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Abstract. In the present paper, we investigate a problem, describing the deformations process for the
Stieltjes strings system located along a geometric star - shaped graph under the influence of an external
force. The case when the force can be concentrated at separate points, including a node of the graph, is
considered. The non-linear condition arises due to the presence of a limiter on the strings displacement
in the node. Using variational methods, the necessary and sufficient conditions for the extremum of an
energy functional are established; existence and uniqueness theorems for the solution are proved; an
explicit formula for the solution is obtained; and the dependence solution on the length of the limiter is
studied.

Keywords. Energy functional; Function of bounded variation; Geometric graph; Stieltjes integral.

1. INTRODUCTION

The mathematical models are described in terms of a branching argument, i.e., the argument
taking values from some geometric graph arise in the analysis of processes in complex physical
systems. The examples of such systems are given by elastic meshes, rod lattices, electrical
circuits, acoustic networks, waveguides, hydraulic systems, and so on. Active mathematical
interest to study such problems has led to a large number of related papers. Here, we refer to
[1]-[16]. However, in all these works, only the problems with linear boundary conditions were
considered.

In the present paper, we study a boundary value problem on a star - shaped graph, consisting
of n one-dimensional segments of length li, connected at one point (called a node), with a
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nonlinear condition at the node. This problem has the form
−(piu′i)(x)+

∫ x

0
ui dQi = Fi(x)−Fi(+0)− (piu′i)(+0), i = 1,2, ...,n,

n
∑

i=1
pi(+0)u′i(+0)+ f ∈ N[−m,m]u(0),

u1(0) = u2(0) = ...= un(0) = u(0),
(piu′i)(li−0)+ γiui(li) = fi, i = 1,2, ...,n.

(1.1)

Problem (1.1) describes the deformations process for a system of n Stieltjes strings located in
an equilibrium position along this graph. Here the functions ui(x) determine the deformations
of each string; Fi(x) describe the distribution of the external force; and f is equal to the external
force concentrated at x = 0. The functions pi(x) characterize the elasticity of strings; Qi(x)
describe the elastic response of the environment; fi are equal to the external forces concentrated
at the points li; and γi coincide with the elasticity of the springs attached to the points li (i =
1,2, ...,n). Here N[−m,m]u(0) denotes the outward normal cone at the point u(0) to the segment
[−m,m], defined by the number set

N[−m,m]u(0) = {ξ ∈ R : ξ (c−u(0))≤ 0 ∀c ∈ [−m,m]}.
The nonlinear condition

n

∑
i=1

pi(+0)u′i(+0)+ f ∈ N[−m,m]u(0) (1.2)

arises due to the presence of a limiter, represented by the segment [−m,m], on the displacement
of strings in the node, i.e., we assume |u(0)| ≤ m. From (1.2), it follows that if the external

force is such that the inequality |u(0)| < m holds, then
n
∑

i=1
pi(+0)u′i(+0) = − f . Otherwise, if

u(0) = m, then
n
∑

i=1
pi(+0)u′i(+0)+ f ≥ 0, and if u(0) =−m, then

n
∑

i=1
pi(+0)u′i(+0)+ f ≤ 0.

The paper is structured as follows. The second section contains necessary definitions and
results. The third section contains an exact description of the investigated problem and a proof
of the necessary condition for a potential energy functional extremum. In the fourth section,
the main results of the paper are established. In particular, the existence and uniqueness theo-
rems for the solution are proved, a sufficient condition for the energy functional extremum is
established, and the dependence solution on the length of the limiter is analyzed.

2. PRELIMINARIES

In this section, we recall some notions and facts which we need in the sequel.
We assume that the star-shaped graph Γ is oriented from the node and consists of segments,

parameterized as [0, li], numbered arbitrarily (i = 1,2, ....,n). The point 0 (node) corresponds to
the inner vertex of the graph, the points li correspond to the boundary vertices of the graph, and
the intervals (0, li) are the edges of the graph. Denote by ∂Γ the set of boundary vertices of the
graph; ϒi is the graph edge(i = 1,2, ....,n); and R(Γ) =

⋃n
i=1 ϒi. A scalar function z(x) defined

on a graph Γ is a map z : Γ→ R. The restriction of z(x) to (0, li] is denoted by zi(x).
We say that a function z(x) defined on the edge ϒi has bounded variation on this edge if

1) the function z(x) has finite one-sided limits at the boundary points x = 0 and x = li of the
edge ϒi;
2) there is a constant ci such that for any partition of the edge ϒi by points 0 = xi

0 < xi
1 < ... <
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xi
ni
= li the sum

ni−1
∑
j=0
|z(xi

j+1)− z(xi
j)| ≤ ci (at the boundary points of the edge, the function z is

determined by its limit values)
The jump of the function z at the boundary vertex a∈ ∂Γ is defined as ∆z(a)= z(a)−z(a−0);

the jump of the function z at any interior point ξ of the graph edge is equal to ∆z(ξ ) = z(ξ +0)−
z(ξ −0); and the jump of the function at the node is defined as ∆z(0) =

n
∑

i=1
(zi(0+0)− z(0)).

We say that a function z(x) defined on Γ is absolutely continuous on Γ if it is absolutely
continuous on every edge ϒi, and if it is continuous at the node, i.e., the one-sided limits along
the edges coincide with z(0), finally, if it is continuous at points from ∂Γ.

The integro - differential equation

− (p̃v′)(x)+
∫ x

0
vdQ̃ = F̃(x)− F̃(0)− (p̃v′)(+0), x ∈ [0, l]

σ
, (2.1)

introduced in [17] and [18], will play an important role in this paper. The solutions of Equation
(2.1) belong to the class of absolutely continuous functions on [0, l], whose derivatives have
bounded variation on [0, l]. We assume that the functions p̃, F̃ , Q̃ have bounded variation on the
segment [0, l] and inf[0,l] p̃ > 0; and functions p̃, F̃ , Q̃ are continuous at points x = 0 and x = l.
We need to explain the set [0, l]

σ
, which x belongs to, so that Equation (2.1) has the correct

meaning at singular points, where the derivative v′(x) and the functions p̃, F̃ , and Q̃ can be
discontinuous. Let us describe the construction from [17, 18] for the definition of the extension.
Denote by S the set of all points at which the functions p̃, F̃ , and Q̃ have non-zero simple
jumps, that is distinct left-hand and right-hand limits. Consider the Jordan representation of the
bounded variation functions p̃, Q̃, F̃ in the form p̃= p̃+− p̃−, Q̃= Q̃+−Q̃−, and F̃ = F̃+− F̃−.
Denote by σ(x) the following sum of nondecreasing functions

σ(x) = x+ p̃+(x)+ p̃−(x)+ Q̃+(x)+ Q̃−(x)+ F̃+(x)+ F̃−(x).

Without loss of generality, we can assume that function σ(x) has discontinuities only at the
points of the set S. Let us introduce the metric ρ(x,y) = |σ(x)−σ(y)| on the set [0, l] \ S. If
S 6= /0, then this metric space is obviously not complete. Its standard metric completion coincides
(up to isomorphism) with [0, l]

σ
and induces a topology on this space. Thus, each discontinuity

point ξ of functions p̃, F̃ , and Q̃ is replaced on [0, l]
σ

by the pair of points denoted as {ξ −
0,ξ +0}. We will define at these points the functions p̃, Q̃, F̃ by limit values, i.e., we suppose
p̃(ξ ± 0) = lim

x→ξ±0
p̃(x), F̃(ξ ± 0) = lim

x→ξ±0
F̃(x), and Q̃(ξ ± 0) = lim

x→ξ±0
Q̃(x). We suppose

ξ −0 > x for any x < ξ and ξ +0 < x for any x > ξ . On [0, l]
σ

, the values p̃(ξ ±0), Q̃(ξ ±0)
and F̃(ξ ± 0) which were limit values on [0, l] now become true values at the corresponding
points of [0, l]

σ
. The continuity of the function v(·) enables us to preserve the usual Rimann –

Stieltjes meaning for the integral term in (2.1) at x = ξ −0 and x = ξ +0, regarding the previous
limit values as true values.

Thus, we consider Equation (2.1) in two layers: the lower level is for the values x ∈ [0, l],
when speaking about the solutions v(x) themselves (under the integral), and the second level is
for the values x in (2.1), where x ∈ [0, l]

σ
.
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Notice that at each point ξ ∈ S the equality

−p̃(ξ +0)v′(ξ +0)+ p̃(ξ −0)v′(ξ −0)+ v(ξ )(Q̃(ξ +0)− Q̃(ξ −0)) = F̃(ξ +0)− F̃(ξ −0)

holds. According to [18, Theorem 1.4],

v′(ξ +0) = lim
x→ξ+0

v′(x) = lim
ε→0+0

v(ξ + ε)− v(ξ )
ε

= v′+(ξ ),

and

v′(ξ −0) = lim
x→ξ−0

v′(x) = lim
ε→0−0

v(ξ + ε)− v(ξ )
ε

= v′−(ξ ).

We will use the following results.

Lemma 2.1. ([17, Lemma 3.1]) Let A(x) be a function of bounded variation on [0, l]. Assume
that for any absolutely continuous function h(x) on [0, l], whose derivative h′(x) has bounded

variation on [0, l], such that h(0) = h(l) = 0, we have
∫ l

0
Adh = 0. Thus for all x ∈ (0, l) the

identity A(x−0) = A(x+0)≡ const holds.

Theorem 2.1. ([18, Theorem 1.5]) For any numbers v0, w0 and for any point x0 ∈ [0, l]
σ

the
problem 

−(p̃v′)(x)+(p̃v′)(0)+
∫ x

0
vdQ̃ = F̃(x)− F̃(0),x ∈ [0, l]

σ

v(x0) = v0,
v′(x0) = w0.

has a unique solution.

Let us consider the homogeneous equation

−
(

p̃v′
)
(x)+

(
p̃v′
)
(0)+

∫ x

0
vdQ̃ = 0. (2.2)

Lemma 2.2. ([18, Lemma 1.1]). The space of solutions of Equation (2.2) is two-dimensional.

Lemma 2.3. ([18, Proposition 2.1]). Every non-trivial solution of Equation (2.2) can have only
a finite number of zeros on [0, l].

Lemma 2.4. ([18, Proposition 2.2]). Let the function Q̃ be non-decreasing on [0, l]. Then every
non-trivial solution of Equation (2.2) either does not have zeroes on [0, l] or has only one zero
on [0, l].

Theorem 2.2. ([18, Theorem 2.1]). For any pair of solutions ϕ1, ϕ2 to Equation (2.2), the
equality p(x)(ϕ1(x)ϕ ′2(x)−ϕ2(x)ϕ ′1(x))≡ const holds on [0, l]

σ
.

Let G⊂ H be a closed convex set, where H is a Hilbert space and x ∈ G. The set

NG(x) = {ξ ∈ H : 〈ξ ,c− x〉 ≤ 0 ∀c ∈ G}

denotes the outward normal cone to G at the point x. Notice that if x is an interior point of G,
then NG(x) = {0}. If G= [−m,m], where m> 0, then NG(m) = [0,+∞) and NG(−m) = (−∞,0].
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3. VARIATIONAL MOTIVATION OF OUR APPROACH

Let points O, A1, A2,..., An belong to a horizontal plane π . Consider a mechanical system
consisting of n strings, which in the equilibrium position are segments OA1, OA2, ..., OAn.
The ends of the strings are interconnected at the point O (the node). Under the influence of
an external force, which is directed perpendicular to the π plane, the strings deviate from the
equilibrium position. We assume that the deviation of all points of the strings is parallel to
the same line, which is perpendicular to the plane π and consider small deviations from the
equilibrium position. Let us introduce a coordinate system to describe the deformation process.
The Ox axis for the i-th string (i = 1,2, ...,n) contains the segment OAi and is directed from
O to Ai. The axis Oy is directed perpendicular to the plane π and passes through the point O.
Thus, the point O corresponds to the origin of coordinates. The point Ai has on its axis Ox
the coordinate li (i = 1,2, ...,n). The graph Γ is oriented from the node and consists of edges
- intervals ϒi = (0, li), internal vertex 0 ( the node) and boundary vertices li. Denote by u(x)
(x ∈ Γ) the function, which describes the deviation of the string system from the equilibrium
position under the influence of an external force, defined by the function F(x). We suppose
that the strings are elastically fixed at the boundary vertices (with the help of springs γi). At
the same time, elastic supports (springs) can also be installed at any number of points (but not
more than countable) belonging to the edges. The restrictions ui(x) of the function u(x) to (0, li]
determine the deformations of each string. We use a natural parameter as an argument, i.e., the
distance from the corresponding point to the node. Denote by Fi(x) the restriction of F(x) to
(0, li]. The physical meaning of Fi(x) is the force applied to (0,x]. A concentrated force equal
to f is allowed at the point x = 0. Notice that the jumps of the function F are equal to the forces
concentrated at the corresponding points. Denote by Q(x) the function describing the elastic
response of the external medium. Its jumps coincide with the elasticity of the springs installed
at the corresponding points. Denote by p(x) the function characterizing the elastic properties of
strings. We will denote by Qi and pi the restrictions of the functions Q and p to (0, li]. We also
assume that at the node, along the Oy axis, there is a limiter on the displacement of the strings,
represented by a segment [−m,m]. Thus, we have the condition |u(0)| ≤ m. Depending on the
applied external force, the nodal point of the string system either remains inside the interval
(−m,m), or touches the boundaries of the limiter. Let us describe this situation in the form of a
general model.

According to [12], the potential energy functional for the Stieltjes strings system has the form

Φ(u) =
∫

Γ

pu′
2

2
dx+

∫
Γ

u2

2
dQ−

∫
Γ

udF. (3.1)

We suppose that functions p, Q, F satisfy the conditions:
(i) functions p and F have bounded variation on each edge, and infR(Γ) p > 0;
(ii) function Qi does not decrease on each interval (0, li], where i = 1,2, ...,n; ∆Qi(li) = γi > 0;

and
n
∑

i=1
(Qi(0+0)−Q(0)) = 0.

(iii)
n
∑

i=1
(Fi(0+0)−F(0)) = f , ∆Fi(li) = fi, where i = 1,2, ...,n.

In (3.1), we understand the first integral, characterizing the work of the string elasticity force
as the sum of the Lebesgue integrals over the edges; the second integral, defining the work of
the elastic force of the external environment, is equal to the corresponding sums of the Stieltjes
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integrals over the edges plus integrals over the boundary vertices. Finally, we understand the
third integral, defining the work of the external force, as the corresponding sums of the Stieltjes
integrals over the edges, plus the integrals over the node and boundary vertices. According to
the Lagrange-Hamilton principle, the real form of the strings system minimizes the functional
Φ(u). We consider the case when the restriction

|u(0)| ≤ m (3.2)

holds. The functional Φ(u) with Condition (3.2) we consider on the set E of absolutely con-
tinuous on Γ functions u(x), whose derivatives u′i(x) (i = 1,2, ...,n) are functions of bounded
variation on each edge.

Let a function u0(x) minimize the functional Φ(u) with Condition (3.2). Then Φ(u0)≤Φ(u)
for all u ∈ E, satisfying (3.2). Consider functions h ∈ E such that h(a) = 0, where a ∈ ∂Γ,
h(0) = 0. Suppose u(x) = u0(x)+λh(x). Notice that u∈E, |u(0)|= |u0(0)| ≤m. Thus Φ(u0)≤
Φ(u0+λh). Fixing h, we consider the function ϕh(λ ) of the real variable λ defined as ϕh(λ ) =
Φ(u0 +λh). Then, for all λ ∈ R, ϕh(0)≤ ϕh(λ ), and by Fermat’s theorem, d

dλ
ϕh(λ )|λ=0 = 0.

The last equality can be rewritten as∫
R(Γ)

pu′0h′ dx+
∫

R(Γ)
u0hdQ+ ∑

a∈∂Γ

u0(a)h(a)∆Q(a)−
∫

R(Γ)
hdF− f h(0)− ∑

a∈∂Γ

h(a)∆F(a) = 0.

(3.3)
With respect to h(0) = 0 and h(a) = 0, where a ∈ ∂Γ, we obtain∫

R(Γ)
pu′0h′ dx+

∫
R(Γ)

u0hdQ−
∫

R(Γ)
hdF = 0. (3.4)

Denoting by pi, Qi, and Fi the restrictions of p, Q, and F to (0, li], we redefine the functions pi,
Qi and Fi at the points 0 and li by limit values. Denote by gi(x) =

∫ x
0 u0i dQi,(i = 1,2, ...,n). Let

us consider
∫

R(Γ)u0hdQ. We have∫
R(Γ)

u0hdQ =
n

∑
i=1

∫ li

0
hiu0i dQi =

n

∑
i=1

(higi)|li0−
n

∑
i=1

∫ li

0
gi dhi.

Since hi(li) = hi(0) = 0, we obtain∫
R(Γ)

u0hdQ =−
n

∑
i=1

∫ li

0
gi dhi.

Similarly, ∫
R(Γ)

hdF =−
n

∑
i=1

∫ li

0
Fi dhi.

Then Equality (3.4) has the form
n

∑
i=1

∫ li

0
(piu′0i−

∫ x

0
u0i dQi +Fi )dhi = 0. (3.5)

Equality (3.5) is true for all functions h ∈ E, satisfying the conditions hi(0) = hi(li) = 0, i =
1,2, ...,n. Let us consider the functions h such that h1(0) = h1(l1) = 0, hi(x)≡ 0, for i≥ 2. For
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such functions, (3.5) has the form∫ l1

0
(p1u′01−

x∫
0

u01dQ1 +F1)dh1 = 0. (3.6)

Applying Lemma 2.1 to Equality (3.6), we obtain

(p1u′01)(x)−
∫ x

0
u01 dQ1 +F1(x) = c1 = const,

which can be rewritten as

(p1u′01)(x)−
∫ x

0
u01 dQ1 +F1(x) = F1(+0)+(p1u′1)(+0).

Similarly, we obtain that, for all numbers i = 1,2, ...,n, the equalities

(piu′0i)(x)−
∫ x

0
u0i dQi +Fi(x) = ci = const (3.7)

hold, or

−
(

piu′0i
)
(x)+

∫ x

0
u0i dQi = Fi(x)−Fi(+0)− (piu′0i)(+0),x ∈ ϒiσi, i = 1,2, ...,n. (3.8)

We emphasize that in (3.8) the functions pi, Qi and Fi are extended to the segment [0, li] by limit
values. Thus we have the equations on each edge. Here we denote by σi(x) the function

σi(x) = x+ p+i (x)+ p−i (x)+Qi(x)+F+
i (x)+F−i (x), (3.9)

p+i (x), p−i (x), F+
i (x), and F−i (x) are non-decreasing functions from the Jordan representation of

bounded variation functions pi(x) = p+i (x)− p−i (x), Fi(x) = F+
i (x)−F−i (x); and ϒiσi = [0, li]σi

.
Returning to Equality (3.3), we consider the functions h∈E such that h(0) = 0. Let us represent
(3.3) as

n

∑
i=1

∫
(0,li)

(piu′0i−
∫ x

0
u0i dQi +Fi)dhi +

n

∑
i=1

hi(li)
∫
(0,li)

u0i dQi−
n

∑
i=1

hi(li)Fi(li−0) (3.10)

+
n

∑
i=1

u0i(li)hi(li)γi−
n

∑
i=1

hi(li) fi = 0.

Let us rewrite Equality (3.7) as

(piu′0i)(x)−
∫ x

0
u0i dQi +Fi(x) = (piu′0i)(li−0)−

∫
(0,li)

u0i dQi +Fi(li−0). (3.11)

Substitute this representation to (3.10), we have
n

∑
i=1

∫
(0,li)

((piu′0i)(li−0)−
∫
(0,li)

u0i dQi +Fi(li−0))dhi +
n

∑
i=1

hi(li)
∫
(0,li)

u0i dQi−

−
n

∑
i=1

hi(li)Fi(li−0)+
n

∑
i=1

u0i(li)hi(li)γi−
n

∑
i=1

hi(li) fi = 0.

Hence
n

∑
i=1

(
(piu′0i)(li−0)+ γiu0i(li)− fi

)
hi(li) = 0,
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and due to the arbitrariness of the values of hi(li), we have the equalities

(piu′0i)(li−0)+ γiu0i(li) = fi (3.12)

for all i = 1,2, ...,n.
Let us fix any number c ∈ [−m,m]. Consider functions h ∈ E such that h(0) = c− u0(0).

Functions of the form u = u0 +λh belong to the class E. Consider the condition at the node.
We have

u(0) = u0(0)+λh(0) = u0(0)+λ (c−u0(0)) = λc+(1−λ )u0(0).

Since c ∈ [−m,m], u0(0) ∈ [−m,m], and the segment [−m,m] is a convex set, we have u(0) ∈
[−m,m] for all λ ∈ [0,1]. Hence, for λ ∈ [0,1], the inequality Φ(u0)≤Φ(u0+λh) holds. Fixing
the function h indicated above, we introduce the function ϕh(λ ) =Φ(u0+λh), where λ ∈ [0,1].
Then ϕh(0)≤ ϕh(λ ). Hence, for the right derivative, we have the inequality d+

dλ
ϕh(λ )|λ=0 ≥ 0,

that is,
n

∑
i=1

∫
(0,li)

(piu′0i−
∫ x

0
u0i dQi +Fi)dhi +

n

∑
i=1

hi(li)
∫
(0,li)

u0i dQi−

−
n

∑
i=1

hi(li)Fi(li−0)+
n

∑
i=1

hi(0)Fi(+0)+
n

∑
i=1

u0i(li)hi(li)γi−
n

∑
i=1

hi(li) fi− f h(0)≥ 0.

Due to Equality (3.11), we have
n

∑
i=1

(
(piu′0i)(li−0)+ γiu0i(li)− fi

)
hi(li)−

−
n

∑
i=1

(
(piu′0i)(li−0)−

∫
(0,li)

u0i dQi +Fi(li−0)
)

hi(0)+
n

∑
i=1

hi(0)Fi(+0)− f h(0)≥ 0.

It follows from Equalities (3.7) that

(piu′0i)(li−0)−
∫
(0,li)

u0i dQi +Fi(li−0) = (piu′0i)(+0)+Fi(+0).

Thus, due to (3.12), we obtain −
n
∑

i=1
(piu′0i)(+0)hi(0)− f h(0)≥ 0, Taking into account hi(0) =

h(0) = c− u0(0), we rewrite the last inequality as −(
n
∑

i=1
(piu′0i)(+0)+ f )(c− u0(0)) ≥ 0, that

is,
n

∑
i=1

(piu′0i)(+0)+ f ∈ N[−m,m](u0(0)). (3.13)

Thus, the following theorem has been proved.

Theorem 3.1. Let the function u0 minimize the functional Φ(u) with Condition (3.2). Then
u0(x) is a solution to the problem

−(piu′i)(x)+
∫ x

0
ui dQi = Fi(x)−Fi(+0)− (piu′i)(+0), i = 1,2, ...,n, x ∈ ϒiσi

n
∑

i=1
pi(+0)u′i(+0)+ f ∈ N[−m,m]u(0),

u1(0) = u2(0) = ...= un(0) = u(0),
(piu′i)(li−0)+ γiui(li) = fi, i = 1,2, ...,n.

(3.14)
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It follows from the equation in (3.14) that, at each point ξi ∈ ϒi where at least one of the
functions pi, Qi and Fi is discontinuous, the equality

−pi(ξi +0)u′i(ξi +0)+ pi(ξi−0)u′i(ξi−0)+ui(ξi)∆Qi(ξi) = ∆Fi(ξi)

holds. The jump ∆Qi(ξi) corresponds to the elasticity of the support (spring) fixed at the point
ξi of the edge with number i; and the jump ∆Fi(ξi) is equal to the force concentrated at the point
ξi. Notice that Problem (3.14) can be rewritten as

− d
dΓ

(pu′)(x)+
dQ
dΓ

(x)u(x) =
dF
dΓ

(x), x ∈ Rσ (Γ)

d(pu′)
dΓ

(0)+
dF
dΓ

(0) ∈ N[−m,m]u(0),
(3.15)

where

d
dΓ

(pu′)(x) =


d

dσi
(piu′i)(x), x 6= 0

n
∑

i=1
pi(+0)u′i(+0), x = 0,

dQ
dΓ

=


dQi

dσi
(x), x 6= 0

0, x = 0,

and

dF
dΓ

=


dFi

dσi
(x), x 6= 0

f , x = 0.

The designation d
dσi

means differentiation with respect to σi-measure, generated on each interval
(0, li] by the corresponding increasing function σi(x) defined by (3.9). If ξi is a discontinuity
point of σi(x), then

d
dσi

(piu′i)(ξi) =
(piu′i)(ξi +0)− (piu′i)(ξi−0)

σi(ξi +0)−σi(ξi−0)
=

∆(piu′i)(ξi)

∆σi(ξi)
;

dQi

dσi
(ξi) =

∆Qi(ξi)

∆σi(ξi)
;

dFi

dσi
(ξi) =

∆Fi(ξi)

∆σi(ξi)
.

If ξi = li, then
d

dσi
(piu′i)(li) =

−(piu′i)(li−0)
σi(li)−σi(li−0)

;

dQi

dσi
(li) =

Qi(li)−Qi(li−0)
σi(li)−σi(li−0)

=
γi

∆σi(li)
;

and
dFi

dσi
(li) =

Fi(li)−Fi(li−0)
σi(li)−σi(li−0)

=
fi

∆σi(li)
.

Thus, the condition (pu′)(a− 0)+ u(a)∆Q(a) = ∆F(a), where a ∈ ∂Γ, follows immediately
from the equation. The solution u of Problem (3.15) belongs to E, so the continuity condition at
the node is immediately included in the class of admissible solutions. The set Rσ (Γ) is a formal
union of the sets ϒiσi (i = 1,2, ...,n) with all possible discontinuity points p, Q, F , except for
the node.
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4. MAIN RESULTS

In all results, it is assumed that conditions (i), (ii) and (iii) hold. Consider Problem (3.14). A
solution to Problem (3.14) is a function u ∈ E, satisfying Equations (3.8) on the corresponding
edges (for all x ∈ [0, li]σi

), and satisfying Conditions (3.12), (3.13).

Lemma 4.1. Let us fix an arbitrary number i. Any non-trivial solution of the equation

−
(

piu′i
)
(x)+

∫ x

0
ui dQi =−(piu′i)(+0), (4.1)

satisfying the condition

(piu′i)(li−0)+ γiui(li) = 0, x ∈ [0, li]σi
(4.2)

does not have any zeros on the segment [0, li].

Proof. Let ui(x) be a non-trivial solution to Equation (4.1). If ui(li) = 0, then u′i(li−0) = 0 and
ui(x)≡ 0. Assume ui(li)> 0, and denote by ξi the nearest zero to li of the function ui(x). Then
ui(x)> 0, where x ∈ (ξi, li]. Thus u′i(ξi+0)> 0, and Identity (4.1) provides a strict positivity of
the function u′i(x) everywhere to the right of ξi. Thus pi(li−0)u′i(li−0)> 0, but it contradicts
(4.2). The case ui(li)< 0 can be considered similarly. The lemma is proved. �

Theorem 4.1. If a solution to Problem (3.14) exists, then it is unique.

Proof. Let v(x) and w(x) be solutions to Problem (3.14). Consider the function u(x) = w(x)−
v(x), which satisfies the system{

−(piu′i)(x)+
∫ x

0
ui dQi =−(piu′i)(+0), i = 1,2, ...,n,

(piu′i)(li−0)+ γiui(li) = 0, i = 1,2, ...,n.

Suppose that for some number i the function ui(x) is non-zero. Then, according to Lemma 4.1,
the function ui(x) preserves the sign on [0, li]. Assume that ui(x) > 0 for all x ∈ [0, li]. Since
u1(0) = ... = ui(0) = ... = un(0) = u(0), we have u j(0) > 0 for all numbers j = 1,2, ...,n. It
follows from Lemma 4.1 that u j(x)> 0, where x ∈ [0, l j] ( j = 1,2, ...,n). Since γi > 0, we have

u′j(l j−0)< 0. At the same time,−
(

p ju′j
)
(x) =

∫ l j
x u j dQ j−(p ju′j)(l j−0). Hence (p ju′j)(x)<

0. Thus the inequality (p ju′j)(+0)< 0 holds for all numbers j = 1,2, ...,n. On the other hand,
since

n

∑
i=1

(piw′i)(+0)+ f ∈ N[−m,m](w(0)),
n

∑
i=1

(piv′i)(+0)+ f ∈ N[−m,m](v(0)),

the inequalities

(
n

∑
i=1

(piw′i)(+0)+ f )(c−w(0))≤ 0, (
n

∑
i=1

(piv′i)(+0)+ f )(c− v(0))≤ 0

hold for all c ∈ [−m,m]. Taking c = v(0) in the first inequality and c = w(0) in the second
inequality, we have

(
n

∑
i=1

(piw′i)(+0)+ f )(v(0)−w(0))≤ 0,
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and

−(
n

∑
i=1

(piv′i)(+0)+ f )(v(0)−w(0))≤ 0.

Adding the last two inequalities, we obtain
n

∑
i=1

((piw′i)(+0)− (piv′i)(+0))(v(0)−w(0))≤ 0.

Thus ∑
n
i=1(piu′i)(+0)u(0)≥ 0, but it contradicts the inequalities (piu′i)(+0)< 0 (i = 1,2, ...,n),

u(0) > 0. Similarly, the case ui(x) < 0 on [0, li] is not possible. So u(x) ≡ 0. The theorem is
proved. �

Theorem 4.2. Let the functions ϕ i
1(x) and ϕ i

2(x) be solutions of the equation

− (piu′i)(x)+(piu′i)(+0)+
∫ x

0
ui dQi = 0 (4.3)

and satisfy the conditions ϕ i
1(0) = 1, (piϕ

i′
1 )(li−0)+ γiϕ

i
1(li) = 0; and ϕ i

2(0) = 0, (piϕ
i′
2 )(li−

0)+ γiϕ
i
2(li) = 1, where i = 1,2, ...,n. Then if

∣∣∣∣∣∣∣∣∣
f +

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∣∣∣∣∣∣∣∣∣< m, then the solution

to Problem (3.14) has the form

ui(x) =−
f ϕ i

1(x)
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

+
ϕ i

1(x)
pi(+0)ϕ i′

2 (+0)

∫ x

0
ϕ

i
2(s)dFi(s)

+
ϕ i

2(x)
pi(+0)ϕ i′

2 (+0)

∫ li

x
ϕ

i
1(s)dFi(s)−

ϕ i
1(x)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

(
n

∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

)
.

(4.4)

If m+

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

+
f

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

≤ 0, then the solution to Problem (3.14) has

the form

ui(x) = mϕ
i
1(x)+

ϕ i
1(x)

pi(+0)ϕ i′
2 (+0)

∫ x

0
ϕ

i
2(s)dFi(s)+

ϕ i
2(x)

pi(+0)ϕ i′
2 (+0)

∫ li

x
ϕ

i
1(s)dFi(s). (4.5)

If m−

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

− f
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

≤ 0, then the solution to Problem (3.14) has

the form

ui(x) =−mϕ
i
1(x)+

ϕ i
1(x)

pi(+0)ϕ i′
2 (+0)

∫ x

0
ϕ

i
2(s)dFi(s)+

ϕ i
2(x)

pi(+0)ϕ i′
2 (+0)

∫ li

x
ϕ

i
1(s)dFi(s),
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where i = 1,2, ...,n.

Proof. Fixing any number i = 1,2, ...,n, we notice that the problem
−(piϕ

i′
1 )(x)+

∫ x

0
ϕ

i
1 dQi =−(piϕ

i′
1 )(+0),

ϕ i
1(0) = 1,

(piϕ
i′
1 )(li−0)+ γiϕ

i
1(li) = 0

has a unique solution. Indeed, applying Theorem 2.1 and Lemma 2.2, we obtain ϕ i
1(x) =

ci
1ui

1(x) + ci
2ui

2(x), where functions ui
1(x) and ui

2(x) are solutions of the homogeneous equa-
tion (4.3) such that ui

1(0) = 0, ui′
1(+0) = 1 and ui

2(0) = 1, ui′
2(+0) = 0. Since the function Qi(x)

does not decrease on (0, li] and ui
1(0) = 0, then, according to Lemma 2.4, ui

1(x) does not have
zeros on (0, li]. From the condition ui′

1(+0) = 1, it follows that ui
1(x) > 0 for all x ∈ (0, li],

and in particular, ui
1(li) > 0, (piui′

1)(li− 0) > 0. Substituting the representation for ϕ i
1(x) into

the boundary conditions, we obtain ci
2 = 1 and ci

1 =
−ui

2(li)γi−(piui′
2 )(li−0)

ui
1(li)γi+(piui′

1 )(li−0)
. Similarly, there is a

solution to the problem 
−(piϕ

i′
2 )(x)+

∫ x

0
ϕ

i
2 dQi =−(piϕ

i′
2 )(+0),

ϕ i
2(0) = 0,

(piϕ
i′
2 )(li−0)+ϕ i

2(li)γi = 1.

Let us demonstrate that ϕ i′
1 (+0) < 0. Since ϕ i

1(0) = 1, we obtain ϕ i
1(x) > 0 for all x ∈ [0, li].

Hence (piϕ
i′
1 )(li−0)< 0 and (piϕ

i′
1 )(+0) =−

∫
(0,li)ϕ i

1 dQi+(piϕ
i′
1 )(li−0)< 0. Since ϕ i

2(0) =

0, ϕ i
2(x) preserves sign on (0, li]. Assume that ϕ i

2(x)< 0, where x∈ (0, li]. We obtain ϕ i′
2 (+0)<

0. Hence (piϕ
i′
2 )(x) < 0, and in particular (piϕ

i′
2 )(li− 0) < 0, but it contradicts the condition

(piϕ
i′
2 )(li−0)+ϕ i

2(li)∆Qi(li) = 1. Thus ϕ i
2(x)> 0 and ϕ i′

2 (+0)> 0. Assume that∣∣∣∣∣∣∣∣∣
f +

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∣∣∣∣∣∣∣∣∣< m.

Let us prove that the functions ui(x) defined by Equality (4.4) constitute a solution to Problem
(3.14). Notice that

ui(+0) = ui(0) = u(0) =− f
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

−

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

for all i = 1,2, ...,n. Let us fix any number i = 1,2, ...,n. Since the functions ϕ i
1(x) and ϕ i

2(x)
are absolutely continuous, and, for any α ≤ β , the equality

ui(β )−ui(α) =
1

pi(+0)ϕ i′
2 (+0)

(ϕ i
1(β )−ϕ

i
1(α))

∫
β

0
ϕ

i
2(s)dFi(s)+
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+
1

pi(+0)ϕ i′
2 (+0)

(ϕ i
2(β )−ϕ

i
2(α))

∫ li

β

ϕ
i
1(s)dFi(s)+

+
1

pi(+0)ϕ i′
2 (+0)

∫
β

α

((ϕ i
1(α)−ϕ

i
1(s))ϕ

i
2(s)+(ϕ i

2(s)−ϕ
i
2(α))ϕ i

1(s))dFi(s)−

−
(ϕ i

1(β )−ϕ i
1(α))

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

−
f (ϕ i

1(β )−ϕ i
1(α))

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

holds, the function ui(x) is absolutely continuous on [0, li]. Let us show that the derivative u′i(x)
of the function ui(x) satisfies the equality

u′i(x) =
ϕ i′

1 (x)
pi(+0)ϕ i′

2 (+0)

∫ x

0
ϕ

i
2(s)dFi(s)+

ϕ i′
2 (x)

pi(+0)ϕ i′
2 (+0)

∫ li

x
ϕ

i
1(s)dFi(s)− (4.6)

−
ϕ i′

1 (x)
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

(
n

∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

)
−

f ϕ i′
1 (x)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

.

Denote by ∆εui = ui(x+ ε)− ui(x+ 0), where ε > 0. Let us prove the assertion for the right
derivative (for the left derivative the proof is similar). We have

∆εui

ε
=

1
pi(+0)ϕ i′

2 (+0)
∆εϕ i

1
ε

∫ x+ε

0
ϕ

i
2 dFi +

1
pi(+0)ϕ i′

2 (+0)
∆εϕ i

2
ε

∫ li

x+ε

ϕ
i
1 dFi+

+
1

pi(+0)ϕ i′
2 (+0)

∫ x+ε

x+0

ϕ i
1(x)ϕ

i
2(s)−ϕ i

2(x)ϕ
i
1(s)

ε
dFi(s)−

− 1
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∆εϕ i
1

ε

(
n

∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

)
− f

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∆εϕ i
1

ε
.

Let us show that

lim
ε→0+

(∫ x+ε

x+0

ϕ i
1(x)ϕ

i
2(s)−ϕ i

2(x)ϕ
i
1(s)

ε
dFi(s)

)
= 0. (4.7)

We have ∣∣∣∣1ε
∫ x+ε

x+0

(
ϕ

i
1(x)ϕ

i
2(s)−ϕ

i
2(x)ϕ

i
1(s)
)

dFi(s)
∣∣∣∣

≤ 1
ε

(
max

x≤s≤x+ε
|ϕ i

1(x)ϕ
i
2(s)−ϕ

i
2(x)ϕ

i
1(s)|

)
V x+ε

x+0 (Fi),

where V x+ε

x+0 (Fi) denotes the variation of the function Fi on [x+0,x+ ε]. Notice that

|ϕ i
1(x)ϕ

i
2(s)−ϕ

i
2(x)ϕ

i
1(s)| ≤ ‖ϕ i

1‖ · |ϕ i
2(s)−ϕ

i
2(x)|+‖ϕ i

2‖ · |ϕ i
1(x)−ϕ

i
1(s)|

≤ ‖ϕ i
1‖ ·
∣∣∣∣∫ s

x
|ϕ i′

2 (τ)|dτ

∣∣∣∣+‖ϕ i
2‖ ·
∣∣∣∣∫ s

x
|ϕ i′

1 (τ)|dτ

∣∣∣∣ ,
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where ‖ϕ i
j‖= max[0,li] |ϕ

i
j(x)|, j = 1,2. Since the functions ϕ i

1,ϕ
i
2 are absolutely continuous on

[0, li], and their derivatives have bounded variations, then |ϕ i′
2 (τ)| ≤ c0i and |ϕ i′

1 (τ)| ≤ c0i. Thus

|ϕ i
1(x)ϕ

i
2(s)−ϕ

i
2(x)ϕ

i
1(s)| ≤ (‖ϕ i

1‖+‖ϕ i
2‖)c0iε.

Hence
1
ε

max
x≤s≤x+ε

|ϕ i
1(x)ϕ

i
2(s)−ϕ

i
2(x)ϕ

i
1(s)| ≤ (‖ϕ i

1‖+‖ϕ i
2‖)c0i.

Since V x+ε

x+0 (Fi)→ 0 when ε → +0, we obtain Equality (4.7). Thus, Equality (4.6) is proved.
From (4.6), it follows that u′i has bounded variation on (0, li). Thus, u(x) belongs to the class E.

Since |u(0)|< m, we show that
n
∑

i=1
pi(+0)u′i(+0) =− f . We have

n

∑
i=1

pi(+0)u′i(+0)+ f =
n

∑
i=1

∫ li

0
ϕ

i
1(s)dFi(s)−

n
∑

i=1
pi(+0)ϕ i′

1 (+0)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

(
n

∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

)

−
f

n
∑

i=1
pi(+0)ϕ i′

1 (+0)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

+ f = 0.

Fixing an arbitrary i = 1,2, ...,n, we next prove that ui(x) is a solution to the equation in (3.14).
Notice that∫ x

0
ui dQi =

1
pi(+0)ϕ i′

2 (+0)

(
(piϕ

i
1
′
)(x)

∫ x

0
ϕ

i
2(τ)dFi(τ)+(piϕ

i
2
′
)(x)

∫ li

x
ϕ

i
1(τ)dFi(τ)

)
−
∫ li

0
ϕ

i
1(τ)dFi(τ)+Fi(x)−Fi(+0)

−

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∫ x

0
ϕ

i
1(s)dQi(s)−

f
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∫ x

0
ϕ

i
1(s)dQi(s).

Here we have used the Fubini theorem and the properties of the functions ϕ i
1, ϕ i

2, as well as
Theorem 2.2, replacing pi(τ)(ϕ

i
1(τ)ϕ

i′
2 (τ)−ϕ i

2(τ)ϕ
i′
1 (τ))≡ const = pi(+0)ϕ i′

2 (+0). Hence

−pi(x)u′i(x)+
∫ x

0
ui dQi = Fi(x)−Fi(+0)−

∫ li

0
ϕ

i
1(τ)dFi(τ)

+
pi(+0)ϕ i′

1 (+0)
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

(
n

∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

)
+

f pi(+0)ϕ i′
1 (+0)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

= Fi(x)−Fi(+0)− pi(+0)u′i(+0).
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Let us consider the conditions at the boundary vertices. Using Theorem 2.2 and the conditions
on the functions ϕ i

1, ϕ i
2, we have the equality pi(+0)ϕ i′

2 (+0) = ϕ i
1(li). Thus we obtain

pi(li−0)u′i(li−0)+ γiui(li) =
ϕ i

1(li) fi

pi(+0)ϕ i′
2 (+0)

= fi.

Let

m+

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

+
f

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

≤ 0.

Similarly to the first case, one can prove that the functions defined by Equality (4.5) are a
solution to Problem (3.14). Here the representation for the derivative has the form

u′i(x) = mϕ
i′
1 (x)+

ϕ i′
1 (x)

pi(+0)ϕ i′
2 (+0)

∫ x

0
ϕ

i
2(s)dFi(s)+

ϕ i′
2 (x)

pi(+0)ϕ i′
2 (+0)

∫ li

x
ϕ

i
1(s)dFi(s).

Notice that ui(0) = u(0) = m, i=1,2,...,n. Let us show that
n
∑

i=1
pi(+0)u′i(+0)+ f ∈ N[−m,m]u(0).

Since u(0) = m, we need to prove
n
∑

i=1
pi(+0)u′i(+0)+ f ≥ 0. Since

n
∑

i=1
pi(+0)ϕ i′

1 (+0)< 0, we

have

n

∑
i=1

pi(+0)u′i(+0)+ f = m
n

∑
i=1

pi(+0)ϕ i′
1 (+0)+

n

∑
i=1

∫ li

0
ϕ

i
1(s)dFi(s)+ f

=
n

∑
i=1

pi(+0)ϕ i′
1 (+0)

m+
f

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

+

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)


≥ 0.

The case

m−

n
∑
j=1

∫ l j

0
ϕ

j
1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

− f
n
∑
j=1

p j(+0)ϕ j′
1 (+0)

≤ 0,

can be considered similarly. The theorem is proved. �

Theorem 4.3. Let u0(x) be the solution to Problem (3.14). Then u0 minimizes Φ(u) with respect
to the condition |u(0)| ≤ m.

Proof. Let us prove that, for any function u ∈ E satisfying the condition |u(0)| ≤ m, Φ(u)−
Φ(u0) ≥ 0. We represent the function u(x) as u(x) = u0(x)+h(x), where h(x) = u(x)−u0(x).
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Notice that h ∈ E. We have

Φ(u0 +h)−Φ(u0) =
∫
Γ

(pu′0)h
′dx+

∫
Γ

ph′2

2
dx−

∫
Γ

hdF +
∫
Γ

h2

2
dQ+

∫
Γ

hu0dQ

=−(
n

∑
i=1

(piu′0i)(+0)+ f )h(0)+
∫
Γ

h2

2
dQ+

∫
Γ

ph′2

2
dx≥ 0.

Since h(0) = u(0)− u0(0) and u(0) ∈ [−m,m], we have −(
n
∑

i=1
(piu′0i)(+0)+ f )h(0) ≥ 0. The

theorem is proved. �

Theorem 4.4. If m→ 0, then the solution um(x) to Problem (3.14) tends to the solution to the
problem 

−(piu′i)(x)+
x∫

0
uidQi = Fi(x)−Fi(+0)− (piu′i)(+0), i = 1,2, ...,n,

ui(0) = 0,
(piu′i)(li−0)+ γiui(li) = fi, i = 1,2, ...,n

(4.8)

uniformly on Γ.

Proof. Let us use the formulas from Theorem 4.2 to represent the solution um(x) of Problem

(3.14). Since m → 0, we have

∣∣∣∣∣∣∣∣∣∣
− f −

n
∑
j=1

l j∫
0

ϕ
j

1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∣∣∣∣∣∣∣∣∣∣
≥ m. Since the function ϕ i

1(x) is

bounded on [0, li] we have∣∣∣∣∣∣uim(x)−
ϕ i

1(x)
pi(+0)ϕ i′

2 (+0)

x∫
0

ϕ
i
2(s)dFi(s)+

ϕ i
2(x)

pi(+0)ϕ i′
2 (+0)

li∫
x

ϕ
i
1(s)dFi(s)

∣∣∣∣∣∣
=
∣∣mϕ

i
1(x)

∣∣≤ ci|m| → 0
for all i=1,2,...,n. Thus,

uim(x)⇒ ui(x) =
ϕ i

1(x)
pi(+0)ϕ i′

2 (+0)

x∫
0

ϕ
i
2(s)dFi(s)+

ϕ i
2(x)

pi(+0)ϕ i′
2 (+0)

li∫
x

ϕ
i
1(s)dFi(s).

Similarly to Theorem 4.2, we can obtain that the functions ui(x) is the solution to Problem (4.8).
The theorem is proved. �

Theorem 4.5. If m→ +∞, then the solution um(x) to Problem (3.14) tends to the solution to
the problem

−(piu′i)(x)+
∫ x

0
ui dQi = Fi(x)−Fi(+0)− (piu′i)(+0), i = 1,2, ...,n,

n
∑

i=1
pi(+0)u′i(+0) =− f ,

u1(0) = u2(0) = ...= un(0) = u(0),
(piu′i)(li−0)+ γiui(li) = fi, i = 1,2, ...,n

(4.9)
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uniformly on Γ.

Proof. Let us use the formulas from Theorem 4.2 to represent the solution um(x) of Problem

(3.14). Since m→+∞, we have

∣∣∣∣∣∣∣∣∣∣
− f −

n
∑
j=1

l j∫
0

ϕ
j

1(s)dFj(s)

n
∑
j=1

p j(+0)ϕ j′
1 (+0)

∣∣∣∣∣∣∣∣∣∣
< m for all numbers m≥m0. Denote

by u∗(x) the solution to Problem (4.9). Then for all m ≥ m0 we have |uim(x)−u∗i (x)| = 0,
i = 1,2, ...,n. The theorem is proved. �
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