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Abstract. In this paper, we develop some new geometric inequalities in p-uniformly convex and uni-
formly smooth real Banach spaces with p > 1. We use the inequalities as tools to obtain the strong
convergence of the sequence generated by a subsgradient method to a solution that solves fixed point
and variational inequality problems. Furthermore, the convergence theorem established can be applica-
ble in, for example, Lp(Ω), where Ω ⊂ R is bounded set and lp(R) for p ∈ (2,∞). Finally, numerical
implementations of the proposed method in the real Banach space L5([−1,1]) are presented.
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1. INTRODUCTION

A variational inequality problem (VIP) involving a single-valued monotone operator A , de-
fined on a subset C of a normed space E is to find a point ϖ ∈C that satisfies:

〈y−ϖ ,A ϖ〉 ≥ 0, ∀ y ∈C. (1.1)

As usual, let V I(C,A ) be the set of points that satisfy (1.1).

Remark 1.1. By monotonicity of A (which is 〈ϖ−y,A ϖ−A y〉 ≥ 0, ∀ϖ ,y∈E) and inequal-
ity (1.1), one can easily verify that if ϖ satisfies (1.1) then, for any y ∈C, 〈y−ϖ ,A y〉 ≥ 0.

Several problems in applied mathematics, such as financial equilibriums, optimization prob-
lems, transportation problems can be expressed as a VIP. In applications, many models arising
from image recovery, signal processing, to mention but few, can be modeled as the VIP; see,
e.g., [1, 2, 3, 4, 5]. These interesting connections between the VIP and other real problems
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attracted the attention of many authors. Consequently, various iterative techniques were pro-
posed; see, e.g., [6, 7, 8, 9, 10]).

The two famous techniques for solving the VIP are the projection technique and the regu-
larization technique. The classical projection technique involving monotone mappings is the
gradient algorithm, which requires the strong monotonicity or the inverse-strong monotonicity
assumption on the cost operator. To dispense with this restriction, the extragradient method
(EGM), which requires the Lipschitz continuity and monotonicity of the cost operator, was
introduced in [10]. However, to implement the EGM, one is required to compute two projec-
tions in each iterative step, which maybe very expensive if the set is not simple, i.e., without
closed forms. Over the years, the subgradient extragradient method (SEGM) was introduced
(see [6, 8]) as an improvement of the EGM. The main feature of the SEGM is the replacement
of one metric projection in the EGM with a projection onto a constructable half-space which
can be obtained by an explicit formula (see, e.g., [11] for other alternatives of the EGM and the
regularization technique in the literature).

Results on monotone VIPs abound in vast literatures. However, most of the results concern-
ing monotone VIPs were only established in real Hilbert spaces. Recently, there is considerable
research effort to extend these results to Banach spaces. In 2018, Chidume et al. [12] proposed
an iterative algorithm in 2-uniformly convex and uniformly smooth Banach spaces that solves
the VIP (1.1). They compared the performance of their method with the famous algorithm of
Nakajo [13], which was in the same Banach space setting as their method. Numerically, the
algorithm of Chidume et al. [12] was less time consuming compared to that of Nakajo [13].

Remark 1.2. While 2-uniformly convex and uniformly smooth Banach spaces are more generic
compared to Hilbert spaces (for example, they include Lp and lp for 1 < p ≤ 2) they exclude
some classical real Banach spaces. It is well-known that Lp and lp with 2 < p < ∞ are not
2-uniformly convex.

Our interest here is to propose hybrid subgradient methods that solve the VIP (1.1) in-
volving monotone-type operators whose solutions are fixed points or G -fixed points of some
nonexpansive-type operators in the setting of some real Banach spaces. To achieve this, we first
establish some new geometric inequalities, which are of independent interest. Furthermore, our
proposed methods complement, among others, the methods of Cai et al. [14], Chidume et al.
[12], and Nakajo [13] to solve the VIP (1.1) in p-uniformly convex and uniformly smooth real
Banach spaces (for any p > 1). Finally, we present a numerical example to demonstrate that
our algorithms are implementable.

2. PRELIMINARIES

Definition 2.1. Let E be a real normed space with dual space E ∗ and p > 1. The generalized
duality map Gp : E → 2E ∗ is defined by

Gpϖ := {ϖ∗ ∈ E ∗ : 〈ϖ ,ϖ∗〉= ‖ϖ‖‖ϖ∗‖, ‖ϖ∗‖= ‖ϖ‖p−1, ∀ ϖ ∈ E }.
If p = 2, G2 is denoted by G .

Definition 2.2 (Chidume [15]). Let E be a real Banach space, which is reflexive, smooth, and
strictly convex. Define the following functions: φp : E ×E → R+ defined by

φp(ϖ ,y) := ‖ϖ‖p− p〈ϖ ,Gpy〉+(p−1)‖y‖p, ∀ϖ ,y ∈ E ,
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and ψp : E ×E ∗→ R+ defined by

ψp(ϖ ,ϖ∗) := ‖ϖ‖p− p〈ϖ ,ϖ∗〉+(p−1)‖ϖ∗‖
p

p−1 , ∀ϖ ∈ E , ϖ
∗ ∈ E ∗.

Then ψp(ϖ ,ϖ∗) = φp(ϖ ,G−1
p ϖ∗), ∀ϖ ∈ E , ϖ∗ ∈ E ∗.

Definition 2.3. The generalized projection ΠC : E → C is defined by ȳ = ΠC(y) ∈ C with
φp(ϖ̃ ,ϖ) = infy∈C φp(y,ϖ) in a strictly convex, smooth, and reflexive real Banach space E .

Definition 2.4. A mapping S :C→ E is called relatively nonexpansive if the set of its asymptotic
fixed points equals the set of its fixed points and φp(ϖ ,Sy) ≤ φp(ϖ ,y) for any ϖ ∈ F(S) and
y ∈C.

Lemma 2.1 (Chidume [15]). Let E be a real Banach space that is reflexive, smooth, and strictly
convex. Then, for p > 1, ψp(ϖ ,ϖ∗)+ p〈G−1

p ϖ∗−ϖ ,y∗〉 ≤ ψp(ϖ ,ϖ∗+ y∗), ∀ϖ ∈ E , ϖ∗,y∗ ∈
E ∗.

Lemma 2.2 (Chidume [15]). Under the same setting in of space in Lemma 2.1, there exists a
constant cp > 0 such that, for all z,ϖ ,y ∈ E , φp

(
z,G−1

p (ζGpϖ +(1− ζ )Gpy)
)
≤ ζ φp(z,ϖ)+

(1−ζ )φp(z,y)− cpwp(ζ )‖Gpϖ −Gpy‖p, where wp(ζ ) = ζ p(1−ζ )+ζ (1−ζ )p.

Remark 2.1. In Lemmas 2.3, 2.4, and 2.5, the Banach space is p-uniformly convex and smooth
with p > 1.

Lemma 2.3 (Xu [16]). Under the setting of Remark 2.1, there exists a constant dp > 0 such that,
for every ϖ ,y ∈ E , the following inequality holds: ‖ϖ + y‖p ≥ ‖ϖ‖p + p〈y,Gpϖ〉+dp‖y‖p.

Lemma 2.4 (Xu, [16]). Under the setting of Remark 2.1, there exists a constant cp > 0 such
that, for every ϖ ,y ∈ E , the following inequality holds: 〈ϖ − y,Gpϖ −Gpy〉 ≥ cp‖ϖ − y‖p.

Lemma 2.5 (Chidume [15]). Let {un} and {yn} be sequences in the space mentioned in Remark
2.1. Then, φp(un,yn)→ 0 implies ||un− yn|| → 0 as n→ ∞.

Lemma 2.6 (Xu, [17]). Let {an} be a nonnegative real sequence with the condition an+1 ≤
αnβn +(1−αn)an, n ≥ 0, where {αn} and {βn} are real sequences such that (i) {αn} ⊂ [0,1]
and ∑

∞
n=1 αn = ∞; (ii) limsupn→∞ βn ≤ 0. Then, limn→∞ an = 0.

3. MAIN RESULTS

In the sequel, C is assumed to be a nonempty, convex, and closed subset of some real Banach
space E .

Lemma 3.1. Under the same space setting given in Definition 2.3, let ϖ ∈ E and y ∈C. Then
ϖ̃ = ΠCϖ if and only if 〈ϖ̃−y,Gpϖ−Gpϖ̃〉 ≥ 0, ∀y∈C. Furthermore, for p > 1, let E be a the
real Banach space stated in Remark 2.1. Then φp(y, ϖ̃)+φp(ϖ̃ ,ϖ) ≤ φp(y,ϖ) for all ϖ ∈ E ,
y ∈C.
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Proof. Observe that

φp(y, ϖ̃)+φp(ϖ̃ ,ϖ)

= ‖y‖p− p〈y,Gpϖ̃〉+(p−1)‖ϖ̃‖p +‖ϖ̃‖p− p〈ϖ̃ ,Gpϖ〉+(p−1)‖ϖ‖p

= ‖y‖p− p〈y,Gpϖ〉− p〈y,Gpϖ̃ −Gpϖ〉+ p‖ϖ̃‖p− p〈ϖ̃ ,Gpϖ〉+(p−1)‖Gpϖ‖p

= φp(y,ϖ)− p〈y,Gpϖ̃ −Gpϖ〉+ p〈ϖ̃ ,Gpϖ̃〉− p〈ϖ̃ ,Gpϖ〉
= φp(y,ϖ)+ p〈ϖ̃ − y,Gpϖ̃ −Gpϖ〉
≤ φp(y,ϖ).

The proof of the lemma is complete. �

Lemma 3.2. Let ϖ ,y,z ∈ E , where E is the space mentioned in Remark 2.1. Then

φp(ϖ ,z)+φp(z,y)+ p〈z−ϖ ,Gpy−Gpz〉= φp(ϖ ,y).

Proof. Observe that

φp(ϖ ,z)+φp(z,y)+ p〈z−ϖ ,Gpy−Gpz〉
= ‖ϖ‖p− p〈ϖ ,Gpz〉+(p−1)‖z‖p +‖z‖p− p〈z,Gpy〉+(p−1)‖y‖p + 〈z,Gpy〉−〈ϖ ,Gpy〉
− p〈z,Gpz〉+ p〈ϖ ,Gpz〉

= φp(ϖ ,y),

which concludes the proof. �

Lemma 3.3. For any ϖ and y in E , where E is the space defined in Remark 2.1, the following
inequality holds dp‖ϖ − y‖p ≤ φp(ϖ ,y), where dp is the constant in Lemma 2.3.

Proof. Replacing y by ϖ − y and ϖ by y in the inequality of Lemma 2.3, we obtain, for all
ϖ ,y ∈ E ,

dp‖ϖ − y‖p ≤ ||ϖ ||p−||y||p− p〈ϖ − y,Gpy〉
= ||ϖ ||p− p〈ϖ ,Gpy〉− ||y||p + p〈y,Gpy〉
= φp(ϖ ,y),

establishing the lemma. �

Lemma 3.4. Let ϖ1, ϖ2 ∈ E , where E is the space mentioned in Remark 2.1. Then, there exists
a constant κp > 0 such that ‖ΠCϖ1−ΠCϖ2‖ ≤ κp‖Gpϖ1−Gpϖ2‖

1
p−1 .

Proof. Let ϖ1,ϖ2 ∈ E , ΠCϖ1 = ϖ̃1, and ΠCϖ2 = ϖ̃2. By Lemma 3.1, we have

〈ϖ̃2− ϖ̃1,Gpϖ1−Gpϖ̃1〉 ≤ 0 and 〈ϖ̃1− ϖ̃2,Gpϖ2−Gpϖ̃2〉 ≤ 0.

Adding these two inequalities, we obtain 〈ϖ̃1−ϖ̃2,(Gpϖ2−Gpϖ1)−(Gpϖ̃2−Gpϖ̃1)〉≤ 0. Thus
〈ϖ̃1− ϖ̃2,Gpϖ2−Gpϖ1〉− 〈ϖ̃1− ϖ̃2,Gpϖ̃2−Gpϖ̃1〉 ≤ 0. This implies that 〈ϖ̃1− ϖ̃2,Gpϖ̃1−
Gpϖ̃2〉 ≤ 〈ϖ̃1− ϖ̃2,G ϖ1−G ϖ2〉. It follows from Lemma 2.4 that cp‖ϖ̃1− ϖ̃2‖p ≤ ‖ϖ̃1− ϖ̃2‖ ·

‖Gpϖ1−Gpϖ2‖, and then ‖ϖ̃1− ϖ̃2‖ ≤ κp‖Gpϖ1−Gpϖ2‖
1

p−1 , where κp =
(

1
cp

) 1
p−1 . The proof

is complete. �

The theorem and corollary below are given in the setting of real Banach spaces which are
both uniformly smooth and p-uniformly convex with p≥ 2.
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Theorem 3.1. Let A : E → E ∗ be a map that is monotone on C and L-Lipschitzian on E , and
let S : E → E be a map that is relatively nonexpansive. Define a sequence {ϖn} in E by

u,ϖ1 ∈ E ;
yn = ΠCG−1

p (Gpϖn−ζA ϖn);
Cn = {z ∈C : 〈z− yn,Gpϖn−ζA ϖn−Gpyn〉 ≤ 0};
ρn = ΠCnG

−1
p (Gpϖn−ζA yn);

zn = G−1
p (ϑnGpu+(1−ϑn)Gpρn);

ϖn+1 = G−1
p (ζGpϖn +(1−ζ )GpSzn);

(3.1)

where 0≤ ζ <
dp
pL , dp is the constant in Lemma 3.3, and {ϑn} ⊂ [0,1] such that limn→∞ ϑn = 0

and ∑
∞
n=1 ϑn = ∞. If Ω := F(S)∩V I(C,A ) 6= /0, then the sequence {ϖn} generated by (3.1)

converges strongly to a point ϖ ∈Ω.

Proof. We give the proof in two steps.
Step 1. We demonstrate that {ϖn} is bounded.
Let τ ∈Ω. Using Lemma 3.1, Remark 1.1 and Lemma 3.2, we obtain that

φp(τ,ρn)≤ φp
(
τ,G−1

p (Gpϖn−ζA yn)
)
−φp

(
ρn,G

−1
p (Gpϖn−ζA yn)

)
= ‖τ‖p− p〈τ,Gpϖn−ζA yn〉−‖ρn‖p + p〈ρn,Gpϖn−ζA yn〉
= φp(τ,ϖn)−φp(ρn,ϖn)+ p〈τ−ρn,ζA yn〉
= φp(τ,ϖn)−φp(ρn,ϖn)+ pζ 〈τ− yn,A yn〉+ pζ 〈yn−ρn,A yn〉
≤ φp(τ,ϖn)−φp(ρn,ϖn)+ pζ 〈yn−ρn,A yn〉
= φp(τ,ϖn)−φp(ρn,yn)−φp(yn,ϖn)+ p〈ρn− yn,Gpϖn−ζA yn−Gpyn〉.

(3.2)

Using the fact that A is Lipschitz, ρn ∈Cn, p≥ 2, and Lemma 3.3, we obtain that

〈ρn− yn,Gpϖn−ζA yn−Gpyn〉
= 〈ρn− yn,Gpϖn−ζA ϖn−Gpyn〉+ζ 〈ρn− yn,A ϖn−A yn〉
≤ ζ 〈ρn− yn,A ϖn−A yn〉
≤ ζ‖ρn− yn‖‖A ϖn−A yn‖

≤ ζ L
2
(
‖ρn− yn‖p +‖ϖn− yn‖p)

≤ ζ L
2dp

(
φp(ρn,yn)+φp(yn,ϖn)

)
.

Substituting this inequality in (3.2), we arrive at

φp(τ,ρn)≤ φp(τ,ϖn)−φp(ρn,yn)−φp(yn,ϖn)+
pζ L
2dp

(
φp(ρn,yn)+φp(yn,ϖn)

)
= φp(τ,ϖn)−

(
1− pζ L

2dp

)(
φp(yn,ϖn)+φp(ρn,yn)

)
(3.3)

≤ φp(τ,ϖn). (3.4)
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Using Lemma 2.2 and inequality (3.4), we have

φp(τ,ϖn+1)≤ ζ φp(τ,ϖn)+(1−ζ )φp(τ,zn)

≤ ζ φp(τ,ϖn)+(1−ζ )
(
ϑnφp(τ,u)+(1−ϑn)φp(τ,ρn)

)
(3.5)

≤ ζ φp(τ,ϖn)+(1−ζ )ϑnφp(τ,u)+(1−ζ )(1−ϑn)φp(τ,ϖn)

=
(
1− (1−ζ )ϑn

)
φp(τ,ϖn)+(1−ζ )ϑnφp(τ,u)

≤max{φp(τ,ϖn),φp(τ,u)}.

Thus, φp(τ,ϖn+1)≤ φp(τ,u), and sequence {φp(τ,ϖn)} is bounded. Hence, {ϖn} is bounded.
Furthermore, using Lemma 3.4, the uniform continuity of Gp on bounded sets, and the fact that
Lipschitz maps are bounded, we have that {yn} and {ρn} are bounded.

Step 2. We prove that limn→∞ ϖn = ϖ , where ϖ = ΠΩu.
To prove this, first we demonstrate

(i) {‖ϖn− yn‖}, {‖ρn− yn‖}, {‖ϖn− zn‖}, and {‖zn−Szn‖} converge to zero (0).

(ii) ∆w(ϖn)⊂Ω (where Ωw(ϖn) denotes the set of weak limits of subsequences of {ϖn}).
To establish (i), we start by using inequalities (3.5) and (3.3) to obtain

φp(τ,ϖn+1)≤ ζ φp(τ,ϖn)+(1−ζ )
(
ϑnφp(τ,u)+(1−ϑn)φp(τ,ρn)

)
≤ ζ φp(τ,ϖn)+(1−ζ )ϑnφp(τ,u)+(1−ζ )(1−ϑn)

×
(

φp(τ,ϖn)−
(

1− pζ L
2dp

)(
φp(yn,ϖn)+φp(ρn,yn)

))
= φp(τ,ϖn)+(1−ζ )ϑnφp(τ,u)−ϑn(1−ζ )φp(τ,ϖn)

− (1−ζ )
(

1− pζ L
2dp

)(
φp(yn,ϖn)+φp(ρn,yn)

)
+ϑn(1−ζ )

(
1− pζ L

2dp

)(
φp(yn,ϖn)+φp(ρn,yn)

)
.

Let δ = (1−ζ )
(

1− pζ L
2dp

)
. Then, we rewrite this inequality to obtain

δ
(
φp(yn,ϖn)+φp(ρn,yn)

)
≤ φp(τ,ϖn)−φp(τ,ϖn+1)+(1−ζ )ϑnφp(τ,u)

−ϑn(1−ζ )φp(τ,ϖn)+ϑnδ
(
φp(yn,ϖn)+φp(ρn,yn)

)
.

(3.6)

To complete the proof, we consider the following two cases.

Case 1. Assume there exists an n0 ∈N for which φp(τ,ϖn+1)≤ φp(τ,ϖn) for all n≥ n0. Then,
sequence {φp(τ,ϖn)} is convergent.

From inequality (3.6), the fact that limn→∞ ϑn = 0, the convergence of {φp(τ,ϖn)}, and the
facts that {ϖn}, {yn} and {ρn} are bounded, we conclude that limn→∞

(
φp(yn,ϖn)+φp(ρn,yn)

)
=

0. By Lemma 2.5, we have limn→∞ ‖ϖn− yn‖ = limn→∞ ‖ρn− yn‖ = 0, which implies that
limn→∞ ‖ϖn−ρn‖= 0. Observe that

φp(ϖn,zn)≤ ϑnφp(ϖn,u)+(1−ϑn)φp(ϖn,ρn) ⇒ lim
n→∞

φp(ϖn,zn) = 0.
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One has limn→∞ ‖ϖn− zn‖= 0. It follows from Lemma 2.2 that

φp(τ,ϖn+1)≤ ζ φp(τ,ϖn)+(1−ζ )φp(τ,Szn)− cpwp(ζ )‖Gpϖn−GpSzn‖p

≤ ζ φp(τ,ϖn)+(1−ζ )
(
ϑnφp(τ,u)+(1−ϑn)φp(τ,ρn)

)
− cpwp(ζ )‖Gpϖn−GpSzn‖p

≤ ζ φp(τ,ϖn)+(1−ζ )ϑnφp(τ,u)+(1−ζ )(1−ϑn)φp(τ,ϖn)

− cpwp(ζ )‖Gpϖn−GpSzn‖p

= φp(τ,ϖn)+(1−ζ )ϑn
(
φp(τ,u)−h(τ,ϖn)

)
− cpwp(ζ )‖Gpϖn−GpSzn‖p,

which implies that

cpwp(ζ )‖Gpϖn−GpSzn‖p ≤ φp(τ,ϖn)−φp(τ,ϖn+1)+ϑn(1−ζ )
(
φp(τ,u)−φp(τ,ϖn)

)
.

Hence, limn→∞ ‖Gpϖn−GpSzn‖ = 0. Furthermore, one deduces that limn→∞ ‖ϖn− Szn‖ = 0.
Moreover, one also has

‖zn−Szn‖ ≤ ‖zn−ϖn‖+‖ϖn−Szn‖ ⇒ lim
n→∞
‖zn−Szn‖= 0.

Now, we prove (ii). Let τ ∈∆w(ϖn). Then there exists {ϖnk}⊂{ϖn} such that ϖnk ⇀ τ . From
(i), this implies that znk ⇀ τ as k→∞. Furthermore, from (i), we have limk→∞ ‖znk−Sznk‖= 0.
Thus τ ∈ F(S).

Next, to prove that τ ∈ V I(C,A ), following [18], it suffices to demonstrate that (τ,0) ∈
G(T ) (where T is as defined above), which is equivalent to proving that 〈v− τ,τ∗〉 ≥ 0 for all
(v,τ∗) ∈ G(T ) (since T is maximally monotone). Now, let (v,τ∗) ∈ G(T ). Then, by following
[18], (τ∗−A v) ∈ NC(v), that is, 〈v−y,τ∗−A v〉 ≥ 0 for all y ∈C. Since yn = ΠCG−1

p (Gpϖn−
ζA ϖn) and v ∈C, by Lemma 3.1 we have that〈

v− yn,
Gpyn−Gpϖn

ζ
+A ϖn

〉
≥ 0.

Since yn ∈C and (τ∗−A v) ∈ NC(v), we have

〈v− ynk ,τ
∗〉

≥ 〈v− ynk ,A v〉

≥ 〈v− ynk ,A v〉−
〈

v− ynk ,
Gpynk−Gpϖnk

ζ
+A ϖn

〉
= 〈v− ynk ,A v−A ynk〉+ 〈v− ynk ,A ynk−A ϖnk〉−

〈
v− ynk ,

Gpynk−Gpϖnk

ζ

〉
≥ 〈v− ynk ,A ynk−A ϖnk〉−

〈
v− ynk ,

Gpynk−Gpϖnk

ζ

〉
.

Hence, 〈v− τ,τ∗〉 ≥ 0. Therefore, ∆w(ϖn)⊂V I(C,A ) and ∆w(ϖn)⊂Ω.
Next, we prove that limn→∞ ‖ϖn−ϖ‖ = 0, where ϖ = ΠΩu. Since {ϖn} is bounded, there

exists a subsequence {ϖnk} of {ϖn} such that ϖnk ⇀ z and

lim
k→∞
〈ϖnk−ϖ ,Gpu−Gpϖ〉= limsup

n→∞

〈ϖn−ϖ ,Gpu−Gpϖ〉= limsup
n→∞

〈zn−ϖ ,Gpu−Gpϖ〉.

Since ∆w(ϖn)⊂Ω and ϖ = ΠΩu, we have

lim
k→∞
〈ϖnk−ϖ ,Gpu−Gpϖ〉= 〈z−ϖ ,Gpu−Gpϖ〉 ≤ 0.
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Hence, we deduce that
limsup

n→∞

〈zn−ϖ ,Gpu−Gpϖ〉 ≤ 0. (3.7)

Using Lemmas 2.2 and 2.1, and inequality (3.4), we obtain

φp(ϖ ,ϖn+1) = φp
(
ϖ ,G−1

p (ζGpϖn +(1−ζ )GpSzn)
)

≤ ζ φp(ϖ ,ϖn)+(1−ζ )φp(ϖ ,Szn)

≤ ζ φp(ϖ ,ϖn)+(1−ζ )φp(ϖ ,G−1
p (ϑnGpu+(1−ϑn)Gpρn))

= ζ φp(ϖ ,ϖn)+(1−ζ )ψr(ϖ ,ϑnGpu+(1−ϑn)Gpρn)

≤ ζ φp(ϖ ,ϖn)+(1−ζ )
(

ψr
(
ϖ ,ϑnGpu+(1−ϑn)Gpρn−ϑn(Gpu−Gpϖ)

)
+2ϑn〈zn−ϖ ,Gpu−Gpϖ〉

)
≤ ζ φp(ϖ ,ϖn)+(1−ζ )(1−ϑn)ψr(ϖ ,Jρn)+2(1−ζ )ϑn〈zn−ϖ ,Ju− Jϖ〉
≤ ζ φp(ϖ ,ϖn)+(1−ζ )(1−ϑn)φp(ϖ ,ϖn)+2(1−ζ )ϑn〈zn−ϖ ,Ju− Jϖ〉
=
(
1− (1−ζ )ϑn

)
φp(ϖ ,ϖn)+2(1−ζ )ϑn〈zn−ϖ ,Ju− Jϖ〉. (3.8)

By inequality (3.7) and Lemma 2.6 we have limn→∞ φp(ϖ ,ϖn) = 0. Hence, limn→∞ ‖ϖn−ϖ‖=
0.
Case 2. Suppose that Case 1 fails. Then one finds {ϖm j}, a subsequence of ⊂ {ϖn} such that
φp(τ,ϖm j+1)> φp(τ,ϖm j) for all j ∈N. Furthermore, by following Mainge’s celebrated lemma
[19], one can find a sequence {nk} ⊂ N, which satisfies limk→∞ nk = ∞ and

φp(τ,ϖnk)≤ φp(τ,ϖnk+1) and φp(τ,ϖk)≤ φp(τ,ϖnk+1), for each k ∈ N. (3.9)

Following the same idea of proof as in Case 1 above, we one can prove that
• lim

k→∞
‖ρnk− ynk‖= lim

k→∞
‖ynk−ϖnk‖= lim

k→∞
‖ϖnk− znk‖= lim

k→∞
‖Sznk− znk‖= 0;

• ∆w(ϖnk)⊂Ω.

Finally, we prove that limk→∞ ϖk = ϖ . Using the boundedness of {ϖnk}, we have that

lim
j→∞
〈ϖnk j −ϖ ,Gpu−Gpϖ〉= limsup

k→∞

〈ϖnk−ϖ ,Gpu−Gpϖ〉= limsup
k→∞

〈znk−ϖ ,Gpu−Gpϖ〉.

Since ∆w(ϖnk)⊂Ω and ϖ = ΠΩu, we have limsupk→∞〈znk−ϖ ,Gpu−Gpϖ〉 ≤ 0. Furthermore,
it follows from inequality (3.8) that

φp(ϖ ,ϖnk+1)≤
(
1− (1−ζ )ϑnk

)
φp(ϖ ,ϖnk)+2(1−ζ )ϑnk〈znk−ϖ ,Gpu−Gpϖ〉

≤
(
1− (1−ζ )ϑnk

)
φp(ϖ ,ϖnk)+2(1−ζ )ϑnk〈znk−ϖ ,Gpu−Gpϖ〉.

By rewriting this inequality and using (3.9), we arrive at

φp(ϖ ,ϖnk+1)≤ 2〈znk−ϖ ,Gpu−Gpϖ〉.

Therefore, φp(ϖ ,ϖk)≤ φp(ϖ ,ϖnk+1)≤ 2〈znk−ϖ ,Gpu−Gpϖ〉, and then

limsup
k→∞

φp(ϖ ,ϖk)≤ limsup
k→∞

2〈znk−ϖ ,Gpu−Gpϖ〉,

which implies that limsupk→∞ φp(ϖ ,ϖk) ≤ 0. Therefore, limk→∞ ϖk = ϖ . The proof is com-
plete. �
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Corollary 3.1. Under the same setting as in Theorem 3.1, if ϑn = 0 and S is the identity map,
then the following algorithm defined by

ϖ1,u ∈ E ;
yn = ΠCG−1

p (Gpϖn−ζA ϖn);
Cn = {z ∈C : 〈z− yn,Gpϖn−ζA ϖn−Gpyn〉 ≤ 0};
ρn = ΠCnG

−1
p (Gpϖn−ζA yn);

ϖn+1 = G−1
p (ϑnGpu+(1−ϑn)Gpρn);

(3.10)

where all the parameters are as defined in Theorem 3.1, converges strongly to a point ϖ ∈
V I(C,A ) provided that V I(C,A ) is not empty.

Next we use the result we obtained in Theorem 3.1 to approximate fixed point of some
nonexpansive-type mapping. The following notions will be used in what follows:

Definition 3.1. Let T : E → 2E ∗ be nonlinear map. A point u ∈ E is called a G -fixed point of
T if G u ∈ Tu, where G : E → E ∗ is the single-valued normalized duality map on E . We denote
the set of G -fixed point of T by FG (T ) := {ϖ ∈ E : T ϖ = G ϖ}.

Here we remark that this notion under different concepts has been studied by numerous au-
thors; see, e.g., [21, 22, 23]. Currently, there is a growing interest in the study of G -fixed point
and we refer to [20, 24, 25, 26, 27] for some interesting results.

Recently, the notion of relatively G -nonexpansive maps was introduced and discussed by
Chidume et al. [28]. We next give the definition using the generalized duality Gp mapping to fit
the setting in this paper.

Definition 3.2. Let T : E → E ∗ be a map. A point ϖ∗ ∈ E is called an asymptotic Gp-fixed
point of T if there exists a sequence {ϖn} ⊂ E such that ϖn ⇀ ϖ∗ and ‖Gpϖn−T ϖn‖ → 0 as
n→ ∞. Let F̂Gp(T ) be the set of asymptotic Gp-fixed points of T .

Definition 3.3. A map T : E → E ∗ is said to be relatively Gp-nonexpansive if

(i) F̂Gp(T ) = FGp(T ) 6= /0,
(ii) φp(u,G−1

p T ϖ)≤ φp(u,ϖ), ∀ ϖ ∈ E , u ∈ FGp(T ).

Remark 3.1. For a nontrivial example of relatively Gp-nonexpansive mapping, we refer to
Chidume et al. [28]. One can easily verify from the definition above that if an operator T is
relatively Gp-nonexpansive then the operator G−1

p T is relatively nonexpansive in the usual sense
and vice versa. Furthermore, ϖ∗ ∈ FGp(T )⇔ ϖ∗ ∈ F(G−1

p T ).

Remark 3.2. Under same hypothesis as in Theorem 3.1, by replacing S with a relatively Gp-
nonexpansive mapping, one can conclude a Gp-fixed point theorem. Indeed, G−1

p S is relatively
nonexpansive due to Remark 3.1.

4. NUMERICAL ILLUSTRATION

Now we give a numerical implementation of our method in the setting of a real Banach space.
We consider real Banach spaces Lp(Ω) with p > 2, where Ω ⊂ R is bounded. Let p = 5.

Then, in Theorem 3.1, set E = L5([−1,1]), so E∗ = L 5
4
([−1,1]). By Alber and Ryazantseva
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[29], the duality mapping G5 and its inverse G 5
4

can be computed as follows:

G5ϖ(t) = ‖ϖ‖−3|ϖ(t)|3ϖ(t) and G 5
4
ϖ(t) = ‖ϖ‖

3
4 |ϖ(t)|−

3
4 ϖ(t), t ∈ [−1,1],

where ‖ϖ‖=
(∫ 1
−1 |ϖ(t)|p

) 1
p with p> 1. Let A : L5([−1,1])→L 5

4
([−1,1]) and let S : L5([−1,1])

→ L5([−1,1]) be defined by

A ϖ(t) = 2G5ϖ(t) = 2‖ϖ‖−3|ϖ(t)|3ϖ(t) and Sϖ(t) =
1
2

ϖ(t).

By Alber and Ryazantseva [29], one sees that A is monotone and it is not difficult to verify
that S is relatively nonexpansive and the solution set Ω := F(S)∩V I(C,A ) = {0}, where “0′′

is the zero function in L5([−1,1]). Set C = L5([−1,1]). Then Cn = L5([−1,1]). It follows that
ΠCϖ = ϖ for all ϖ ∈ C. Set ϑn = 1

n+1 , ζ = 0.4, u = 0 and varied ϖ1 ∈ L5([−1,1]). Using
a tolerance of 10−8 and maximum number of iterations n = 100, the results obtained from the
numerical simulations are presented in the table below:

TABLE 1. Numerical results for the varied initial point ϖ1

‖ϖn+1−0‖ for the varied initial point ϖ1
Algorithm (3.1) Algorithm (3.10)

n ϖ1(t) = 2t ϖ1(t) = sin(t)+ cos(t) ϖ1(t) = 1
1+Eϖ p(t) ϖ1(t) = 2t ϖ1(t) = sin(t)+ cos(t) ϖ1(t) = 1

t+Eϖ p(t)
1 0.971 0.931762 0.7738 0.9076 0.8709 0.7233

10 0.2546 0.2443 0.2029 2.0612 5.4641 12.1081
20 0.0655 0.0629 0.0522 0.1659 0.1592 0.1322
30 0.0173 0.0166 0.0138 0.0875 0.0839 0.0697
40 0.0046 0.0044 0.0037 0.0476 0.0457 0.038
50 0.0012 0.0012 0.001 0.0264 0.0254 0.0211
60 0.0003 0.0003 0.0002 0.0148 0.0142 0.0118
70 9.3E-05 8.9E-05 7.4E-05 0.0084 0.0081 0.0067
80 2.5E-05 2.4E-05 2E-05 0.0047 0.0046 0.0038
90 7E-06 7E-06 6E-06 0.0027 0.0026 0.0021

100 2E-06 2E-06 2E-06 0.0016 0.0015 0.0012

5. CONCLUSION

This paper provided new inequalities in setting of real Banach spaces that are p-uniformly
convex with p > 1. The new inequalities are used as tools in establishing some a strong conver-
gence theorem. Finally, numerical implementations of the algorithms are presented.
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