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Abstract. We consider a linear fractional optimization problem involving integral functions defined on
Cn[0,1] and obtain an optimality theorem for the problem which holds without any constraint qualifi-
cation. We give an example to demonstrate how to use the optimality theorem for finding the optimal
solutions.
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1. INTRODUCTION-PRELIMINARIES

Convex optimization problems involving integral functions need constraint qualifications for
obtaining their optimality theorems. For example, the Slater condition becomes a constraint
qualification for the problems. But it is well-known that the Slater condition is really often
violated. So, in this paper, we intend to obtain the optimality theorems for the problems which
hold without any constraint qualification.

Jeyakumar et al. [1] proved the Lagrange multiplier optimality theorems for convex opti-
mization problems, which held without any constraint qualification and which were expressed
by sequences. Such optimality theorems were studied for many kinds of convex optimization
problems and linear fractional optimization problems; see, e.g., [2, 3, 4, 5, 6, 7, 8, 9]. In particu-
lar, Kim et al. [6] investigated optimality theorems for a linear fractional optimization problem
involving integral functions defined on L2

n[0,1], which hold without any constraint qualification.
In this paper, we consider a linear fractional optimization problem (P) involving integral

functions defined on Cn[0,1] and obtain an optimality theorem for the problem (P) which holds
without any constraint qualification and which is expressed by sequences. We give an example
to demonstrate that certain set may not be closed and to illustrate how to use the optimality
theorems for finding the optimal solutions.
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Consider the following linear fractional optimization problem:

(P) Minimize
∫ 1

0 c(t)T x(t)dt +α∫ 1
0 d(t)T x(t)dt +β

subject to x(·) ∈ K,

ai(t)T x(t) = bi(t), i = 1, · · · ,m, for any t ∈ [0,1],

where c,d,ai, i = 1, · · · ,m, are given in Cn[0,1], bi, i = 1, · · · ,m are given in C[0,1], and K is
a closed convex cone in Cn[0,1]. Here we denote Cn[0,1] = {x | x : [0,1]→ Rn : continuous}
and C[0,1] = {z | z : [0,1]→ R : continuous}.

We next use the norm on Cn[0,1] defined by ||x||= maxt∈[0,1]||x(t)||. We define the nonneg-
ative dual cone of K as

K∗ = {v ∈Cn[0,1]∗ | v(x)= 0 ∀x ∈ K},
where Cn[0,1]∗ = {x∗ | x∗ : Cn[0,1]→ R : continuous and linear}. We also use the norm on
Cn[0,1]∗ defined by

||x∗||= sup{|x∗(x)|/||x|| | x ∈Cn[0,1] and x 6= 0}.
Now we give some notations and preliminary results that are needed in this paper. Let E

be a normed linear space over R with norm x 7→ ‖x‖, and let E∗ the dual of E. The conjugate
function of a function f : E→ R is the function f ∗ : E∗→ R defined by

f ∗(x∗) := sup
x∈E
{〈x∗,x〉− f (x)} (x∗ ∈ E∗).

A function g : E→R∪{+∞} is said to be convex if, for all t ∈ [0,1], g((1− t)x+ ty)≤ (1−
t)g(x)+ tg(y) for all x,y ∈ E. Let g : E → R∪{+∞} be a proper convex function. We denote
the domain and the epigraph of g by domg := {x∈ E : g(x)<+∞} and epig := {(x,r)∈ E×R :
g(x) ≤ r}, respectively. We say a function g is lower semicontinuous if liminfy→x g(y) ≥ g(x)
for all x ∈ E.

Following the proof of [10, Theorem 2.123 (i) and (ii)], we can prove the following propo-
sition stated in a normed space with a strong topology (norm topology). The proposition was
proved on a normed space with weak∗-topology in [11], and was stated on a Banach space with
weak∗-topology in [12].

Proposition 1.1. Let E be a normed space. Consider a family of proper lower semicontinuous
convex functions φi : E → R∪{+∞}, i ∈ I, where I is an arbitrary index set and suppose that
supi∈I φi is not identically +∞. Then epi(supi∈I φi)

∗ = clco
⋃

i∈I epiφ∗i .

Following the proof of [10, Theorem 2.107 and Theorem 2.123], we can prove the following
proposition stated in a normed space. The proposition was stated on the Banach space (see [13,
Lemma 1]).

Proposition 1.2. Let E be a normed linear space. Let φ1,φ2 : E→R∪{+∞} be a proper, lower
semicontinuous and convex function. Then epi(φ1 +φ2)

∗ = cl(epiφ∗1 + epiφ∗2 ).

Using [14, Theorem 1.1] and [15, Proposition 12.6], we can prove the following proposition.

Proposition 1.3. [16, 17] Let E be a Banach space. Let g1 : E→ R∪{+∞} be a proper lower
semicontinuous convex function, and let g2 : E → R∪{+∞} be a continuous convex function.
Then epi(g1 +g2)

∗ = epig∗1 + epig∗2.
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2. OPTIMALITY THEOREMS

In this section, we give an optimality theorem for the problem (P) which holds without any
constraint qualification and which is expressed by sequences.

Noticing that
∫ t

0{ai(τ)
T x(τ)−bi(τ)}dτ = 0 for any t ∈ [0,1] if and only if ai(t)T x(t)−bi(t)=

0 for any t ∈ [0,1], we have the following problem, which is equivalent to the problem (P) in
the first section:

(P) Minimize
∫ 1

0 c(t)T x(t)dt +α∫ 1
0 d(t)T x(t)dt +β

subject to x(·) ∈ K,∫ ·
0
{ai(τ)

T x(τ)−bi(τ)}dτ = 0, i = 1, · · · ,m.

Define

4= {x ∈ K |
∫ ·

0
{ai(τ)

T x(τ)−bi(τ)}dτ = 0, i = 1, · · · ,m}.

So,4= {x∈K | ai(t)T x(t)−bi(t) = 0 for any t ∈ [0,1], i = 1, · · · ,m}. We assume that4 6= /0.
Modifying [1, Theorem 3.1], [3, Theorems 3.1 and 3.2 ], and [6, Theorem 2.1], we can

obtain the following optimality theorem for the problem (P), which holds without any constraint
qualification:

Theorem 2.1. Let x̄ ∈ 4 and suppose that, for any x ∈ 4,
∫ 1

0 d(t)T x(t)dt +β > 0. Then the
following assertions are equivalent:

(i) x̄ is an optimal solution to problem (P);
(ii) (0,0) ∈ {(

∫ 1
0 [c(t)−q(x̄)d(t)]T (·)dt, −α +q(x̄)β )}+{0}×R+

+cl
( ⋃

µi∈NBV[0,1]
{(−∑

m
i=1
∫ 1

0 µi(t)ai(t)T (·)dt, −∑
m
i=1
∫ 1

0 µi(t)bi(t)dt)}+(−K∗)×R+

)
,

where NBV[0,1] = {µ | µ : [0,1]→ R : a function of bounded variation, left continuous on

[0,1) and µ(1) = 0} and q(x̄) =
∫ 1

0 c(t)T x̄(t)dt+α∫ 1
0 d(t)T x̄(t)dt+β

;

(iii) there exist µn
i ∈ NBV[0,1], i = 1, · · · ,m, k∗n ∈ K∗ such that∫ 1

0
[c(t)−q(x̄)d(t)]T (·)dt + lim

n→∞
[−

m

∑
i=1

∫ 1

0
µ

n
i (t)ai(t)T (·)dt− k∗n] = 0

and lim
n→∞

k∗n(x̄) = 0.

Proof. Suppose that x̄ is an optimal solution to problem (P). Let

f (x) =
∫ 1

0
c(t)T x(t)dt +α−q(x̄)[

∫ 1

0
d(t)T x(t)dt +β ]

and

hi(x) =
∫ ·

0

[
−ai(τ)

T x(τ)+bi(τ)
]
dτ, i = 1, · · · ,m.

Then f : Cn[0,1]→ R is continuous and linear, and hi : Cn[0,1]→ C[0,1] is continuous and
affine for each i = 1, · · · ,m. Let

D = {x ∈Cn[0,1] | hi(x) = 0, i = 1, · · · ,m}.
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Then ∆ = D∩K. Notice that x̄ is an optimal solution to problem (P) if and only if

f (x)+δ4(x)= f (x̄)+δ4(x̄) for any x ∈Cn[0,1],

where δ4 is the indicator function with respect to the set4. So (0,− f (x̄)) ∈ epi( f +δ4)
∗. By

Proposition 1.2, one has (0,− f (x̄)) ∈ epi f ∗+ epiδ ∗4. Since 4 = D∩K, one has (0,− f (x̄)) ∈
epi f ∗+ epi(δD +δK)

∗. It follows from Proposition 1.2 that

(0,− f (x̄)) ∈ epi f ∗+ cl(epiδ ∗D + epiδ ∗K). (2.1)

We can easily check that

epiδ ∗K = (−K∗)×R+. (2.2)

In view of

f ∗(v∗) =

{
−α +q(x̄)β if v∗ =

∫ 1
0 [c(t)−q(x̄)d(t)]T (·)dt

+∞ if v∗ 6=
∫ 1

0 [c(t)−q(x̄)d(t)]T (·)dt,

one has

epi f ∗ =
{(∫ 1

0
[c(t)−q(x̄)d(t)]T (·)dt,−α +q(x̄)β

)}
+{0}×R+. (2.3)

By Hahn-Banach theorem, for any nonzero zi ∈ C[0,1], there exists λi ∈ C[0,1]∗ such that
λi(zi) > 0. So, δD(x) = supλi∈C[0,1]∗(∑

m
i=1 λi ◦ hi)(x) for any x ∈ Cn[0,1]. Since ∑

m
i=1 λi ◦ hi

is continuous and affine, it follows from Proposition 1.1 that

epiδ ∗D = cl co
⋃

λi∈C[0,1]∗
epi(

m

∑
i=1

λi ◦hi)
∗.

By Theorem 1 (Riesz Representation Theorem) in ([18], p.113),

C[0,1]∗ = {x∗ | x∗(y) =
∫ 1

0
y(t)dµ(t) ∀y ∈C[0,1], µ : [0,1]→R : a function, µ ∈NBV[0,1]}.

So, λi ∈C[0,1]∗ if and only if there exists µi ∈ NBV[0,1] such that, for any y ∈C[0,1], λi(y) =∫ 1
0 y(t)dµi(t). So, we have

(λi ◦hi)(x) =
∫ 1

0
(hi(x))(t)dµi(t)

=
∫ 1

0

(∫ t

0
[ai(τ)

T x(τ)−bi(τ)]dτ

)
dµi(t).

Let gi(t) =
∫ t

0[ai(τ)
T x(τ)−bi(τ)]dτ . Then, from [19, Theorem 6.2.3 and Theorem 6.2.10],

(λi ◦hi)(x) =
∫ 1

0
gi(t)dµi(t)

=−
∫ 1

0
µi(t)dgi(t)+µi(1)gi(1)−µi(0)gi(0)

=−
∫ 1

0
µi(t)g′i(t)dt

=−
∫ 1

0
µi(t)[ai(t)T x(t)−bi(t)]dt.
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Moreover, since
∫ 1

0 µi(t)[ai(t)T (·)]dt is continuous and linear on Cn[0,1], one

(λi ◦hi)
∗(v∗) = sup

x∈Cn[0,1]
{v∗(x)− (−

∫ 1

0
µi(t)[ai(t)T x(t)−bi(t)]dt)}

=

{
−
∫ 1

0 µi(t)bi(t)dt if v∗(·) =−
∫ 1

0 µi(t)ai(t)T (·)dt
+∞ if v∗(·) 6=−

∫ 1
0 µi(t)ai(t)T (·)dt.

Thus

epi(λi ◦hi)
∗ = {(−

∫ 1

0
µi(t)ai(t)T (·)dt, −

∫ 1

0
µi(t)bi(t)dt)}+{0}×R+.

Hence

epiδ ∗D = clco
( ⋃

µi∈NBV[0,1]

{(−
m

∑
i=1

∫ 1

0
µi(t)ai(t)T (·)dt, −

m

∑
i=1

∫ 1

0
µi(t)bi(t)dt)}

+{0}×R+

)
.

Since the set ⋃
µi∈NBV[0,1]

{(−
m

∑
i=1

∫ 1

0
µi(t)ai(t)T (·)dt, −

m

∑
i=1

∫ 1

0
µi(t)bi(t)dt)}+{0}×R+

is convex, one has

epiδ ∗D = cl
( ⋃

µi∈NBV[0,1]

{(−
m

∑
i=1

∫ 1

0
µi(t)ai(t)T (·)dt, −

m

∑
i=1

∫ 1

0
µi(t)bi(t)dt)}

+{0}×R+

)
. (2.4)

From (2.1), (2.2), (2.3), and (2.4), one has

(0,0) ∈ {(
∫ 1

0
[c(t)−q(x̄)d(t)]T (·)dt, −α +q(x̄)β )}+{0}×R+

+cl
( ⋃

µi∈NBV[0,1]

{(−
m

∑
i=1

∫ 1

0
µi(t)ai(t)T (·)dt, −

m

∑
i=1

∫ 1

0
µi(t)bi(t)dt)}+(−K∗)×R+

)
.

Thus (ii) holds.
Suppose that (ii) holds. Then, from (ii), there exist µn

i ∈NBV[0,1], i= 1, · · · ,m, kn ∈K∗, r ∈
R+, rn ∈ R+ such that

0 =
∫ 1

0
[c(t)−q(x̄)d(t)]T (·)dt + lim

n→∞

[
−

m

∑
i=1

∫ 1

0
µ

n
i (t)ai(t)T (·)dt− k∗n

]
, (2.5)

and

0 =−α +q(x̄)β + r+ lim
n→∞

[
−

m

∑
i=1

∫ 1

0
µ

n
i (t)bi(t)dt + rn

]
. (2.6)

From (2.5) and (2.6), one has

0 =−r+ lim
n→∞

{
−

m

∑
i=1

∫ 1

0
µ

n
i (t)

(
ai(t)T x̄(t)−bi(t)

)
dt− k∗n(x̄)− rn

}
=−r+ lim

n→∞
[−k∗n(x̄)− rn].
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Since k∗n(x̄)= 0, r = 0, and rn = 0, we have

r = 0, lim
n→∞

k∗n ◦ x̄ = 0, and lim
n→∞

rn = 0.

Hence limn→∞ k∗n(x̄) = 0. It follows from (2.5) that (iii) holds.
Suppose that (iii) holds. Then there exist µn

i ∈NBV[0,1] and k∗n ∈ K∗, i = 1, · · · ,m such that∫ 1

0
[c(t)−q(x̄)d(t)]T (·)dt + lim

n→∞

[
−

m

∑
i=1

∫ 1

0
µ

n
i (t)ai(t)T (·)dt− k∗n

]
= 0

and lim
n→∞

k∗n(x̄) = 0.

Then, for any x ∈4,

0 =
∫ 1

0
[c(t)−q(x̄)d(t)]T (x(t)− x̄(t))dt

+ lim
n→∞

[
−

m

∑
i=1

∫ 1

0
µ

n
i (t)ai(t)T (x(t)− x̄(t))dt− k∗n(x− x̄)

]
=
∫ 1

0
c(t)T x(t)dt +α−q(x̄)

[∫ 1

0
d(t)T x(t)dt +β

]
−
[∫ 1

0
c(t)T x̄(t)dt +α

]
+q(x̄)

[∫ 1

0
d(t)T x̄(t)dt +β

]
+ lim

n→∞

[
−

m

∑
i=1

∫ 1

0
µ

n
i (t)(bi(t)−bi(t))dt− k∗n(x)

]
=
∫ 1

0
c(t)T x(t)dt +α−q(x̄)

[∫ 1

0
d(t)T x̄(t)dt +β

]
−
∫ 1

0
c(t)T x̄(t)dt

− lim
n→∞

k∗n(x).

Since limn→∞ k∗n(x)= 0 for any x ∈4, one has∫ 1

0
c(t)T x(t)dt +α−q(x̄)

[∫ 1

0
d(t)T x(t)dt +β

]
= 0

for any x ∈4. Since x̄ ∈4 and
∫ 1

0 d(t)T x(t)dt +β > 0 for any x ∈4, one has

q(x̄)5
∫ 1

0 c(t)T x(t)dt +α∫ 1
0 d(t)T x(t)dt +β

for any x∈4. In view of q(x̄) =
∫ 1

0 c(t)T x̄(t)dt+α∫ 1
0 d(t)T x̄(t)dt+β

, one has that x̄ is an optimal solution to problem

(P). Thus (i) holds. �

Now we discuss about the closedness of the set in (ii) of Theorem 2.1. Following the proof
of [2, Proposition 2.1], we can prove the following proposition.

Proposition 2.1. Suppose that intK 6= /0. Assume that the following constraint qualifications for
problem (P) hold:

(i) there exists x̂ ∈ intK such that

ai(t)T x̂(t)−bi(t) = 0 i = 1, · · · ,m for any t ∈ [0,1];
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(ii) for any y = (y1, · · · ,ym) ∈Cm[0,1], there exists x̃ ∈Cn[0,1] such that∫ t

0
ai(τ)

T x̃(τ)dτ = yi(t) for any i = 1, · · · ,m and t ∈ [0,1].

Then the set

Λ :=
⋃

µi∈NBV [0,1]

{(
−

m

∑
i=1

∫ 1

0
µi(t)ai(t)T (·)dt, −

m

∑
i=1

∫ 1

0
µi(t)bi(t)dt

)}
+(−K∗)×R+

is closed in Cn[0,1]∗×R.

From Theorem 2.1, we can obtain the following theorem.

Theorem 2.2. Let x̄ ∈4 and assume that for any x ∈4,
∫ 1

0 d(t)T x(t)dt +β > 0. Suppose that
the set ⋃

µi∈NBV[0,1]

{(
−

m

∑
i=1

∫ 1

0
µi(t)ai(t)T (·)dt, −

m

∑
i=1

∫ 1

0
µi(t)bi(t)dt

)}
+(−K∗)×R+

is closed in Cn[0,1]∗×R. Then x̄ is an optimal solution to problem (P) if and only if there exist
µi ∈ NBV[0,1] and k∗ ∈ K∗ such that∫ 1

0

[
c(t)−q(x̄)d(t)−

m

∑
i=1

µi(t)ai(t)
]T

(·)dt− k∗(·) = 0

and k∗(x̄) = 0.

Now we consider linear optimization problem. If α = 0, d = 0, and β = 1, then problem (P)
becomes the following linear optimization problem (LP):

(LP) Minimize
∫ 1

0
c(t)T x(t)dt

subject to x(·) ∈ K,

ai(t)T x(t) = bi(t), i = 1, · · · ,m, for any t ∈ [0,1].

If K =Cn[0,1] (note that intK 6= /0), we can obtain the following theorem.

Theorem 2.3. Let K = Cn[0,1] and x̄ ∈Cn[0,1]. Assume that the following constraint qualifi-
cations hold:

(i) there exists x̂ ∈Cn[0,1] such that ai(t)T x̂(t)−bi(t) = 0, i = 1, · · · ,m for any t ∈ [0,1];
(ii) for any y = (y1, · · · ,ym) ∈Cm[0,1], there exists x̃ ∈Cn[0,1] such that∫ t

0
ai(τ)

T x̃(τ)dτ = yi(t), for any i = 1, · · · ,m and t ∈ [0,1].

Then x̄ is an optimal solution to problem (LP) if and only if

ai(t)T x̄(t) = bi(t), i = 1, · · · ,m, for any t ∈ [0,1]

and there exist µi ∈ NBV[0,1], i = 1, · · · ,m such that c(t)−∑
m
i=1 µi(t)ai(t) = 0 a.e. on [0,1].

Proof. By Proposition 2.1, the set⋃
µi∈NBV[0,1]

{(
−

m

∑
i=1

∫ 1

0
µi(t)ai(t)T (·)dt,−

m

∑
i=1

∫ 1

0
µi(t)bi(t)dt

)}
+{0}×R+
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is closed. So, by Theorem 2.2, x̄ is an optimal solution to problem (LP) if and only if

ai(t)T x̄(t) = bi(t), i = 1, · · · ,m, for any t ∈ [0,1]

and there exists µi ∈ NBV[0,1] such that
∫ 1

0 [c(t)−∑
m
i=1 µi(t)ai(t)]T x(t)dt = 0 for any x ∈

Cn[0,1]. By Theorem 1A.1 (Dubois-Reymond Lemma) in [20], one sees that x̄ is an optimal
solution to problem (LP) if and only if

ai(t)T x̄(t) = bi(t), i = 1, · · · ,m, for any t ∈ [0,1]

and there µi ∈ NBV[0,1] such that c(t)−∑
m
i=1 µi(t)ai(t) = 0 a.e. on [0,1]. �

3. EXAMPLE

Now we give an example to demonstrate that the set Λ in Proposition 2.1 may not be closed
and illustrate how to use the optimality condition (iii) in Theorem 2.1 to find the optimal solu-
tions.
Example 3.1. Let K = {(x1,x2,x3) ∈ C3[0,1] | x1(t) =

√
x2(t)2 + x3(t)2, ∀t ∈ [0,1]}. Then

K is a closed convex cone in C3[0,1]. Let a1(t) = (1,0,−1), ∀t ∈ [0,1] and b1(t) = 0, ∀t ∈
[0,1]. Let Λ =

⋃
u1∈NBV [0,1]{(−

∫ 1
0 u1(t)a1(t)T (·)dt,−

∫ 1
0 u1(t)b1(t)dt)}+(−K∗)×R+, where

NBV [0,1] = {u | u : [0,1]→ R : a function of bounded variation, left continuous on [0,1) and
u(1) = 0}. Then Λ⊂C3[0,1]∗×R, where C3[0,1]∗ is the topological dual space of C3[0,1].

Now we show that Λ may not be closed. Let a∗(·)=
∫ 1

0 (0,−1,0)T (·)dt, that is, a∗(x1,x2,x3)=∫ 1
0 (−x2(t))dt ∀(x1,x2,x3)∈C3[0,1]. Suppose to the contrary that (a∗,0)∈Λ. Then there exists

u1 ∈ NBV [0,1] such that a∗ ∈ {−
∫ 1

0 u1(t)a1(t)T (·)dt}+(−K∗). Thus,∫ 1

0
(0,−1,0)T (·)dt +

∫ 1

0
u1(t)a1(t)T (·)dt ∈ −K∗

and hence ∫ 1

0
(u1(t),−1,−u1(t))T (·)dt ∈ −K∗.

It follows that ∫ 1

0

[
−u1(t)x1(t)+ x2(t)+u1(t)x3(t)

]
dt = 0 ∀(x1,x2,x3) ∈ K,

which implies that, for any (a,b,c) ∈ K̃ := {(a,b,c) ∈ R3 | a=
√

b2 + c2},

05 a
∫ 1

0
(−u1(t))dt +b ·1+ c

∫ 1

0
u1(t)dt.

Since K̃ is self-dual, one has (
∫ 1

0 (−u1(t))dt,1,
∫ 1

0 u1(t)dt) ∈ K̃. Thus∫ 1

0
(−u1(t))dt =

√
12 +(

∫ 1

0
u1(t)dt)2,

which is a contradiction. Hence (a∗,0) 6∈ Λ.
Now we prove that (a∗,0) ∈ clΛ, where clΛ is the closure of Λ. Let

k∗n(·) =
∫ 1

0

(√
n2(1− t)2 +(1+

1
n(1+ t)

)2,1+
1

n(1+ t)
,−n(1− t)

)T
(·)dt.
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Notice that

∀t ∈ [0,1],
(√

n2(1− t)2 +(1+
1

n(1+ t)
)2,1+

1
n(1+ t)

,−n(1− t)
)
∈ K̃.

So, ∀(x1,x2,x3) ∈ K and ∀t ∈ [0,1],√
n2(1− t)2 +(1+

1
n(1+ t)

)2x1(t)+(1+
1

n(1+ t)
)x2(t)−n(1− t)x3(t)= 0.

Hence, ∀(x1,x2,x3)∈K, k∗n(x1,x2,x3)= 0 and so k∗n ∈K∗. Let un
1(t) =−n(1− t) ∀t ∈ [0,1], and

let a∗n(·) =
∫ 1

0 (−un
1(t))a1(t)T (·)dt− k∗n(·). Then un

1 ∈ NBV [0,1] and

a∗n(·) =
∫ 1

0
n(1− t)(1,0,−1)T (·)dt− k∗n(·)

=
∫ 1

0

(
n(1− t)−

√
n2(1− t)2 +(1+

1
n(1+ t)

)2,−1− 1
n(1+ t)

,0
)T

(·)dt.

So, we have,

‖a∗n−a∗‖= sup
‖x‖51

|(a∗n−a∗)(x)|

= sup
‖x‖51

|
∫ 1

0
(n(1− t)−

√
n2(1− t)2 +(1+

1
n(1+ t)

)2,− 1
n(1+ t)

,0)T

(x1(t),x2(t),x3(t))dt|

5 sup
‖x‖51

|
∫ 1

0
(n(1− t)−

√
n2(1− t)2 +(1+

1
n(1+ t)

)2)x1(t)dt

+ sup
‖x‖51

|
∫ 1

0

1
n(1+ t)

x2(t)|dt

5
∫ 1

0
|n(1− t)−

√
n2(1− t)2 +(1+

1
n(1+ t)

)2 |dt +
∫ 1

0

1
n(1+ t)

dt

=
∫ 1

0

(1+ 1
n(1+t))

2

n(1− t)+
√

n2(1− t)2 +(1+ 1
n(1+t))

2
dt +

1
n

log2.

Let ϕn(t) =
(1+ 1

n(1+t) )
2

n(1−t)+
√

n2(1−t)2+(1+ 1
n(1+t) )

2
, t ∈ [0,1]. Then

|ϕn(t)|5
(1+ 1

n(1+t))
2√

(1+ 1
n(1+t))

2
5 2, ∀t ∈ [0,1],

and limn→∞ ϕn(t) = 0, ∀t ∈ [0,1). By Lebesque Convergence theorem,

lim
n→∞

∫ 1

0
ϕn(t)dt =

∫ 1

0
lim
n→∞

ϕn(t)dt = 0.
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Thus

lim
n→∞
‖a∗n−a∗‖= 0 (3.1)

and so (a∗n,0) converges to (a∗,0). Since (a∗n,0) ∈ Λ, one has (a∗,0) ∈ clΛ. Since (a∗,0) 6∈ Λ,
one has that Λ is not closed.

Now we consider the following linear optimization problem:

(MP) Minimize(x1,x2,x3)∈C3[0,1]

∫ 1

0
x2(t)dt

subject to x1(t)− x3(t) = 0

x1(t)=
√

x2(t)2 + x3(t)2 ∀t ∈ [0,1].

Let c(t) = (0,1,0). Then the problem becomes:

Minimize(x1,x2,x3)∈C3[0,1]

∫ 1

0
c(t)T x(t)dt

subject to a1(t)T x(t) = b1(t)

x ∈ K.

Let

4= {(x1,x2,x3) ∈C3[0,1] | x1(t)− x3(t) = 0, x1(t)=
√

x2(t)2 + x3(t)2, ∀t ∈ [0,1]}.

Then

4= {(x1,x2,x3) ∈C3[0,1] | x1(t) = x3(t), x1(t)= 0, x2(t) = 0, ∀t ∈ [0,1]}.

Clearly 4 is the set of solutions to problem (MP) and the optimal value of problem (MP) is 0.
Let (x̃1, x̃2, x̃3) ∈4 be any fixed. It follows from (3.1) that∫ 1

0
c(t)T (·)dt + lim

n→∞

[
−
∫ 1

0
un

1(t)a1(t)(·)dt− k∗n(·)
]

=
∫ 1

0
(0,1,0)T (·)dt + lim

n→∞

[∫ 1

0
n(1− t)(1,0,−1)T (·)dt

−
∫ 1

0

(√
n2(1− t)2 +(1+

1
n(1+ t)

)2,1+
1

n(1+ t)
,−n(1− t)

)T
(·)dt

]
= 0

and

lim
n→∞

k∗n(x̃1, x̃2, x̃3) = lim
n→∞

∫ 1

0

(√
n2(1− t)2 +(1+

1
n(1+ t)

)2 x̃1(t)

+(1+
1

n(1+ t)
)x̃2(t)−n(1− t)x̃3(t)

)
dt

= lim
n→∞

∫ 1

0

(√
n2(1− t)2 +(1+

1
n(1+ t)

)2−n(1− t)
)

x̃3(t)dt.
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Let

ψn(t) =

√
n2(1− t)2 +(1+

1
n(1+ t)

)2−n(1− t).

Then there exists M > 0 such that |ψn(t)x̃3(t)| 5 M, ∀t ∈ [0,1] and limn→∞ ψn(t)x̃3(t) = 0,
∀t ∈ [0,1). By the Lebesque Convergence Theorem, one has

lim
n→∞

k∗n(x̃1, x̃2, x̃3) =
∫ 1

0
lim
n→∞

(√
n2(1− t)2 +(1+

1
n(1+ t)

)2−n(1− t)
)

x̃3(t)dt = 0.

From Theorem 2.1, one sees that (x̃1, x̃2, x̃3) ∈4 is an optimal solution to problem (MP).
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