to a best proximity pair of the mapping T .

Proof. Since the hyperbolic uniformly convex space (X ,d,W ) is complete, it satisfies the prop-
erty (C) by Theorem 2.1. Moreover, from Lemma 2.2, the pair (A0,B0) is nonempty, bounded,
closed, and convex. It also follows from Lemma 2.3 that pair (A,B) has the P-property. More-
over, using Lemma 2.4, one sees that pair (A,B) has the property UC. It is easy to see that
T is noncyclic on A0 ∪B0. We prove that the mappings P and T commute on A0 ∪B0. Let
x ∈ A0. Since T is relatively nonexpansive, one has d(T x,TPx)≤ d(x,Px) = dist(A,B), and
so d(T x,TPx) = dist(A,B) = d(T x,PT x). Since (A,B) has the P-property, PT x = TPx.
Equivalently, we can see that P and T commute on B0. Due to commutativity of P and T on
A0∪B0, we have yn = P(T nx0) = T (PT n−1x0) = T (Pxn−1) = T (yn−1) for all n ∈ N. Now
let us take ξn := d(xn+1,yn). Since T is relatively nonexpansive, we have

ξn = d(T xn,Tyn−1)≤ d(xn,yn−1) = ξn−1, ∀n ∈ N.

Therefore, {ξn} is a decreasing and bounded sequence. Thus limn→∞ ξn = t0 for some t0 ≥
dist(A,B). If ξn0 = 0 for some n0 ≥ 1, then the result follows. So, we assume that ξn > 0 for
each n≥ 1. Observe that

ξn+1 = d(xn+1,yn) = d(T xn,Tyn−1)

≤ d(xn,yn−1)−ϕ
(
d(xn,yn−1)

)
+ϕ

(
dist(A,B)

)
≤ ξn−ϕ(ξn)+ϕ

(
dist(A,B)

)
.

Hence, ϕ
(
dist(A,B)

)
≤ ϕ(ξn) ≤ ξn− ξn+1 +ϕ

(
dist(A,B)

)
for each n ≥ 1. Since ϕ is strictly

increasing and ξn ≥ t0 ≥ dist(A,B) for each n≥ 1, limn→∞ ϕ(ξn) = ϕ(t0) = ϕ
(
dist(A,B)

)
. This

implies that d(xn+1,yn)→ dist(A,B). Also d(xn,yn) = d(xn,Pxn) = (A,B) for any n ∈ N. In
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view of the fact that (A,B) has the property UC, we conclude that d(xn+1,xn)→ 0. We assert
that

∀ε > 0, ∃N ∈ N, s.t. ∀m > n≥ N : d(xm,Tyn)≤ dist(A,B)+ ε.

Using the contradiction method, there is an ε > 0 such that, for all k ∈N, there exist mk > nk ≥ k
for which d(xmk ,Tynk)> dist(A,B)+ ε and d(xmk−1,Tynk)≤ dist(A,B)+ ε. Then

dist(A,B)+ ε < d(xmk ,Tynk)≤ d(xmk ,xmk−1)+d(xmk−1,Tynk),

and then d(xmk ,Tynk)→ dist(A,B)+ ε . Besides,

d(xmk ,Tynk)≤ d(xmk ,xmk+1)+d(xmk+1︸ ︷︷ ︸
T xmk

,Tynk+1)+d(Tynk+1,Tynk)

≤ d(xmk ,xmk+1)+d(xmk ,ynk+1)−ϕ
(
d(xmk ,ynk+1)

)
+ϕ

(
dist(A,B)

)
+d(Tynk+1,Tynk). (3.2)

Furthermore,

d(Tynk+1,Tynk) = d(TPxnk+1,TPxnk)

= d(PT xnk+1,PT xnk) = d(Pxnk+2,Pxnk+1).

Since P is an isometry on A0 (Proposition 2.1; part (2)), we have

d(Pxnk+1,Pxnk+2) = d(xnk+1,xnk+2)→ 0.

Letting k→ ∞ in (3.2), we obtain

dist(A,B)+ ε = lim
k→∞

d(xmk ,Tynk)

≤ (dist(A,B)+ ε)− lim
k→∞

ϕ
(
d(xmk ,ynk+1)

)
+ϕ

(
dist(A,B)

)
≤ dist(A,B)+ ε.

This gives us limk→∞ ϕ
(
d(xmk ,ynk+1)

)
= ϕ

(
dist(A,B)

)
, which in turn implies that

ϕ
(
dist(A,B)+ ε

)
≤ lim

k→∞
ϕ
(
d(xmk ,ynk+1)

)
= ϕ

(
dist(A,B)

)
.

This is a contradiction by the fact that ϕ is strictly increasing. Therefore, (4) holds and

lim
n→∞

sup
m≥n

d(xm,Tyn) = dist(A,B).

By using Lemma 2.5, the sequence {xn} is Cauchy and so converges to some element u ∈ A0.
Continuity of P|A0 (Proposition 2.1) ensures that yn = Pxn→Pu := v. Thereby,

d(T xn,PTu) = d(T xn,TPu)≤ d(xn,v)→ dist(A,B).

Hence, T xn→ Tu. By this reality that d(xn,T xn)→ 0, we obtain u is a fixed point of T in A0
and so T v = TPu = PTu = Pu = v, which deduces that (u,v) is a best proximity pair of T ,
where (xn,yn)→ (u,v). �

Let us illustrate Theorem 3.1 with the following examples.
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Example 3.3. Consider the space `p, 1 < p < ∞ with canonical basis {en}. Let A = {te1 + e2 :
t ∈ [0,2]} and B = {se1+e3 : s∈R}. Then (A,B) is closed convex pair and A is bounded. Also,
dist(A,B) = 21/p. Here A0 = A and B0 = {se1 + e3 : s≥ 0}. Thus (A,B) is not proximinal.

Let us now define a mapping T : A∪B→ A∪B as

Tu =


e2, if t ∈Q∩ [0,2] & u ∈ A;
e2 +

t
2e1, if t ∈ R\Q∩ [0,2] & u ∈ A;

e3, if s <−1 & u ∈ B;
e3 +

|s|
2 e1, if s≥−1 & u ∈ B.

Then T is not continuous and noncyclic mapping on A∪B. We see that T is noncyclic ϕ-
contraction. In fact, if u = te1 + e2 ∈ A and v = se1 + e3 ∈ B, then ‖u− v‖ = ((t− s)p + 2)1/p

and we have following cases:

• if t ∈Q∩ [0,2] and s <−1, then, for some suitable choice of ϕ ,

‖Tu−T v‖= ‖e2− e3‖= 21/p ≤ ‖u− v‖−ϕ(‖u− v‖)+ϕ(dist(A,B));

• if t ∈Q∩ [0,2] and s≥−1, then, for some suitable choice of ϕ ,

‖Tu−T v‖= ‖e2−
|s|
2

e1− e3‖= (2+(
|s|
2
)p)1/p ≤ ‖u− v‖−ϕ(‖u− v‖)+ϕ(dist(A,B));

• if t ∈ R\Q∩ [0,2] and s <−1, then, for some suitable choice of ϕ ,

‖Tu−T v‖= ‖e2 +
t
2

e1− e3‖= (2+(
t
2
)p)1/p ≤ ‖u− v‖−ϕ(‖u− v‖)+ϕ(dist(A,B));

• if t ∈ R\Q∩ [0,2] and s≥−1, then, for some suitable choice of ϕ ,

‖Tu−T v‖= ‖e2+
t
2

e1−
|s|
2

e1−e3‖=(2+(
t−|s|

2
)p)1/p≤‖u−v‖−ϕ(‖u−v‖)+ϕ(dist(A,B)).

Therefore, T is a noncyclic ϕ-contraction for some suitable choice of ϕ . Note that (e2,e3) is a
best proximity pair for the mapping T . Now, we choose u0 = t0e1 + e2 ∈ A0. Then,

♣ if t0 ∈Q∩ [0,2], then un = T nu0 = e2→ e2 and vn = Pun = Pe3 = e3→ e3;
♣ if t0 ∈R\Q∩ [0,2], then un = T nu0 =

t0
2n e1+e2→ e2 and vn = Pun =

t0
2n e1+e3→ e3.

Thus it follows from Theorem 3.1 that (xn,yn) converges to best proximity pair of the mapping
T on A∪B.

Example 3.4. Let A = {(x,y) : x∈ [0,2],y∈ [0,x]} and B = [3,4]× [0,2] be subsets of a Banach
space R2. Clearly, A0 = {(2,y) : y ∈ [0,2]}, B0 = {(3, p) : p ∈ [0,2]}, and dist(A,B) = 1. Let us
define a mapping T : A∪B→ A∪B as follows:

T (x,y) =


(

x+2
2 , y

2

)
, if (x,y) ∈ A;(

x+3
2 , y

2

)
, if (x,y) ∈ B.

It is easy to demonstrate that T is noncyclic A∪B and also not continuous. The projection
operator P : A0 ∪B0→ A0 ∪B0 is defined as P(2,y) = (3,y) and P(3,v) = (2,v) for y,v ∈
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[0,1]. Now for x = (x,y) ∈ A and u = (u,v) ∈ B, we have

‖T x−T u‖=‖T (x,y)−T (u,v)‖=

√∣∣∣∣x+2
2
− u+3

2

∣∣∣∣2 + ∣∣∣∣y2 − v
2

∣∣∣∣2
≤

√∣∣∣∣x−u
2

∣∣∣∣2 + 1
2
+

∣∣∣∣y− v
2

∣∣∣∣2 ≤ ‖(x,u)− (y,v)‖−ϕ(‖(x,u)− (y,v)‖)+ϕ
(
dist(A,B)

)
= ‖x−u‖−ϕ(‖x−u‖)+ϕ

(
dist(A,B)

)
.

Therefore, T is noncyclic ϕ-contraction for ϕ(t)= t
2 . It is worth noticing here that

(
(2,0),(3,0)

)
is a best proximity pair of T . Let x0 = (2,y) ∈ A0. Then xn = T nx0 = (2, y

2n )→ (2,0) and
yn = Pxn = (3, y

2n )→ (3,0). Hence, the Picard iteration sequence defined in (3.1) converges
to the best proximity pair of T .

Remark 3.2. It is worth noticing that if, in Theorem 3.1, the mapping T is noncyclic contrac-
tion, then the boundedness condition of set A can be dropped. Indeed, by a similar argument
of the proof of Theorem 3.5 of [2], we can conclude the existence of a best proximity pair for
the mapping T , so the proximal pair (A0,B0) is nonempty. Now, it is interesting to ask whether
Theorem 3.1 holds where the sets A and B are unbounded?

4. ASYMPTOTIC POINTWISE NONCYCLIC ORBITAL CONTRACTIONS

Let (A,B) be a nonempty pair in a metric space (X ,d). If T : A∪B→ A∪B is a noncyclic
mapping and x ∈ A∪B, then the orbit setting at x is defined by OT x := {x,T x,T 2x, ...,T nx, ...},
where T nx = T (T n−1x) for n ∈ N and T 0x = x. For any (x,y) ∈ A×B, we set OT (x,y) :=
OT (x)∪OT (y), We mention here that if (x,y) ∈ A×B, then OT x⊆ A and OT y⊆ B.

Definition 4.1. Suppose that (A,B) is a nonempty pair in a metric space (X ,d). A mapping
T : A∪B→ A∪B is said to be an asymptotic pointwise noncyclic orbital contraction provided
that, for each (x,y) ∈ A×B,

d(T nx,T ny)≤ αn(x)diam
[
OT (x,y)

]
+(1−αn(x))dist(A,B), ∀y ∈ B,

d(T nx,T ny)≤ αn(y)diam
[
OT (x,y)

]
+(1−αn(y))dist(A,B), ∀x ∈ A,

where, for each n ∈ N, αn : A∪B→ R+ and limsupn→∞ αn(x)≤ η for some 0 < η < 1 and for
all x ∈ A∪B.

Here we study the existence and convergence of best proximity pairs for asymptotic pointwise
noncyclic orbital contractions.

Theorem 4.1. Let (A,B) be a nonempty, closed and convex pair in a complete hyperbolic uni-
formly convex metric space (X ,d,W ) such that A is bounded. Assume that T is an asymptotic
pointwise noncyclic orbital contraction defined on A∪B which is relatively nonexpansive. Sup-
pose x0 ∈ A0 and define {

xn = T nx0,

yn = Pxn,

for all n ∈ N, where P is the projection mapping defined in (2.1). If T |A0 is continuous, then
{(xn,yn)} ⊆ A0×B0 converges to a best proximity pair of the mapping T .
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Proof. Obviously, for x0 ∈ A0, sequence {diam[OT (T nx0,T nPx0)]} is decreasing and bounded
below by dist(A,B). Assume that diam[OT (T nx0,T nPx0)]→ κx0 ≥ dist(A,B). Then, for any
l1, l2 ∈ N with l1 ≤ l2,

d(T (n+l1)x0,T (n+l2)(Px0))≤ αn+l1(x0)diam[OT (x0,Px0)]+(1−αn+l1(x0))dist(A,B).

Taking the supremum with respect to l1 and l2 and then letting n→ ∞, we obtain

κx0 ≤ ηdiam[OT (x0,Px0)]+(1−η)dist(A,B).

On the other hand, for each m ∈ N we have

κx0 = lim
n→∞

diam
[
OT

(
T n(T mx0),T n(T m(Px0)

))]
≤ ηdiam

[
OT
(
T mx0,T m(Px0)

)]
+(1−η)dist(A,B).

Letting m→ ∞, we obtain κx0 ≤ ηκx0 +(1−η)dist(A,B), which implies that κx0 = dist(A,B).
Thus limn→∞ supm≥n d(T nx0,T mPx0) = dist(A,B). In view of the fact that (A,B) has the prop-
erty UC, and Lemma 2.5, the sequence {xn} is Cauchy, so it converges to an element u ∈ A0.
Since T is continuous, one has Tu = limn→∞ T (xn) = limn→∞ xn+1 = u, that is, u ∈ A0 is a fixed
point of T . Moreover, from the continuity of P on A0, we have Pxn →Pu := v ∈ B0 and
that T v = TPu = PTu = Pu = v, that is, (u,v) is a best proximity pair of T and the proof is
completed. �

5. COMMON BEST PROXIMITY PAIRS

Consider the noncyclic mappings T1 and T2 defined on A∪B, where (A,B) is a nonempty pair
in metric space (X ,d). One says that a point (u,v) ∈ A×B is a common best proximity pair for
the noncyclic pair of mappings (T1;T2) provided that

u = T1u = T2u, v = T1v = T2v, d(u,v) = dist(A,B).

It is worth noticing that (u,v) ∈ A×B is a common best proximity pair for the noncyclic pair
(T1;T2) whenever (u,v) is a solution of the following nonlinear optimization problem:

min
(x,y)∈A×B

{
d(x,T1x),d(y,T2y),d(x,y)

}
.

In this section, we survey the existence of a common best proximity pair for a pair of non-
cyclic mappings and then we present some sufficient conditions in order to study the conver-
gence of such points. To this end, we introduce the following notion.

Definition 5.1. Assume that (T1;T2) is a noncyclic pair of mappings on A∪B, where (A,B) is a
nonempty pair in a metric space (X ,d). We say that T1 is noncyclic ϕ-contraction w.r.t. T2 and
the pair (A,B) if there exists a strictly increasing function ϕ : [0,∞)→ [0,∞) such that

d(T1x,T1y)≤ d(T2x,T2y)−ϕ
(
d(T2x,T2y)

)
+ϕ

(
dist(A,B)

)
, ∀(x,y) ∈ A×B.

Let us illustrate this concept with the following example.

Example 5.1. Let X = [0,∞) be a metric space with d(x,y) = |x−y| for x,y ∈ X and A = [0,1],
B = [1,∞). It is clear that dist(A,B) = 0. Let us define the mapping T1,T2 : A∪B→ A∪B by

T1u =

{
u3, if u ∈ A;
u2, if u ∈ B;
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and

T2u =

{
2u6−1, if u ∈ A;
2u4−1, if u ∈ B.

Then, for ϕ(t) = t
2 , it is easy to see that

d(T1u,T1v)≤ d(T2u,T2v)−ϕ
(
d(T2u−T2v)

)
+ϕ

(
dist(A,B)

)
which implies that T1 is noncyclic ϕ-contraction w.r.t. T2 and the pair (A,B).

The following theorem is the main conclusion of this section.

Theorem 5.1. Let (A,B) be a nonempty, closed, and convex pair in a complete hyperbolic
uniformly convex metric space (X ,d,W ) such that A is bounded. Suppose that (T1;T2) is a
noncyclic pair on A∪B such that

(i) T1(A)⊆ T2(A)⊆ A, T1(B)⊆ T2(B)⊆ B,
(ii)

(
T2(A),T2(B)

)
is a closed and convex pair,

(iii) T1 is noncyclic ϕ-contraction w.r.t. T2 and the pair (A,B),
(iv) T1 and T2 commute.

Then T1 and T2 have a common best proximity pair.

Proof. By Lemma 2.2, (A0,B0) is nonempty, closed, and convex. We prove that

dist
(
T1(A),T1(B)

)
= dist(A,B) = dist

(
T2(A),T2(B)

)
.

By the assumption (i), we have dist(A,B)≤ dist
(
T2(A),T2(B)

)
≤ dist

(
T1(A),T1(B)

)
. We prove

that dist(T1(A),T1(B)) = dist(A,B). Suppose that dist(T1(A),T1(B))> dist(A,B). It follows that
d(T1x,T1y)> dist(A,B) for any (x,y) ∈ A×B, so d(T2x,T2y)> dist(A,B) for all (x,y) ∈ A×B.
Indeed, if d(T2x,T2y) = dist(A,B), for some (x,y) ∈ A×B, then

(T1x,T1y)≤ d(T2x,T2y)−ϕ
(
d(T2x,T2y)

)
+ϕ

(
dist(A,B)

)
= dist(A,B),

which is impossible. Thus

d(T1x,T1y)≤ d(T2x,T2y)−ϕ
(
d(T2x,T2y)

)
+ϕ

(
dist(A,B)

)
< d(T2x,T2y)−ϕ

(
d(T2x,T2y)

)
+ϕ

(
d(T2x,T2y)

)
= d(T2x,T2y), (5.1)

for all (x,y) ∈ A×B. Hence, dist(T1(A),T1(B))≤ dist(T2(A),T2(B)), which ensures that

dist(T1(A),T1(B)) = dist(T2(A),T2(B)).

Thus dist(T2(A),T2(B)) > dist(A,B). From the fact that
(
T2(A),T2(B)

)
⊆ (A,B) is closed and

convex and T2(A)⊆ A is bounded, we obtain that
(
(T2(A))0,(T2(B))0

)
is also nonempty, closed,

and convex by Lemma 2.2. Assume that (T2x1,T2y1)∈T2(A)×T2(B) is such that d(T2x1,T2y1)=
dist
(
T2(A),T2(B)

)
for some (x1,y1) ∈ A×B. It follows that

dist
(
T1(A),T1(B)

)
≤ d(T1x1,T1y1)< d(T2x1,T2y1) = dist

(
T2(A),T2(B)

)
,

which is a contradiction. Therefore, (8) satisfies. In this way, we set(
T2(A)

)
0 = {y ∈ T2(A) : d(x,y) = dist

(
T2(A),T2(B)

)
(= dist(A,B)), for some x ∈ T2(B)},(

T2(B)
)

0 = {x ∈ T2(B) : d(x,y) = dist
(
T2(A),T2(B)

)
(= dist(A,B)), for some y ∈ T2(A)}.
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We claim that the mapping T1T−1
2 is singleton on

(
T2(A)

)
0∪
(
T2(B)

)
0. To this end, we consider

an element x ∈
(
T2(A)

)
0. Then there exists y ∈

(
T2(B)

)
0 such that d(x,y) = dist(A,B). Hence,

for any (z,w) ∈ (T1T−1
2 x)× (T1T−1

2 y)⊆ T2(A)×T2(B), z = T1 p and w = T1q, where p ∈ T−1
2 x

and q ∈ T−1
2 y. Notice that if d(T1 p,T1q)> dist(A,B), then

d(T1 p,T1q)< d(T2 p,T2q) = d(x,y) = dist(A,B),

which is a contradiction. Therefore, d(z,w)= d(T1 p,T1q)= dist(A,B) for all (z,w)∈ (T1T−1
2 x)×

(T1T−1
2 y). Since the pair (A,B) has the P-property, (Lemma 2.3) T1T−1

2 x is singleton. Similarly,
T1T−1

2 is singleton on
(
T2(B)

)
0. On the other hand, if x ∈

(
T2(A)

)
0 and y ∈

(
T2(B)

)
0 are such

that d(x,y) = dist(A,B), then there exist a ∈ A and b ∈ B for which x = T2a,y = T2b and so
d(T1a,T1b) = dist(A,B). Hence,

T1T−1
2 x = T1T−1

2 (T2a) = T1a ∈ T2(A), T1T−1
2 y = T1T−1

2 (T2b) = T1b ∈ T2(B),

d(T1T−1
2 x,T1T−1

2 y) = d(T1a,T1b) = dist(A,B),

that is, T1T−1
2 x ∈

(
T2(A)

)
0. Thus T1T−1

2

((
T2(A)

)
0

)
⊆
(
T2(A)

)
0. By a similar discussion,

T1T−1
2

((
T2(B)

)
0

)
⊆
(
T2(B)

)
0. This implies that the mapping

T1T−1
2 :

(
T2(A)

)
0∪
(
T2(B)

)
0→

(
T2(A)

)
0∪
(
T2(B)

)
0

is noncyclic. In addition, for (x,y) ∈
(
T2(A)

)
0×
(
T2(B)

)
0 with x = T2a and y = T2b for some

(a,b) ∈ A×B, we have

d(T1T−1
2 x,T1T−1

2 y) = d(T1a,T1b)

≤ d(T2a,T2b)−ϕ
(
d(T2a,T2b)

)
+ϕ

(
dist(A,B)

)
= d(x,y)−ϕ

(
d(x,y)

)
+ϕ

(
dist(A,B)

)
,

which implies that the mapping T1T−1
2 is a noncyclic ϕ-contraction on

(
T2(A)

)
0 ∪
(
T2(B)

)
0,

where
((

T2(A)
)

0,
(
T2(B)

)
0

)
is a closed and convex pair in a complete hyperbolic uniformly

convex metric space (X ,d,W ), and that T2(A) is bounded. It now follows from Theorem 3.1,
that T1T−1

2 has a best proximity pair, call (p,q) ∈
(
T2(A)

)
0×
(
T (B)

)
0. Thus

T1T−1
2 p = p, T1T−1

2 q = q and d(p,q) = dist(A,B).

By this reality that T1 and T2 are commute, T2 p = T2(T1T−1
2 p) = T1(T2T−1

2 )p = T1 p. Similarly,
T2q = T1q. Thus

d(T1 p,T1q)≤ d(T2 p,T q)−ϕ
(
d(T p,T q)

)
+ϕ

(
dist(A,B)

)
= d(T2(T1T−1

2 p),T2(T1T−1
2 q))−ϕ

(
d(T2(T1T−1

2 p),T2(T1T−1
2 q))

)
+ϕ

(
dist(A,B)

)
= d(T1 p,T1q)−ϕ

(
d(T1 p,T1q)

)
+ϕ

(
dist(A,B)

)
,

so ϕ
(
d(T1 p,T1q)

)
=ϕ

(
dist(A,B)

)
. This deduces that d(T1 p,T1q) = dist(A,B) and hence d(T p,

T q) = dist(A,B). Since T1 is noncyclic ϕ-contraction w.r.t. T2 and T1 and T2 commute, we
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obtain

d(T1(T1 p),T1q)≤ d(T2(T1 p),T2q)−ϕ
(
d(T2(T1 p),T2q)

)
+ϕ

(
dist(A,B)

)
= d(T1(T2 p),T1q)−ϕ

(
d(T1(T2 p),T1q)

)
+ϕ

(
dist(A,B)

)
= d(T1(T1 p),T1q)−ϕ

(
d(T1(T1 p),T1q)

)
+ϕ

(
dist(A,B)

)
,

and then d(T1(T1 p),T1q) = dist(A,B) = d(T1 p,T1q). Again, since (A,B) has the P-property,
T1(T1 p) = T1 p, that is, T1 p is a fixed point of the mapping T1. Furthermore,

d(T2(T1 p),T2q) = d(T1(T2 p),T1q) = d(T1(T1 p),T1q) = dist(A,B) = d(T2 p,T2q).

Thus T2(T1 p) = T2 p = T1 p which ensures that T1 p ∈ A is a fixed point of the mapping T2. This
concludes that T1 p is a common fixed point for the mappings T1 and T2. By a similar argument,
T1q is a common fixed point for T1 and T2, that is, (T1 p,T1q)∈A×B is a common best proximity
pair for the noncyclic pair of mappings (T1,T2). �

In what follows, we present a convergence result of a common best proximity pair of a pair
of noncyclic mappings.

Theorem 5.2. Under the assumptions of Theorem 4.1, and the condition that T1 is continuous
on
(
T2(A)

)
0∪
(
T2(B)

)
0, for any x0 ∈

(
T2(A)

)
0, define{

xn = (T1T−1
2 )nx0,

yn = Pxn.

Then {(T1xn,T1yn)} ⊆
(
T2(A)

)
0×
(
T2(B)

)
0 converges to a common best proximity pair of the

mappings T1 and T2.

Proof. The result follows from Theorems 3.1 and 5.1 immediately. �

The following example demonstrates the usability of Theorem 5.1.

Example 5.2. Consider X = R2 with the Euclidian norm. Let A = {(0,x) : 0 ≤ x ≤ 1} and
B = {(1,y) : 0 ≤ y ≤ 1}. Then dist(A,B) = 0. Also the pair (A,B) is nonempty, closed, and
convex pair and A is bounded. Define the mappings T1,T2 : A∪B→ A∪B with

T1(0,x) = (0,sin
x
2
), T1(1,y) = (1,sin

y
2
),

T2(0,x) = (0,x), T2(1,y) = (1,y).
Then clearly T1 and T2 are noncyclic mappings. Moreover, T1 and T2 are commute and T1(A)⊆
T2(A) = A and T1(B)⊆ T2(B) = B. Moreover,

‖T1(0,x)−T1(1,y)‖=
√

1+ |sin
x
2
− sin

y
2
|2 ≤ 1

2

√
1+ |x− y|2

which means that T1 is noncyclic ϕ-contraction w.r.t. T2 and the pair (A,B) for ϕ(t) = t
2 .

Therefore, all of the conditions of Theorem 5.1 hold and hence T1 and T2 have a common best
proximity pair, which is a point

(
(0,0),(1,0)

)
.
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