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Abstract. It is known that many statistical and machine learning approaches heavily rely on pairwise dis-
tance between data points. The choice of distance function on the underlying manifold has a fundamental
impact on performance of these processes. This is closely related to questions of how to appropriately
calculate distances, and hence, fundamental solutions (heat kernels) for heat operators can be obtained.
In general, it is not so easy to obtain a closed form for heat kernels. We first survey results of heat
kernels on radially symmetric Riemannian manifolds, e.g., Euclidean spaces and unit spheres in Rn. For
the cases n = 1,2,3, we may construct the heat kernel explicitly. But, the computation is much more
complicated when n > 3. However, by results of Nagase, we may construct parametrices for the heat
kernel by using elementary functions so that the error terms can be under controlled. In the second part
of the paper, we discuss some results on subRiemannian manifolds, especially 3-dimensional sphere in
C2 as a CR-manifold. We study geodesics connecting two given points on S3 respecting the Hopf fi-
bration. This geodesic boundary value problem is completely solved in the case of S3 and some partial
results are obtained in the general case. The Carnot-Carathéodory distance is calculated. We also present
some motivations related to quantum mechanics. Then we give a brief discussion of Greiner’s methods
on the heat kernel for the Cauchy-Riemann subLaplacian on S2n+1. We provide a brief discussion on
applications of these heat kernels to graph kernels in the last part of the paper.
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1. INTRODUCTION

It is known that one of the most general representations of a data set {x j}m
j=1, for x j ∈M ⊂

RN , is via a matrix of pairwise distance between each of the data points. The most standard
choice in practice is the Euclidean metric. Basically, this choice implicitly assumes that the
data do not have any interesting nontrivial geometric structure in their underlying manifold. In
fact, we have seen examples that there exist pairs of points in M which are close in Euclidean
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metric but actually far away from each other if one needs to travel along curves with constraints.
More precisely, the points along a path that does not cross empty regions across which there is
no data but instead follows the “flow” of the data.

The shortest path between two points A and B on a manifold M is known as the geodesic,
with the length of this path corresponding to the geodesic distance, When A and B are very close
to each other, then the Euclidean distance provides an accurate approximation to the geodesic
distance. However, Euclidean and geodesic distance can be dramatically different when the cur-
vature of M is large, The accuracy of Euclidean distance in small neighborhoods has exploited
to develop algorithms for approximating geodesics distances via graph distances. Such method
provides a weighted graph in which edges connect neighbors and weights correspond to the
Euclidean distance. Readers can consult the papers by the authors e.g., [36, 37, 38].

Furthermore, using Euclidean metric within local neighborhoods, we need to keep neighbor-
hoods small to control the global approximation error. This creates some shortcomings. For
example, when the sample size m is not large enough and when the density d of the data points
is not uniform over M but instead is larger in certain regions than others. The main purpose
of this paper is to provide a good strategy for more accurate geodesic distance estimations that
improve the local Euclidean approximation while continuing to reply on graph distance algo-
rithms. More precise, we study the spherical model which has the almost unique features of
both accounting for positive curvature and having the geodesic distance between any two points
in a simple closed form. Here we also recommend a beautiful paper to readers by Li and Dunson
[23] for motivation of this subject. Unlike the paper in [23], here we give detailed discussions
for elliptic and sub-elliptic heat kernels on the sphere S3 ⊂ C2.

Let (M ,g) be a Riemannian manifold and let C1,2(M ) be the space of functions

f : (0,∞)×M → R,

which are continuous on [0,∞)×R, C1-differentiable in the first variable, and C2-differentiable
in the second variable. As usual, define the Laplacian be

∆ = −div∇.

Definition 1.1. The operator Q = ∂

∂ t + ∆ defined on the space C1,2(M ) is called the heat
operator on (M ,g).

To invert the heat operator, one needs to study the fundamental solution, i.e., the heat kernel.

Definition 1.2. A fundamental solution K for the heat operator Q = ∂

∂ t +∆y is a function P :
M ×M × (0,∞) → R with the following properties:
(1). K ∈C

(
M×M × (0,∞)

)
, C2 in the first variable, and C1 in the second variable,

(2).
(

∂

∂ t +∆y

)
K(·,y, t) = 0 for all t > 0,

(3). limt→0+ K(x, ·, t) = δx for all x ∈M .
where δx is the Dirac distribution concentrated at x and the limit (3) is considered in the sense

of distribution, i.e.,

lim
t→0+

∫
M

K(x,y, t)ψ(x)dv(x) = ψ(y), for all ψ ∈C∞
0 (M ), x ∈M ,

where C∞
0 (M ) denotes the collection of smooth functions with compact support, and dv(x) =√

|g jk(x)|dx1∧·· ·∧dxn.
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1.1. Compact manifolds. Let (M ,g) be a compact Riemannian manifold. We define the inner
product 〈

f ,g
〉

g =
∫
M

f gdv, for all f , g ∈C∞(M ).

Denote ‖ f‖L2 =
〈

f , f
〉 1

2
g . The space L2(M ) is obtained from C∞(M ) by completeness with

respect to the norm ‖ · ‖L2 .
The real numbers λ for which there is an eigenfunction of f such that ∆ f = λ f are called

eigenvalues. The function f is an eigenfunction of λ . Let

Vλ (M ,g) =
{

f : M → R : ∆ f = λ f
}

be the eigenspace with respect to λ . The number mλ = dimVλ (M ,g) is called the multiplicity
of λ .

In the following we shall find the fundamental solution of Q in the case of a compact Rie-
mannian manifold. The spectral theory of the Laplace operator is a consequence of the Riesz-
Schauder theory. Hence the following spectrum theorem holds for the Laplace operator on
Riemannian manifolds.

Theorem 1.1. We have the following results.
(1). The eigenvalues are nonnegative and form a countable infinite set

0 = λ0 < λ1 < λ2 < λ3 < · · · ,

with λk→+∞ ad k→ ∞ and the series ∑
∞
k=1

1
λ 2

k
converges.

(2). Each eigenvalue λk has finite multiplicity mk. The eigenspaces Vλk
(M ,g) and Vλ j(M ,g) ,

k 6= j are orthogonal with respect to the inner product 〈·, ·〉g.
(3). From the system of eigenfunctions, using the Gram-Schmidt procedure, one may obtain a
complete orthonormal system { fk` : k ∈ N, `= 1, . . . ,mk} of eigenfunctions, such that

h =
∞

∑
k=0

mk

∑
`=1

ak` fk`, for all h ∈ L2(M ),

with ak` =
〈
h, fk`

〉
g. In particular, the Parseval identity holds

∥∥h
∥∥2

L2 =
∞

∑
k=0

mk

∑
`=1

〈
h, fk`

〉2
g.

By results of Calin-Chang [8] and Mazet–Berger–Gauduchon [29], we may assume that the
fundamental solution for the heat operator exists. The following result provides a formula for
the fundamental solution on a compact Riemannian manifolds.

Theorem 1.2. Let { f j : j ∈ N} be a complete orthonormal system of eigenfunctions for the
Laplace operator on the compact Riemannian manifolds (M ,g), such that

λ0 < λ1 ≤ λ2 ≤ λ3 ≤ ·· · .

Then the fundamental solution is given by

K(x,y, t) =
∞

∑
j=0

e−λ jt f j(x) f j(y). (1.1)
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Proof. Since the system { f j : j ∈ N} is an orthonormal basis of the Hilbert space L2(M ), we
assume the existence of a fundamental solution for fixed x and t. Therefore,

K(x, ·, t) =
∞

∑
j=0

ω j(x, t) f j,

where

ω j(x, t) =
∫
M

K(x,y, t) f j(y)dv(y).

Differentiating with respect to t yields

∂ω j

∂ t
=
∫
M

∂K
∂ t

(x,y, t) f j(y)dv(y) =
〈∂K

∂ t
, f j
〉

g

= −
〈
∆yK, f j

〉
g = −

〈
K,∆y f j

〉
g = −λ j

〈
K, f j

〉
g = −λ jω j.

Hence, ∂ω j
∂ t = −λ jω j, where ω j(x, t) = α j(x)e−λ jt . The function α j(x) satisfies

lim
t→0+

ω j(x, t) = lim
t→0+

∫
M

K(x,y, t) f j(y)dv(y)

=
∫
M

δx(y) f j(y)dv(y) = f j(x).

On the left hand side, one has

lim
t→0+

ω j(x, t) = α j(x),

and hence α j(x) = f j(x). Thus, the equation (1.1) is proved. �

It is extremely interesting to solve the heat operator with initial data. In other words, given a
continuous function h ∈C(M ), find a function f ∈C1,2(M ) such that(

∂

∂ t
+∆y

)
f =0 for all t > 0,

lim
t→0+

f (x, t) =h(x) for all x ∈M .
(1.2)

Indeed, we have the following theorem.

Proposition 1.1. The solution for the above (1)-(2) initial value problem is given by the formula

f (x, t) =
∫
M

K(x,y, t)h(y)dv(y), (1.3)

where K(x,y, t) is given by (1.1).

Proof. We may prove this proposition by straightforward computation. More precisely,

∂ f
∂ t

(x, t) =
∂

∂ t

∫
M

∞

∑
j=0

e−λ jt f j(x) f j(y)h(y)dv(y)

= −
∫
M

∞

∑
j=0

λ je−λ jt f j(x) f j(y)h(y)dv(y).
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Similarly,

∆x f (x, t) =∆x

∫
M

∞

∑
j=0

e−λ jt f j(x) f j(y)h(y)dv(y)

=
∫
M

∞

∑
j=0

e−λ jt
[
∆x f j(x)

]
f j(y)h(y)dv(y)

=
∫
M

∞

∑
j=0

λ je−λ jt f j(x) f j(y)h(y)dv(y).

Hence, (
∂

∂ t
+∆y

)
f = 0.

We still need to show that limt→0+ f (x, t) = h(x). Using Property (3) in Definition (1.2) yields

lim
t→0+

f (x, t) = lim
t→0+

∫
M

K(x,y, t)h(y)dv(y)

=
∫
M

[
lim

t→0+
K(x,y, t)

]
h(y)dv(y)

=
∫
M

δx(y)h(y)dv(y)

=
〈
δx,h

〉
g = h(x).

The proof of this proposition is therefore complete. �

2. HEAT KERNEL ON RADIALLY SYMMETRIC SPACES

Definition 2.1. A Riemannian manifold (M ,g) is called radially symmetric if for any x0 ∈M ,
the geodesic sphere S(x0,r) centered at x0 with radius r has constant scalar mean curvature.
Here the geodesic sphere centered at x0 with radius r is defined by

S(x0,r) =
{

γ(r) : γ : [0,r(x0))→M , γ(0) = x0,γ unit speed geodesic
}
,

with 0 < r < r(x0).

As the geodesics are locally length minimizing curves, the Riemannian distance is measured
along the geodesics and it is equal to the arc length parameter s,

d(x0,γ(s)) = length(γ) = s.

Hence the geodesic sphere can be written as

S(x0,s) =
{

x ∈M : d(x0,x) = s
}
.

For example, the Euclidean space Rn with the standard metric is a radially symmetric space.
It is known that the fundamental solution in this case is given by

K(x,y, t) =
1

(4πt)
n
2

e−
|x−y|2

4t , t > 0. (2.1)

This is a product between the volume function v(t) = t−
n
2 and an exponential with the exponent

− |x−y|2
4t =−1

2S where S is the classical action between the points x and y within time t. We have
the following theorem. For detailed discussion, see Calin-Chang [8].
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Theorem 2.1. Let (M ,g) be a radially symmetric space about the point x0 ∈M . Then the
fundamental solution for the heat operator is given by

K(x0,x, t) = CV (t)e−
1
2 S = CV (t)e−

d2(x−x0)
2

4t ,

where V (t) is the solution of

V ′(t) =
1
2

∆S ·V (t)

with the condition limt→0+ t
n
2V (t) = 1 and

C−1 = 2n
∫

∞

0
e−y2

ζ (x0,y)dy,

with ζ define by the following equation:

vol
[
S
(
x0,2
√

ty
)]
∼ 2nt

n
2 ·ζ (x0,y), as t→ 0+.

Although we have Theorem 2.1, however, it is quite complicated to calculate an explicit
fundamental solution for the heat operator on a n-dimensional Riemannian manifold. The for-
mula (2.1) is a very special case which dealt with a manifold with zero curvature. In this case,
the shortest distance between two points x and y is the length of the straight line segment be-
tween these two points (which is known as the Euclidean metric). In general, the shortest curve
between two points x and y on a manifold M is known as the geodesic. The length of this curve
corresponding to the geodesic distance. Now the problem reduces to see whether we may use
Euclidean metric to approximate the geodesic distance. Intuitively, if x and y are very close
to each other, then Euclidean metric gives an accurate approximation to the geodesic distance.
Or, if M has very very low curvature and is close to flat globally. Otherwise, Euclidean and
geodesic distance can be dramatically different. The accuracy of Euclidean metric in small
neighborhood has been exploited to develop algorithms for approximating geodesic distances
via graph distances. As we have seen before such approached define a weighted graph in which
edges connect neighbors and weights correspond to the Euclidean metric. The approximated
geodesic distance is the shortest curve on this graph (see [32, 36, 38]).

As we mentioned above, using Euclidean metric within local neighborhoods, we need to keep
neighborhoods small to control the global approximation error. This creates problems when the
density ρ of the data points is not uniform over M but instead is larger in certain regions than
others. One obvious way is to improve the local Euclidean approximation while continuing
to rely on graph distance algorithms. As we can expected, a better local approximation leads
to better global approximation error. That is a reason we use another local distance estimator,
which has the advantage of providing a simple and transparent modification of Euclidean metric
to incorporate curvature. In this paper, we consider the curvature of M is positive. Then a good
candidate to approximate the manifold M in a local neighborhood using spheres. Using spheres
has the almost unique features of both accounting for positive curvature and having the geodesic
distance between any two points in a simple closed form. Since we are interested in a smooth
compact Riemannian manifold with Riemannian metric g, we need to concentrate on the model
case when M = Sn.
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2.1. Heat kernel on S1. We start with the simplest case n = 1. Under some convergence and
regularity conditions on the function ψ , we have the following famous summation formula,
called Poisson’s summation formula (see Lawden [22]):

∞

∑
n=−∞

ψ(x+2nπ) =
1

2π

∞

∑
k=−∞

eikx
∫ +∞

−∞

e−iky
ψ(y)dy.

As a consequence, we have the next result regarding the theta-function:

θ3
(
x
∣∣τ) = 1+2

∞

∑
n=1

eiπn2τ cos(2nx).

The result deals with the case of the θ3-function, but similar transformation formulas work for
the other theta-functions.

Lemma 2.1. (Jacobi’s transformation for θ3)
If t̃ =−1

t , we have

θ3
(
z
∣∣t̃) = ∞

∑
n=−∞

e
itz2

t θ3
(
tz
∣∣t), (2.2)

where the third Jacobi theta-function is defined by

θ3
(
z
∣∣t) = (−it)

1
2 eiπn2t+2πz2niz. (2.3)

Proof. In fact, we note that we may write the theta-function θ3 as

θ3
(
x
∣∣t) = e

z2
iπt

∞

∑
n=−∞

e
it

4π
(u+2nπ)2

with u = 2z
t . Applying Poisson’s summation formula with f (u) = e

itu2
4π yields

θ3
(
x
∣∣t) = 1

2π
e

z2
iπt

∞

∑
k=−∞

eiku
∫ +∞

−∞

e
itx2
4π
−iky dy

=
1

2π
e

z2
iπt

∞

∑
k=−∞

2π · eiku(−it)−
1
2 e−

iπk2
t

=(−it)−
1
2 e

z2
iπt θ3

(z
t

∣∣− 1
t

)
.

Replacing z by tz yields (2.2) and we finish the proof of the lemma. �

Now we shall compute the heat kernel for the Laplacian on the unit circle S1 using Jacobi’s
transformation. If ω is the arc length on the unit circle, the eigenfunctions of 1

2
d2

dω2 on the circle
S1 satisfy

1
2

d2

dω2 uk = λkuk,

where λk =−k2

2 and uk(ω) = ckeikω . The constant ck can be computed from the orthonormality
condition

1 =
∫ +π

−π

uk(ω)uk(ω)dω = 2πc2
k .
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Hence, ck =
1√
2π

. The functions uk(ω) = eikω
√

2π
form a complete orthonormal system on L2(S1,dω

)
.

Thus, the heat kernel for 1
2

d2

dω2 on the circle S1 is given by

K1(ω0,ω;τ) =
∞

∑
k=0

e−
k2τ

2 uk(ω)ūk(ω0) =
1

2π

∞

∑
k=0

e−
k2τ

2 eik(ω−ω0)

=
1

2π

∞

∑
k=0

e−
k2τ

2 +ik(ω−ω0) =
1

2π
θ3

((ω−ω0

2

∣∣ iτ
2π

)
,

by the definition of the theta-function θ3 given in (2.3). Defining

z =
ω−ω0

2
, t̃ =

iτ
2π

= −1
t
, t =

2πi
τ

.

Now the Jacobi’s transformation formula provides

K1(ω0,ω;τ) =
1

2π
θ3

(
ω−ω0

2

∣∣ iτ
2π

)
=

1
2π

θ3
(
z
∣∣t̃)

=
1

2π
(−it)

1
2 e

itz2
π θ3

(
tz
∣∣t)

=
1√
2πτ

e−
(ω−ω0)

2

2τ θ3

( iπ
τ
(ω−ω0)

∣∣∣2πi
τ

)
.

The above formula is the same as the result that derived by Hamiltonian formalism.

2.2. Heat kernel on S2. Now we turn to the heat kernel for the Laplacian on the sphere S2 ={
x ∈ R3 : |x|= 1

}
. In this case, the Laplacian is given in the spherical coordinates as follows:

∆S2 =
1

sin φ1

∂

∂φ1

(
sin φ1 ·

∂

∂φ1

)
+

1
(sin φ1)2

∂ 2

∂φ 2
2

with φ1 ∈ (0,π), φ2 ∈ [0,2π), The eigenfunctions are given by the spherical harmonics

Y k
m(φ1,φ2) = cm,kP|k|m (cos φ1)eikφ2,

where m ∈ Z+ and k ∈ {0,±1,±2, . . . ,±m}. Pm|k| denotes the Legendre function of order m
which can be defined by the following generating formula

∞

∑
m=0

Pm(x)ym =
1√

1−2xy+ y2
.

Since
∆S2Y k

m = −m(m+1)Y k
m,

the eigenvalue corresponding to Y k
m is λ k

m = −m2−m; see, for instance [20]. The heat kernel is
given by

K2(φ
(0)
1 ,φ

(0)
2 ;φ1,φ2; t)

= ∑eλ k
mtY k

m(φ1,φ2)Ȳ k
m(φ

(0)
1 ,φ

(0)
2 )

= ∑
m,k

c2
m,ke−m(m+1)teik(φ2−φ

(0)
2 )Pk

m(cos φ1)Pk
m(cos φ

(0)
1 )

=
∞

∑
m=0

e−m(m+1)t ·
m

∑
k=−m

c2
m,keik(φ2−φ

(0)
2 )Pk

m(cos φ1)Pk
m(cos φ

(0)
1 ).
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A neater formulas can be obtained if the kernel is represented in terms of the angle ν between
the points x0 and x given by ν = cos−1 (〈x0,x〉

)
. Even if the inverse cosine function is multi-

valued, since the heat kernel is an even, 2π-periodic function of ν , we may use any value of ν

with cos ν = 〈x0,x〉. Now the heat kernel can be written as

K2(x0,x; t) =
e

t
4

2
3
2 πt

∫
π

ν

1√
cosν− cosη

·
∞

∑
n=−∞

(−1)n(η−2πn)e−
1
2t (ν−2πn)2

dη .

Remark. We may study the heat kernel for Laplacian on the unit sphere S3 =
{

x∈R4 : |x|= 1
}

also. In this case, using spherical coordinates, the Laplace-Beltrami operator can be written as

∆S3 =
∂ 2

∂φ 2
1
+ cot φ1 ·

∂

∂φ1
+

1
(sin φ1)2

(
∂ 2

∂φ 2
1
+

∂ 2

∂φ 2
2
−2cos φ1 ·

∂ 2

∂φ2∂φ3

)
We may use a similar method to construct the heat for ∆S3 . The kernel has the following form:

K3(x0,x; t) =
1

(4πt)
3
2

d
sin d

ete−
d2
4t , (2.4)

where d = dS3(x0,x) is the Riemannian metric on the sphere S3 which is induced by the Eu-
clidean distance in R4 to the sphere. The kernel K(x0,x; t) in (2.4) was first computed by Schul-
man [31] when M = SU(2). He also conjectured that the formula (2.4) works in general for Lie
groups. However, from results we calculated above for Sn when n = 1,2,3, it seems to us that
the heat kernels for odd dimensional sphere have more compact form than even dimensional
spheres. That is the goal for the next secion.

2.3. Recurrence relations for parametrix of heat operator on Sn. In this case, the Laplace
operator ∆ = d∗d acting on functions on the standard n-sphere (Sn,g) with curvature 1 where
d is the exterior differential and d∗ is its formal adjoint. We consider the fundamental solution
Pn associated to the heat equation with initial condition(

∂

∂ t
+∆

)
f = 0, f (x,0) = f0.

Since the sphere is invariant under the rotation group, we know that the kernel depends only on
t and the “distance” d(x,y) of two points x and y on Sn. Here we are interested when d(x,y) is
small. Let us take 0 < θ < π

2 and consider smooth functions on (0,∞)× [0,θ). In the normal
coordinates n at a point, the distance d(x,y) is given by

d(x,y) = cos−1
(

cos(|n(x)|) · cos(|n(y)|)+
〈
n(x),n(y)

〉
g

sin(|n(x)|)
|n(x)|

sin(|n(y)|)
|n(y)|

)
,

where
〈
n(x),n(y)

〉
g is the inner product of the sphere induced by the Riemannian metric g, To

simplify our calculation, we assume the g is the metric induced by the Euclidean metric in Rn to
the sphere Sn. Thus the behavior of derivatives of the heat kernel Pn(t,d(x,y)) can be explicitly
described in terms of this “distance” d by elementary functions up to exponential decay error
terms. For more detailed discussion, see Nagase [30]. In other words, take small θ > 0. Then
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for 0 < t ≤ 1 and d = d(x,y)< θ , one has

Kn(t,d) = pn(t,d)+O∞

(
e−

1
t
)
,

Kn+2(t,d) =
ent

2π

(
− 1

sin d
∂

∂d

)
Kn(t,d)+O∞

(
e−

1
t
)
,

Kn+1(t,d) =
√

2
∫

θ

d

e−(2n+1)t/4Kn+2(t,η)sinη

(cosd− cosη)
1
2

dη +O∞

(
e−

1
t
)
.

(2.5)

Here O∞

(
e−

1
t
)

is a quantity, for any k, whose k times derivative by d can be estimated as

O∞

(
e−

εk
t
)

with some positive constant ε . Furthermore, the three heat kernels in (2.5) can be
expressed roughly by a finite series of smooth functions. If n = 2m+ 1, then we know from
classical result that

p2m+1(t,d) =
em2t

(2π)m(4πt)
1
2

( −1
sind

∂

∂d

)m
e−

d2
4t

=
e−

d2
4t +

(n−1)2t
4

(4πt)
n
2

m−1

∑
j=0

t j p2m+1, j(d2),

(2.6)

with p2m+1, j(ξ ) ∈C∞(−θ 2,θ 2), j = 0,1,2, . . .. Now let us turn to the case n = 2m+2, then we
know that (see [30]):

p2m+2(t,d) =
e
(2m+1)2t

4

2(2π)m+ 3
2 t

3
2

( −1
sind

∂

∂d

)m ∫ θ

d

ηe−
η2
4t

(cosd− cosη)
1
2

dη

=
e
(2m+1)2t

4

2(2π)m+ 3
2 t

3
2

∫
θ

d
(cosd− cosη)

1
2

(
∂

∂η

−1
sinη

)m+1
ηe−

η2
4t dη +O∞

(
e−

1
t
)
.

(2.7)

In fact, equation (2.8) can be written roughly by a finite series of smooth functions plus accept-
able error term either:

p2m+2(t,d) =
e−

d2
4t +

(n−1)2t
4

(4πt)
n
2

[ N

∑
j=0

t j p2m+2, j(d2)+O∞

(
dN)], (2.8)

with p2m+2, j(ξ ) ∈C∞(−θ 2,θ 2), j = 0,1,2, . . ..
Let us prove that (2.7) implies (2.8). We start with

(cosd− cosη)
1
2

(
∂

∂η

−1
sinη

)m+1
ηe−

η2
4t

=
1√
2
(η2−d2)

1
2

(sin(d+η

2
d+η

2

) 1
2
(sin(d−η

2 )
d−η

2 )

) 1
2
(

∂

∂η

−1
sinη

)m+1
ηe−

η2
4t

=
m+1

∑
j=0

t− j
ηe−

η2
4t (η2−d2)

1
2Wj(η

2,d2),

where Wj(µ,ν) ∈C∞
(
(−θ 2,θ 2)× (−θ 2,θ 2)

)
.
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It follows that ∫
θ

d
(cosd− cosη)

1
2

(
∂

∂η

−1
sinη

)m+1
ηe−

η2
4t dη

=e−
d2
4t

m+1

∑
j=1

t− j
∫

θ

d
ηe−

η2−d2
4t (η2−d2)

1
2Wj(η

2,d2)dη

=e−
d2
4t 4t

3
2

m+1

∑
j=1

t− j
∫ θ2−d2

4t

d
e−ξ

ξ
1
2Wj(4tξ +d2,d2)dη ,

(2.9)

Now we have

(4πt)m+1e
d2
4t

(2π)m+ 3
2 t

3
2

∫
θ

d
(cosd− cosη)

1
2

(
η

2t sinη

)m+1
ηe−

η2
4t dη

=
1√
π

∫ θ2−d2
4t

0
e−ξ

ξ
1
2 dξ ·

(sin(d+η

2
d+η

2

) 1
2
(sin(d−η

2 )
d−η

2 )

) 1
2
(

η

sinη

)m+1∣∣∣
η=(4tξ+d2)1/2

+O(t)

→ 1√
π

∫
∞

0
e−ξ

ξ
1
2 dξ ·

(sin(d+η

2
d+η

2

) 1
2
(sin(d−η

2 )
d−η

2 )

) 1
2
(

η

sinη

)m+1∣∣∣
η=d

as t→ 0+

=
1√
π

∫
∞

0
e−ξ

ξ
1
2 dξ ·

(sin d
d

) 1
2
( d

sind

)m+1
=
( d

sin d

)m+ 1
2
.

Since m = n
2 −1, hence we have,

p2m+1,0(d2) = lim
t→0+

(
4πt
) n

2 · e
d2
4t −

(n−1)2t
4 · pn(t,d) =

( d
sin d

) n−1
2
. (2.10)

Now we are in a position to show that pn(t,d) is a parametrix of the initial value problem for
the heat operator (1.2). We have the following theorem.

Theorem 2.2. Let θ > 0 be a small positive number. Then for 0 < t ≤ 1 and d = d(x,y) < θ ,
one has
(a).

(
∂

∂d

)m
pn(t,d) = O

(
t−

n
2−

m
2 e−

d2
5t
)

for all m ∈ Z+,

(b).
(

∂

∂ t +∆

)
pn(t,d) = O∞

(
e−

1
t
)
.

Moreover, we have

lim
t→0+

∫
Sn

pn(t,d(x,y)) f (y)dv(y) = f (x)

for f ∈C∞ with supp( f ) ⊂
{

y ∈ Sn : d(x,y)< θ
}

.

3. SUBRIEMANNIAN MANIFOLDS AND SUBELLIPTIC OPERATORS

In the second part of the paper, we turn to subRiemannian cases. SubRiemannian geometry is
proved to play an important role in many applications, e.g., in mathematical physics, geometric
mechanics, robotics, tomography, neurosystems, and control theory. This geometry enjoys ma-
jor differences from the Riemannian being a generalization of the latter at the same time, e.g.,
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the notion of geodesic and length minimizer do not coincide even locally, the Hausdorff dimen-
sion is larger than the topological dimension of the manifold and the exponential map is never
a local diffeomorphism. There exists a large amount of literature developing subRiemannian
geometry. Once again, we refer readers to references are [2, 7, 28, 33] for detailed discussions.

The interest to odd-dimensional spheres comes first of all from finite dimensional quantum
mechanics modeled over the Hilbert space Cn where the dimension n is the number of energy
levels and the normalized state vectors form the sphere S2n−1 ⊂ Cn. The problem of controlled
quantum systems is basically the problem of controlled spin systems, which is reduced to the
left- or right-invariant control problem on the Lie group SU(n). In other words, these are prob-
lems of describing the subRiemannian structure of S2n−1 and the subRiemannian geodesics,
see e.g., [5, 28]. The special case n = 2 is well studied and the subRiemannian structure is
related to the classical Hopf fibration, see, e.g., [34, 35]. At the same time, the subRieman-
nian structure of S3 comes naturally from the non-commutative group structure of SU(2) in
the sense that two vector fields span the smoothly varying distribution of the tangent bundle,
and their commutator generates the missing direction. The missing direction coincides with the
Hopf vector field corresponding to the Hopf fibration. The subRiemannian geometry on S3 was
studied in [10, 21, 17]. Explicit formulas for geodesics were obtained in [12] by solving the
corresponding Hamiltonian system, in [21] from a variational equation, in [6] by applying the
structure of the principle S1-bundle. One of the important helping properties of odd-dimensional
spheres is that there always exists at least one globally defined non-vanishing vector field.

Observe that S3 is compact and many properties and results of subRiemannian geometry
differ from the standard nilpotent case, e.g., Heisenberg group or Engel group. In the case
S2n−1, n > 2, we have no group structure and the main tool is the global action of the group
U(1). For example, in our paper we explicitly show that any two points of S3 can be connected
with an infinite number of geodesics.

Because of important applications, we start our paper with the description of n-level quantum
systems and motivation given by Berry phases. Further we continue with general formulas for
geodesics. Then we concentrate our attention on the geodesic boundary value problem finding
all subRiemannian geodesics between two given points. In the case of S2n−1 we solve it for
the points of the fiber and for S3 we solve it for arbitrary two points. The Carnot-Carathéodory
distance is calculated.

Now let us give more detailed discussion on this subject. Let Mn be an n-dimensional,
smooth connected manifold, together with a smooth distribution H ⊂ TMn of rank 2≤ k < n.
Such vector bundles are often called horizontal. An absolutely continuous curve γ : [0,1]→Mn
is called horizontal if γ̇(s) ∈H a.e.

Define the following real vector bundles

H 1 = H , H k+1 = [H k,H ]+H k for k ≥ 1,

which naturally give rise to the flag

H = H 1 ⊆H 2 ⊆H 3 ⊆ . . . .

Then we say that a distribution satisfy bracket generating condition if ∀ x ∈Mn ∃ k(x) ∈ Z+

such that

H
k(x)

x = TxMn. (3.1)



HEAT KERNELS AND GRAPH KERNELS 321

If the dimensions dimH k
x do not depend on x for any k ≥ 1, we say that H is a regular

distribution. The least k such that (3.1) is satisfied is called the step of H .
The following classical result shows the precise relation between the notion of path-connectedness

by means of horizontal curves and the assumption that H is a bracket generating distribution,
(see Chow [14]).

Theorem 3.1. (Chow’s Theorem) Given any two points A,B ∈Mn, there is a piecewise C1

horizontal curve γ : [0,τ]→Mn:

γ(0) = A, γ(τ) = B,

and

γ̇(s) =
m

∑
k=1

ak(s)Xk.

Here {X1, . . . ,Xm} is a basis for the regular distribution H .

Definition 3.1. A subRiemannian structure over a manifold Mn is a pair (H ,〈·, ·〉), where H
is a bracket generating distribution and 〈·, ·〉 a fiber inner product defined on H . In this setting,
the length of an absolutely continuous horizontal curve γ : [0,1]→Mn is

`(γ) :=
∫ 1

0
‖γ̇(s)‖ds =

∫ 1

0

√
a2

1(s)+ · · ·+a2
m(s)ds,

where ‖γ̇(s)‖2 = 〈γ̇(s), γ̇(s)〉 whenever γ̇(s) exists. The triple (Mn,H ,〈·, ·〉) is called subRie-
mannian manifold.

The shortest length dcc(A,B) is called a Carnot-Carathéodory distance between A, B ∈Mn
which is given by

dcc(A,B) := inf`(γ),

where the infimum is taken over all absolutely continuous horizontal curves joining A and B.
The following theorem in topology gives a very strong restriction on the problem of finding

globally defined subRiemannian structures over spheres.

Theorem 3.2. (Adams’ Theorem [1]) Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1} be the unit sphere in
Rn, with respect to the usual Euclidean norm ‖ · ‖. Then Sn−1 has precisely ρ(n)− 1 linearly
independent, globally defined and non vanishing vector fields, where ρ(n) is defined in the
following way: if

n = (2a+1)2b, and b = c+4d,

where 0≤ c≤ 3, then ρ(n) = 2c +8d.

The condition that a manifold Mn has maximal number of linearly independent globally
defined non-vanishing vector fields is usually rephrased as saying that Mn is parallelizable.
It was proved by Bott and Milnor that Sn is a parallelizable sphere only when n = 1,3,7. It is
impossible to find a globally defined basis for bracket generating distributions, except for S3 and
S7. The fact that S3 and S7 can be considered as the unit spheres in quaternions and octonions.
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4. S3 AS A SUBRIEMANNIAN MANIFOLD

The unit 3-sphere centered at the origin is the set of R4 defined by

S3 = {(x1,x2,x3,x4) ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 = 1}.

It is often convenient to regard R4 as the space with two complex dimensions C2 or the quater-
nions H. The unit 3-sphere is then given by

S3 = {(z1,z2) ∈ C2 : |z1|2 + |z2|2 = 1} or S3 = {q ∈H : |q|2 = 1}.

The last description represents the sphere S3 as a set of unit quaternions and (as the set of unit
complex number) it can be considered as a group Sp(1), where the group operation is just a
multiplication of quaternions. The group Sp(1) is a three-dimensional Lie group, isomorphic
to the Lie group SU(2) by the isomorphism C2 3 (z1,z2)→ q ∈H. The unitary group SU(2) is
the group of matrices (

z1 z2
−z̄2 z̄1

)
, z1,z2 ∈ C, |z1|2 + |z2|2 = 1,

where the group law is given by the multiplication of matrices. Identify R3 with pure imagi-
nary quaternions. The conjugation qhq̄ of a pure imaginary quaternion h by a unit quaternion q
defines a rotation in R3 and since |qhq̄|= |h|, the map h 7→ qhq̄ defines a two-to-one homomor-
phism Sp(1)→ SO(3). The Hopf map π : S3→ S2 can be defined by

S3 3 q 7→ qiq̄ = π(q) ∈ S2.

The Hopf map defines a principle circle bundle also known as the Hopf bundle. Topologically
S3 is a compact, simply-connected, 3-dimensional manifold without boundary.

FIGURE 1. The Hopf fibration can be visualized using a stereographic projec-
tion of S3 into R3.

We mentioned only the small part of properties of the unit 3-sphere that find numerous appli-
cations in complex geometry, topology, group theory, mathematical physics and others branches
of mathematics. In the present paper we give a new emphasis to the unit 3-sphere, considering
it as a subRiemannian manifold. The subRiemannian structure comes naturally from the non-
commutative group structure of the sphere in a sense that two vector fields spans the smoothly
varying distribution of the tangent bundle and their commutator generates the missing direction.
The subRiemannian metric is defined as a restriction of the Euclidean inner product from R4 to
the distribution. The present paper devoted to the description of the subRiemannian geodesics
on the sphere. The subRiemannian geodesics are defined as a projection into the manifold of
the solution to the corresponding Hamiltonian system. We give the explicit formulae using the
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different parametrization and discuss the number of geodesics starting from the unity of the
group.

4.1. Left-invariant vector fields and the horizontal distribution. To calculate the left in-
variant vector fields we use the definition of S3 as a set of unit quaternions equipped with the
following noncommutative multiplication: let x = (x1,x2,x3,x4), y = (y1,y2,y3,y4), then

x◦ y =(x1,x2,x3,x4)◦ (y1,y2,y3,y4)

=
(
(x1y1− x2y2− x3y3− x4y4),(x2y1 + x1y2− x4y3 + x3y4),

(x3y1 + x4y2 + x1y3− x2y4),(x4y1− x3y2 + x2y3 + x1y4)
)
.

(4.1)

The law (4.1) gives us the left translation Lx(y) of an element y = (y1,y2,y3,y4) by an element
x = (x1,x2,x3,x4). The left-invariant basis vector fields are defined as X(x) = (Lx(y))∗X(0),
where X(0) are basis vectors at the unity of the group. The matrix corresponding to the tangent
map (Lx(y))∗ calculated by (4.1) becomes

(Lx(y))∗ =


x1 −x2 −x3 −x4
x2 x1 −x4 x3
x3 x4 x1 −x2
x4 −x3 x2 x1

 .

Calculating the action of (Lx(y))∗ on the basis of unit vectors of R4 we obtan four vector fields

X1(x) = +x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4,

X2(x) = −x2∂x1 + x1∂x2 + x4∂x3− x3∂x4, (4.2)

X3(x) = −x3∂x1− x4∂x2 + x1∂x3 + x2∂x4,

X4(x) = −x4∂x1 + x3∂x2− x2∂x3 + x1∂x4.

It is easy to see that the vector X1(x) is the unit normal to S3 at x with respect to the usual inner
product 〈·, ·〉 in R4, hence, we denote X1(x) by N. Moreover,

〈N,X2(x)〉= 〈N,X3(x)〉= 〈N,X4(x)〉= 0, and |Xk(x)|2 = 〈Xk(x),Xk(x)〉= 1

for k = 2,3,4, and any x ∈ S3. The matrix−x2 x1 x4 −x3
−x3 −x4 x1 x2
−x4 x3 −x2 x1


has rank 3, and we conclude that the vector fields X2(x), X3(x), X4(x) form an orthonormal basis
with respect to 〈·, ·〉 of the tangent space TxS3 at any point x∈ S3. Let us denote the vector fields
by

X3 = X , X4 = Y, X2 = Z.

The vector fields possess the following commutation relations

[X ,Y ] = XY −Y X = 2Z, [Z,X ] = 2Y, [Y,Z] = 2X .

Let D = span{X ,Y} be the distribution generated by the vector fields X and Y . Since [X ,Y ] =
2Z /∈ D , it follows that D is not involutive. The distribution D will be called horizontal. Any
curve on the sphere with the velocity vector contained in the distribution D will be called a
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horizontal curve. Since TxS3 = span{X ,Y,Z = 1/2[X ,Y ]}, the distribution is bracket generating.
We define the metric on the distribution D as the restriction of the metric 〈·, ·〉 onto D , and the
same notation will be used. The manifold (S3,D ,〈·, ·〉) is a step two subRiemannian manifold.

Remark. Notice that the choice of the horizontal distribution is not unique. The relations
[Z,X ] = 2Y and [Y,Z] = 2X imply possible choices D = span{X ,Z} or D = span{Y,Z}. The
geometries defined by different horizontal distributions are cyclically symmetric, so we restrict
our attention to the D = span{X ,Y}.

We also can define the distribution as a kernel of the following one form

ω =−x2dx1 + x1dx2 + x4dx3− x3dx4

on R4. One can easily check that

ω(X) = 0, ω(Y ) = 0, ω(Z) = 1 6= 0, ω(N) = 0.

Hence, kerω = span{X ,Y,N}, and the horizontal distribution can be written as

S3 3 x→Dx = kerω ∩TxS3.

Let γ(s) = (x1(s),x2(s),x3(s),x4(s)) be a curve on S 3. Then the velocity vector, written in
the left-invariant basis, is

γ̇(s) = a(s)X(γ(s))+b(s)Y (γ(s))+ c(s)Z(γ(s)),

where

a = 〈γ̇,X〉=−x3ẋ1− x4ẋ2 + x1ẋ3 + x2ẋ4,

b = 〈γ̇,Y 〉=−x4ẋ1 + x3ẋ2− x2ẋ3 + x1ẋ4, (4.3)

c = 〈γ̇,Y 〉=−x2ẋ1 + x1ẋ2 + x4ẋ3− x3ẋ4.

The following proposition holds.

Proposition 4.1. Let γ(s) = (x1(s),x2(s),y1(s),y2(s)) be a curve on S3. The curve γ is horizon-
tal, if and only if,

c = 〈γ̇,Z〉= 〈γ̇,X〉=−x2ẋ1 + x1ẋ2 + x4ẋ3− x3ẋ4 = 0. (4.4)

The manifold S3 is connected which satisfies the bracket generating condition. Once again,
by Chow’s Theorem [14], there exists a piecewise C1 horizontal curves connecting two arbitrary
points on S3. In fact, smooth horizontal curves connecting two arbitrary points on S3 were
constructed in [10].

Proposition 4.2. The horizontality property is invariant under the left translation.

Proof. It can be shown that (4.3) do not change under the left translation. This implies the
conclusion of the proposition. �
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5. HAMILTONIAN SYSTEM

Ones we have a system of curves, in our case the system of horizontal curves, we can define
the length as in the Riemannian geometry. Let γ : [0,1]→ S3 be a horizontal curve such that
γ(0) = x, γ(1) = y, then the length `(γ) of γ is defined as the following

`(γ) =
∫ 1

0
〈γ̇, γ̇〉1/2 dt =

∫ 1

0

(
a2(t)+b2(t)

)1/2 dt. (5.1)

Now we are able to define the distance between the points x and y by minimizing the inte-
gral (5.1) or the corresponding energy integral

∫ 1
0
(
a2(t)+ b2(t)

)
dt under the non-holonomic

constraint (4.4). This is Lagrangian approach. The Lagrangian formalism was applied to study
the subRiemannian geometry of S3 in [10]. In the Riemannian geometry the minimizing curve
locally coincide with a geodesic, but it is not the case in the subRiemannian manifolds. The
interesting examples and discussions can be found, for instance in [24, 26, 27, 28, 33]. Given
the subRiemannian metric we can form a Hamiltonian function defined on the cotangent bundle
of S3. The geodesics in the subRiemannian manifolds defines as a projection into the mani-
fold of the solution to the corresponding Hamiltonian system. It is a good generalization of the
Riemannian case in the following sense. The Riemannian geodesics (that are defined as curves
with vanishing acceleration) lift to solutions of the Hamilton system on the cotangent bundle.

In the present paper we are interested in the construction of subRiemannian geodesics on
(S3,D ,〈·, ·〉). Let us write the left invariant vector fields X ,Y,Z, using the matrices

I1 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , I2 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , I3 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 . (5.2)

Then
X = 〈I1x,∇x〉, Y = 〈I2x,∇x〉, Z = 〈I3x,∇x〉.

The Hamilton function is defined as

H =
1
2
(X2 +Y 2) =

1
2

(
〈I1x,ξ 〉2 + 〈I2x,ξ 〉2

)
,

where ξ = ∇x. Then the Hamilton system follows as

ẋ =
∂H
∂ξ

⇒ ẋ = 〈I1x,ξ 〉 · (I1x)+ 〈I2x,ξ 〉 · (I2x),

ξ̇ =−∂H
∂x

⇒ ξ̇ = 〈I1x,ξ 〉 · (I1ξ )+ 〈I2x,ξ 〉 · (I2ξ ).

(5.3)

As was mentioned a geodesic is the projection of a solution of the Hamiltonian system onto the
x-space. We obtain the following properties.

1. Since 〈I1x,x〉 = 〈I2x,x〉 = 〈I3x,x〉 = 0, multiplying the first equation of (5.3) by x, we
obtain

〈ẋ,x〉= 0 ⇒ |x|2 = const.

We conclude that any solution of the Hamiltonian system belongs to the sphere. Taking
the constant equal to 1, we obtain geodesics on S3.



326 D.-C. CHANG, O. FRIEDER, C.-F. HUNG, H.-R. YAO

2. Multiplying the first equation of (5.3) by I3x, we obtain

〈ẋ, I3x〉= 0, (5.4)

by the role of multiplication between I1, I2, and I3. The reader easily recognizes the
horizontality condition 〈ẋ,Z〉= 0 in (5.4). It means that any solution of the Hamiltonian
system is a horizontal curve.

3. Multiplying the first equation of (5.3) by I1x, and then by I2x, we obtain

〈ξ , I1x〉= 〈ẋ, I1x〉, 〈ξ ,xI2〉= 〈ẋ,xI2〉.

From the other side we know that 〈ẋ, I1x〉= a and 〈ẋ,xI2〉= b. The Hamiltonian function
can be written in the form

H =
1
2

(
〈I1x,ξ 〉2 + 〈I2x,ξ 〉2

)
=

1
2

(
〈I1x, ẋ〉2 + 〈I2x, ẋ〉2

)
=

1
2

(
a2 +b2

)
.

Thus the Hamiltonian function gives the kinetic energy H = |q̇|2
2 and it is a constant

along the geodesics.
4. If we multiply the first equation of (5.3) by ẋ, then

|ẋ|2 = 〈I1x,ξ 〉2 + 〈I2x,ξ 〉2 = 〈I1x, ẋ〉2 + 〈I2x, ẋ〉2 = a2 +b2 = 2H.

Then
|ẋ|2 = a2 +b2. (5.5)

5.1. Velocity vector with constant coordinates. We know that along geodesics the length of
the velocity vector is constant. Let us start from the simplest case, when the coordinates of
the velocity vector are constant. Suppose that ȧ = ḃ = 0. The first line of system (5.3) can be
written as follows

ẋ1 =−ax3−bx4 ẋ3 =+ax1−bx2 (5.6)

ẋ2 =−ax4 +bx3 ẋ4 =+ax2 +bx1.

Differentiation of system (5.6) yields

ẍ1 =−aẋ3−bẋ4 ẍ3 =+aẋ1−bẋ2 (5.7)

ẍ2 =−aẋ4 +bẋ3 ẍ4 =+aẋ2 +bẋ1.

We substitute the first derivatives from (5.6) in (5.7) to obtain

ẍk =−r2xk, r2 = a2 +b2, k = 1,2,3,4. (5.8)

Theorem 5.1. The set of geodesics with constant velocity coordinates form a unit sphere S2 in
R3

Proof. We are looking for horizontal geodesics parametrized by the arc length and starting
from the point x(0) = x0. So, we set r = 1 and a = cosψ , b = sinψ , where ψ is a constant
from [0,2π). Solving the equation (5.8), we obtain the general solution x(s) = Acoss+Bsins.
We conclude that A = x0 from the initial data. To find B, let us substitute the general solution
in equations (5.6) and obtain B = (aI1 + bI2)x0. Thus, the horizontal geodesics with constant
horizontal coordinates are

x(s) = x0 coss+(cosψI1 + sinψI2)x0 sins.
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Since the geodesics are invariant under the left translation it is sufficient to describe the situation
at the unity element, e.g., x0 = (1,0,0,0) of S3. In this case, the geodesics are

x1 = coss, x3 = cosψ sins, (5.9)

x2 = 0, x4 = sinψ sins.

We see that the set of geodesics with constant velocity coordinates form the unit sphere S2 in
R3 = {(x1,0,x3,x4)}. The parameter ψ ∈ [0,2π) corresponds to the initial velocity. �

The sphere (5.9) is a direct analogue of the horizontal plane on the Heisenberg group H1 at
the unity. Let us calculate the analogue of the vertical axis in H1. We wish to find an integral
curve for the vector field Z. In other words, we solve the system

a = 〈γ̇,X〉=−x3ẋ1− x4ẋ2 + x1ẋ3 + x2ẋ4 = 0,

b = 〈γ̇,Y 〉=−x4ẋ1 + x3ẋ2− x2ẋ3 + x1ẋ4 = 0, (5.10)

c = 〈γ̇,Z〉=−x2ẋ1 + x1ẋ2 + x4ẋ3− x3ẋ4 = 1,

n = 〈γ̇,N〉=+x1ẋ1 + x2ẋ2 + x3ẋ3 + x4ẋ4 = 0.

The rank of the system is 1 and it is redused to

ẋ1 =−x2, ẋ3 =+x4,

ẋ2 =+x1, ẋ4 =−x3.

Differentiating once more, we obtain the equation ẍ =−x. The initial point is x(0) = x0. Then
system (5.10) gives the value of the initial velocity ẋ(0) = I3x0. Taking into account this initial
data we get the equation of the vertical line

x(s) = x0 coss+ I3x0 sins.

In particular, at the point (1,0,0,0) the equation of vertical line is

x1 = coss, x2 = sins, x3 = 0, x4 = 0, s ∈ [0,2π]. (5.11)

5.2. Velocity vector with non-constant coordinates. Cartesian coordinates
Fix the initial point x(0) = (1,0,0,0). It is convenient to introduce complex coordinates

z = x1 + ix2, w = x3 + ix4, ϕ = ξ1 + iξ2, and ψ = ξ3 + iξ4. Hence, the Hamiltonian admits
the form 2H = |w̄ϕ− zψ̄|2. The corresponding Hamiltonian system becomes

ż = w(w̄ϕ− zψ̄), z(0) = 1,
ẇ = −z(wϕ̄− z̄ψ), w(0) = 0,
˙̄ϕ = ψ̄(wϕ̄− z̄ψ), ϕ̄(0) = A− iB,
˙̄ψ = −ϕ̄(w̄ϕ− zψ̄), ψ̄(0) =C− iD.

Here the constants B,C, and D have the following dynamical meaning: ẇ(0) = C + iD, and
B = −iẅ(0)/2ẇ(0) or if we write in real variables C = ẋ3(0), D = ẋ4(0), B = 1

2(ẋ3(0)ẍ4(0)−
ẋ4(0)ẍ3(0)). This complex Hamiltonian system has the first integrals

zψ−wϕ = C+ iD,
zϕ̄ +wψ̄ = A− iB,
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and we have |z|2 + |w|2 = 1 and 2H =C2 +D2 = 1 as an additional normalization. Therefore,

ϕ = z(A+ iB)− w̄(C+ iD),
ψ = z̄(C+ iD)+w(A+ iB).

Let us introduce an auxiliary function p= w̄/z. Substituting ϕ and ψ in the Hamiltonian system,
we have the equation for p as

ṗ = (C+ iD)p2−2iBp+(C− iD), p(0) = 0.

The solution is

p(s) =
(C− iD)sin(s

√
1+B2)√

1+B2 cos(s
√

1+B2)+ iBsin(s
√

1+B2)
.

Taking into account that żz̄ =−w ˙̄w, we obtain the solution

z(s) =
(

cos(s
√

1+B2)+ i
B√

1+B2
sin(s

√
1+B2)

)
e−iBs, (5.12)

and
w(s) =

C+ iD√
1+B2

sin(s
√

1+B2)eiBs. (5.13)

If B = 0, we obtain the solutions with constant horizontal velocity coordinates

z(s) = coss, w(s) = (ẋ3(0)+ iẋ4(0))sins

from the previous section.

Theorem 5.2. Let A be a point on the vertical line, i. e., A = (cosk,sink,0,0), k ∈ [0,2π),
then there are countably many geodesics γn connecting O = (1,0,0,0) with A. They have the
following parametric equations

zn(s) =
(

cos
(
s

πn√
π2n2− k2

)
− i

k
πn

sin
(
s

πn√
π2n2− k2

))
e

isk√
π2n2−k2 , (5.14)

wn(s) =
(
ẋ3(0)+ iẋ4(0)

)√π2n2− k2

πn
sin
(
s

πn√
π2n2− k2

)
e

−isk√
π2n2−k2 ,

n ∈ Z\{0,±1}, s ∈ [0,sn], where sn =
√

π2n2− k2 is the length of the geodesic γn.

Proof. Since we use the condition 2H = |ż|2+ |ẇ|2 = 1 we conclude that geodesics parametrized
by the length arc and the length of a geodesic at the value of parameter s = l is equal to l.
If A = (z(s),w(s)) belongs to the vertical line starting at O = (1,0,0,0) then |z(s)| = 1 and
|w(s)|= 0 provided that −Bs = k. It implies

cos2(s
√

1+B2)+
B2

1+B2 sin2(s
√

1+B2) = 1, sin(s
√

1+B2) = 0, −Bs = k.

Equations are satisfied if

sn =
√

π2n2− k2, Bn =−
k√

π2n2− k2
, n ∈ Z\{0,±1}.

We conclude, that for any n ∈ Z \ {0,±1} there is a constant Bn = − k√
π2n2−k2 such that the

corresponding geodesic γn(s), s ∈ [0,sn], with the equation (5.14) joins the points O with A and
the length of geodesic is equal to sn =

√
π2n2− k2. �
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So far we have a clear picture of trivial geodesics whose velocity has constant coordinates.
They are essentially unique (up to periodicity). The situation with geodesics joining the point
(1,0,0,0) with the points of the vertical line A has been described in the preceding theorem.
Let us consider the general case of points on S3.

Theorem 5.3. Given an arbitrary point (z1,w1)∈ S3 which neither belongs to the vertical line A
nor to the horizontal sphere S2, there is a countable number of geometrically different geodesics
joining the initial point (z0,w0) ∈ S3 with (z1,w1), z0 = 1, w0 = 0.

Proof. Let us denote
w1 = ρeiϕ , z1 = reiα , C+ iD = eiθ .

Then from (5.12) and (5.13) we have that

r2 = 1− 1
1+B2 sin2(s

√
1+B2), and ϕ = Bs+θ . (5.15)

We suppose for the moment that the angles s
√

1+B2 and sB are from the first quadrant. Other
cases are treated similarly. Then we have

z = (
√

1− (1+B2ρ2)+ iBρ)ei(θ−ϕ),

and
θ = θ(B) = α +ϕ− tan−1 Bρ√

1− (1+B2)ρ2
.

The first expression in (5.15) leads to the value of the length parameter s

s =
1√

1+B2
sin−1(ρ

√
1+B2),

and the second to
ϕ = θ +

B√
1+B2

sin−1(ρ
√

1+B2).

Substituting θ(B) in the latter equation we obtain

sin

(
(ϕ−θ(B))

√
1+

1
B2

)
= ρ

√
1+B2, (5.16)

as an equation for the parameter B. Observe that ϕ−θ(B) is a bounded function and limB→0 θ(B) 6=
0. Indeed, if the latter limit were vanishing, then the value of given ϕ would be zero and the so-
lution of the problem would be only B = 0 which is the trivial case excluded from the theorem.
So the left-hand side of equation (5.16) is a function of B which is bounded by 1 in absolute
value and fast oscillating about the point B = 0. The right-hand side of (5.16) is an even func-
tion increasing for B > 0. Therefore, there exists a countable number of non-vanishing different
solutions {Bn} of the equation (5.16) within the interval |B| ≤

√
1

ρ2 −1 with a limit point at

the origin. The geodesics (z(s),w(s) with the parameters Bn and θ(Bn) start from the point
(1,0,0,0) with the velocities (ż(0), ẇ(0)) = (0,eiθ(Bn)) in different directions, and therefore,
they sweep out different geometric loci about the initial point, which finishes the proof. �

This theorem reveals a clear difference of subRiemannian geodesics on the sphere from those
for the Heisenberg group. In the latter case the number of geodesics joining the origin with a
point neither from the vertical axis nor from the horizontal plane is finite.
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5.3. Hyperspherical coordinates. Let us use the hyperspherical coordinates to find geodesics
in with conconstant velocity coordinates.

x1 + ix2 = eiξ1 cosη , (5.17)

x3 + ix4 = eiξ2 sinη , η ∈ [0,π/2], ξ1,ξ2 ∈ [0,2π).

The horizontal coordinates are written as

a = η̇ cos(ξ1−ξ2)+(ξ̇1 + ξ̇2)sin(ξ1−ξ2)
sin2η

2
,

b = −η̇ sin(ξ1−ξ2)+(ξ̇1 + ξ̇2)cos(ξ1−ξ2)
sin2η

2
,

c = ξ̇1 cos2
η− ξ̇2 sin2

η .

The horizontality condition in hyperspherical coordinates is

ξ̇1 cos2
η− ξ̇2 sin2

η = 0.

The horizontal sphere (5.9) is obtained from the parametrization (5.17), if we set ξ1 = 0,
ξ2 = ψ , η = s. We have

a2 +b2 = 1 = η̇
2 =⇒ a = cosψ, b = sinψ.

The vertical line is obtained from the parametrization (5.17) setting η = 0, ξ1 = s.
If write the vector fields N,Z,X ,Y in the hyperspherical coordinates, we obtain

N =−2cot
(
2η∂η

)
, Z = ∂ξ1

−∂ξ2
,

X = sin(ξ1−ξ2) tanη∂ξ1
+ sin(ξ1−ξ2)cot

(
η∂ξ2

)
+2cos(ξ1−ξ2)∂η ,

and

Y = cos(ξ1−ξ2) tanη∂ξ1
+ cos(ξ1−ξ2)cot

(
η∂ξ2

)
−2sin(ξ1−ξ2)∂η .

In this parametrization the similarity with the Heisenberg group can be shown. Two horizontal
vector fields X ,Y produce as a commutator the constant vector field Z that orthogonal to the
horizontal vector fields at each point of the manifold. In hyperspherical coordinates it is easy to
see that the form ω = cos2 ηdξ1− sin2

ηdξ2 that defines the horizontal distribution is a contact
form because of

ω ∧dω = sin(2η)dη ∧dξ1∧dξ2 = 2dV,

where dV is the volume form. The sub-Laplacian is the following

1
2
(X2 +Y 2) =

1
2
(tan2

η ·∂ 2
ξ1
+ cot2 η ·∂ 2

ξ2
+4∂

2
η +2∂ξ1

∂ξ2
).

The Hamilton is

H(ξ1,ξ2,η ,ψ1,ψ2,θ) =
1
2
(tan2

η ·ψ2
1 + cot2 η ·ψ2

2 +4θ
2 +2ψ1ψ2).
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The Hamilton system is

ξ̇1 =
∂H
∂ψ1

= ψ1 tan2
η +ψ2

ξ̇2 =
∂H
∂ψ2

= ψ2 cot2 η +ψ1

η̇ =
∂H
∂θ

= 4θ

ψ̇1 = − ∂H
∂ξ1

= 0

ψ̇2 = − ∂H
∂ξ2

= 0

θ̇ = −∂H
∂η

=−ψ
2
1

tanη

cos2 η
+ψ

2
2

cotη

sin2
η
.

We solve the Hamiltonian system for the following initial dates: η(0) = 0, ξ (0) = 0, ξ2(0) =
ξ2(0), ψ1(0) = ψ1, ψ2(0) = ψ2, θ(0) = η̇(0)

4 = θ0.
We see that ψ1 and ψ2 are constant. From the third and the last equations, we have

η̈ =−4ψ
2
1

sinη

cos3 η
+4ψ

2
2

cosη

sin3
η

η̇ dη̇ =
(
−4ψ

2
1

sinη

cos3 η
+4ψ

2
2

cosη

sin3
η

)
dη

η̇
2 =C−4

ψ2
1 sin2

η +ψ2
2 cos2 η

cos2 η sin2
η

,

and

C cos2
η(0)sin2

η(0) = η̇
2(0)cos2

η(0)sin2
η(0)+4ψ

2
1 sin2

η(0)+4ψ
2
2 cos2

η(0).

Since η(0) = 0, we have ψ2 = 0. If ψ1 = 0, then ξ̇1 = ξ̇2 = 0 and η̇ = 4θ0, and we obtain
the variety of the trivial geodesics (5.9) up to the parametrization s 7→ 4θ0s. To fined other
geodesics we suppose that ψ1 6= 0. Moreover, we notice that C = η̇(0)+4ψ1 > 0.

We continue to solve the Hamiltonian system finding η(s).

cosη dη√
C cos2 η−4ψ2

1

= ds.

Denoting sinη = p, we have
d p√

−Cp2 +C−4ψ2
1

= ds. (5.18)

Integrating (5.18) from 0 to s, we have

s+A =
1√
|C|

sin−1
(√ C

C−4ψ2
1

sinη(s)
)
,
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where A we find setting s = 0. Then A = 1√
|C|

sin−1 0 = 0. We express

sin2
η(s) =

C−4ψ2
1

C
sin2(
√

Cs). (5.19)

From the Hamiltonian system, we find

ξ2(s) = ψ1s+ξ2(0) (5.20)

and

ξ̇1 = ψ1
sin2

η(s)
1− sin2

η(s)
= ψ1

sin2(
√

Cs)
a+ sin2(

√
Cs)

, a =
C

C−4ψ2
1
.

It gives

ξ1(s) =−ψ1s+
ψ1

2|ψ1|
tan−1

[2|ψ1|√
C

tan(
√

Cs)
]
. (5.21)

Let us suppose that the geodesics parametrized on the interval [0,1]. If the initial point and
the finite point are on the vertical line: η(0) = η(1) = 0, then

0 = sin2
η(1) =

C−4ψ2
1

C
sin2(
√

C) ⇒ C = π
2n2.

The value of C and ξ1(1) gives us the value of ξ2(1). Setting C = π2n2 into the equation for
ξ1(1) we find ψ1 =−ξ1(1). Then

ξ2(1) =−ξ1(1)+ξ2(0).

The finite point on the vertical line corresponds to the value ξ1(1),η(1) = 0 and ξ2 =−ξ1(1)+
ξ2(0).

We also note that the square of the velocity

|v|2 = η̇
2(s)+(ξ̇1(s)+ ξ̇2(s))2 sin2 2η(s)

2
is constant along geodesics. Taking η(0) = 0, we obtain

|v|2 = η̇
2(0) =C−4ψ

2
1 .

In the case when a geodesic terminated at the vertical line at ξ1(1), we obtain their lengths

`n =
√

C−4ψ2
1 =

√
π2n2−4ξ 2

1 (1).

We see that this result coincides with the result given by Theorem (5.2).
Using the hyperspherical coordinate we can find the number geodesics joining ξ1 = ξ2 = η =

0 with an arbitrary point ξ1, ξ2 and η . We formulate it in the following theorem.

Theorem 5.4. Let A be a point with the coordinate A = (ξ1,ξ2,η), ξ1,ξ2,η are different from
zero, then there are countably many geodesics γn connecting O = (0,0,0) with A. The square
of length `2 of a geodesic satisfies to the equation

`2 cos2(
√
`2 +4ξ2) =

4ξ 2
2 sin2

η

tan2
(
2(ξ1 +ξ2)

) . (5.22)
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The geodesics have the following parametric equations(
η(s)

)
n =

√
l2
n

`2
n +4ξ 2

2
sin2 (s√`2

n +4ξ 2
2
)
,(

ξ2(s)
)

n =ξ2s,(
ξ1(s)

)
n = −ξ2s+2

ξ2

|ξ2|
tan−1 ( 2|ξ2|√

`2
n +4ξ 2

2

tan
√

`2
n +4ξ 2

2
)
,

where n ∈ N and `n one of the solutions of the equation (5.22).

Proof. Suppose that the geodesics parametrized on the interval [0,1] and they start from the
point ξ1(0) = 0, η(0) = 0, ξ2(0) = 0 and terminate at a point ξ1(1) = ξ1, η(1) = η , ξ2(1) = ξ2.
Then ψ1 = ξ2 from (5.20) and

tan2 (2(ξ1 +ξ2)
)
=

4ξ 2
2

C
tan2
√

C

from (5.21), where we assumed that ξ2 > 0 for the moment. The formula (5.21) gives

sin2
η =

C−4ξ 2
2

C
sin2
√

C.

Comparing two last expressions, we obtain

(C−4ξ
2
2 )cos2

√
C =

4ξ 2
2 sin2

η

tan2
(
2(ξ1 +ξ2)

) . (5.23)

We observe that the length of a geodesic γ parametrized on the interval [0,1] can be calculated
by the following

`(γ) =
∫ 1

0
|v(0)|ds = |η̇2(0)|=

√
C−4ξ 2

2 .

From this and (5.23), we obtain (5.22)
The function `2 cos2(

√
l2 +4ξ2) oscillates with increasing amplitude, therefore the graph of

the function `2 cos2(
√

`2 +4ξ2) has infinitely many intersections with the given value m(ξ1,ξ2,η)=
4ξ 2

2 sin2
η

tan2
(

2(ξ1+ξ2)
) , see Figure (2). We conclude, that we have infinitely many geodesics which

lengths satisfy the equation (5.22). To find the expressions (5.23) we replace C and ψ1 by
known values. �

Remark. Theorem 5.4 is analogue of Theorem 5.3. The difference is such that in Theorem 5.3
the number of geodesics is parametrized by the angle of the initial velocity and this show that the
geodesics have different locus. In Theorem 5.4 we can easily to know the lengths of geodesics,
that are given by (5.22).

5.4. Hopf fibration. There is a close relation between the subRiemannian sphere S3 and the
Hopf fibration. Let S2 and S3 be unit 2-dimensional and 3-dimensional sphere respectively. We
remind that the Hopf fibration is a principal circle bundle over two-sphere given by the map
h : S3→ S2:

h(x1,x2,x3,x4) = ((x2
1 + x2

2)− (x2
3 + x2

4),2(x1x4 + x2x3),2(x2x4− x1x3)).
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FIGURE 2. Solutions of the equation `2 cos2(
√

`2 +4ξ2) = m(ξ1,ξ2,η)

Another way to define the Hopf fibration is to write

h(q) = qiq∗ ∈ S2, q ∈ S3, i = (0,1,0,0).

The fiber through the unity of the group (1,0,0,0) has equation (cosθ ,sinθ ,0,0) and as we
see coincides with the equation of the vertical line at this point. The sphere S2 represents the
horizontal “plane” filled out by the geodesics with constant horizontal coordinates.

Definition 5.1. Let Q→M be a principle G-bundle with the horizontal distribution D on Q. A
subRiemannian metric on Q that has distribution D and it is invariant under the action of G is
called a metric of bundle type.

In our situation S3 → S2 is a principle S1-bundle given by Hopf map. The subRiemannian
metric on the distribution D = span{X ,Y} was defined as the restriction of the euclidean metric
〈·, ·〉 from R4 and we used the same notation 〈·, ·〉 for subRiemannian metric. We state the
following.

Proposition 5.1. The subRiemannian metric 〈·, ·〉 on S3 is a metric of bundle type.

Proof. The action of the group S1 on q = (x1,x2,x3,x4) ∈ S3 can be written as q ◦ eit , eit =
(cos t + isin t) ∈ S1, t ∈ [0,2π), where ◦ is the quaternion multiplication. If we write q =

(eiξ1 cosη ,eiξ2 sinη), q̃ = q◦ eit then q̃ = (ei(ξ1+t) cosη ,ei(ξ2−t) sinη). To show that the metric
〈·, ·〉 is of bundle type we have to show that the metric is invariant under the action of the group
S1. The metric 〈·, ·〉 at any q is given by the matrix 1 0 0

0 cos2 η 0
0 0 sin2

η


and it is easy to see that it is invariant under the action q̃ = q◦ eit . �
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6. HEAT KERNEL OF THE ELLIPTIC AND SUBELLIPTIC LAPLACIAN ON S3

Let us write the Laplace and subLaplace operators on S3 first. As usual, we set

Zk =
n+1

∑
j=1

ak j

∂

∂ z j
, k = 1, . . . ,n+1

be a holomorphic vector field on Cn+1. Then it is easy to see that{√
2Z1, . . . ,

√
2Zn+1

}
is an orthonormal basis of T (1,0)(Cn+1) with respect to the Euclidean metric. As usual, set
zk = xk+ ixk+n+1, k = 1, . . . ,n+1. Denote Z∗k the differential operator adjoint to Zk with respect
to the Euclidean volume form

dx = dx1∧dx2∧·· ·∧dxn+1 =
(−1)n2−1

2n+1 dz1∧dz̄1∧·· ·∧dzn+1∧dz̄n+1.

The Laplacian on Cn+1 is given by

∆ = −
n+1

∑
k=1

(
Z∗k Zk + Z̄∗k Zk

)
= 2

n+1

∑
k=1

∂

∂ zk

∂

∂ z̄k
. (6.1)

It is known that the Cauchy-Riemann subLaplacian on the unit sphere S2n+1 is given by

∆cr = −
n

∑
k=1

(
W ∗k Wk +W̄ ∗k Wk

)∣∣∣
S2n+1

, (6.2)

where
{√

2W1, . . . ,
√

2Wn
}

is a local orthonormal basis of those holomorphic vector fields on
Cn+1 which are perpendicular to the holomorphic vector field

N =
n+1

∑
j=1

z j

|z|
∂

∂ z j
(6.3)

with |z|= z · z̄. It is obvious that Wk and W̄k, k = 1, . . . ,n are tangential to S2n+1. Using vector N
and Wk and W̄k, we may rewrite the Laplace operator ∆ as follows (see [13] and [19]):

∆ = −2Re
(

N∗N +
n

∑
k=1

W ∗k Wk

)
. (6.4)

Let ∆cr be the restriction of ∆ to C∞(S2n+1). Thus, by (6.2) and (6.4) tells us that

∆cr = ∆S+2Re
(
N∗N

)∣∣∣
C∞(S2n+1)

.

Thus ∆cr is globally defined on S2n+1 and by (6.1) and (6.3), we know that it is fully explicitly
defined. Notice that the operator ∆S is elliptic. However, ∆cr is only a sub-elliptic.
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6.1. Heat kernel for elliptic Laplacian on S3. Recall the heat kernel for the Laplace-Beltrami
operator:

∆ = −1
2

n

∑
j=1

X∗j X j =
1
2

n

∑
j=1

X2
j + · · · .

Here X1, . . . ,Xn represent n linearly independent vector fields on an n-dimensional manifold
Mn. When Mn is compact without boundary or relatively compact domain in Rn, Greiner (see
[19]) showed that the heat kernel takes the form

P(x,y; t) =
1

(2πt)
n
2

e−
d2(x,y)

2t
(
a0 +a1t +a2t2 + · · ·

)
.

The a j’s are functions of x and y. Note that

∂

∂ t

(d2(x,y)
2t

)
+

1
2

n

∑
j=1

(
X j

d2(x,y)
2t

)2
= 0,

i.e., d2(x,y)
2t is a solution of the Hamilton-Jacobi equation.

We are interested in finding the solving kernels for the operators ∂

∂ t −∆cr. It is reasonable to
expect the kernel has the form:

Pcr(x,y; t) =
c

tα
e−S(x,y;t) for some suitable α.

See, for example, Beals-Gaveau-Greiner [3, 4] and Calin-Chang-Greiner [9].
The modified complex action function S(x,y; t) plays the role of d2(x,y)

2t in the Riemannian
cases and satisfies the Hamilton-Jacobi equation

∂S
∂ t

+H
(

x,y,
∂S
∂x

,
∂S
∂y

)
= 0.

In our case, we need to find a solution S of the following equation induced by ∂

−∆cr:

0 =
∂S
∂ t

+
1
2

[(
∂S
∂θ

)2
+

1
cos2 θ

(
∂S
∂φ

)2]
. (6.5)

This is a first order partial differential equation whose solution can be found in the form of an
action integral S along the bicharacteristics η +H; thus

H
(
θ ,ω,τ) =

1
2

{
ω

2 +
τ2

cos2 θ
− τ

2
}
.

In fact, θ(s), φ(s) and ω(s) may be obtained from the reduced Hamiltonian

H =
1
2

(
ω

2 + τ
2 · tan2

θ

)
,

as solutions of

θ̇ = ω = ±
√

2H− τ2 · tan2 θ , and φ̇ = τ · tan2
θ . (6.6)



HEAT KERNELS AND GRAPH KERNELS 337

In other words, (6.6) yields

±dθ

ds
=

√
2H− 2τ2

1+ cos(2θ)

=
|τ|k

sin(2θ)

k2−1
k2

√
1−
( k2

k2−1
cos(2θ)− 1

k2−1

)2
,

with k2 = 2H
τ2 . In other words, one has

d
(

k2

k2−1 cos(2θ)− 1
k2−1

)
√

1−
(

k2

k2−1 cos(2θ)− 1
k2−1

)2
= ±2|τ|k ds.

This yields
k2

k2−1
cos(2θ)− 1

k2−1
= sin

(
±2|τ|k(s− s0)

)
, (6.7)

with some s0 still to be determined. When s = 0, (6.7) becomes

1 = sin
(
±2|τ|ks0

)
.

Using an addition formula and expanding the sine function in (6.7), we have

k2

k2−1
cos(2θ)− 1

k2−1
= cos

(
2|τ|ks

)
. (6.8)

Subtracting 1 from each side leads of (6.8), we obtain

sin2
θ(s) =

(
1− τ2

2H

)
sin2 (√2Hs

)
. (6.9)

On the other hand, the second equation φ̇ = τ · tan2 θ in (6.6) and

cos2 (
θ(s)

)
= cos2 (√2Hs

)
+

τ2

2H
sin2 (√2Hs

)
=

1+ τ2

2H tan2 (√2Hs
)

1+ tan2
(√

2Hs
)

imply that

dφ =
d
(

τ√
2H

tan
(√

2Hs
)

1+
(

τ√
2H

tan
(√

2Hs
))2 .

Assume that φ(0) = 0, then the φ -component of the bicharacteristic of ∆S is given by

φ(s) = tan−1
(

τ√
2H

tan
(√

2Hs
))

, (6.10)

which can be extended to all s > 0.
Now we may choose parameters H and τ so that φ(1) = φ and θ(1) = θ . Then (6.9)

and (6.10) imply that

sin2
θ

sin2(
√

2Ht)
= 1− τ2

2H
= 1− tan2 φ

tan2(
√

2Ht)
.

This implies that
sin2 (√2Ht

)
− cos2 (√2Ht

)
· tan2

φ = sin2
θ .
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Substracting 1 from each sides of the above equation gives us

cos
(√

2Ht
)
= cos θ · cos φ .

Thus √
2Ht = cos−1 (cosθ · cosφ

)
+2kπ = ζ +2kπ, k ∈ Z,

where cosζ = cosθ ·cosφ ; the angle ζ subtends the arc from (1,0, . . . ,0) to the point z. There-
fore, the equation Ṡ = ω · θ̇ + τ · φ̇ −H implies that Ṡ = H = E2

2 . Hence we have

S = Ht =

(
cos−1(cosθ · cosφ)+2kπ

)2

2t
=

(ζ +2kπ)2

2t
, k ∈ Z. (6.11)

It is easy to check that S satisfies the Hamilton-Jacobi equation (6.5). In conclusion, we have
the following theorem for elliptic Laplacian on S3.

Theorem 6.1. Given z,w ∈ S3, let ζ be the angle which subtends the arc that joins z and w on
a great circle, 0≤ ζ < π . Then the heat kernel PS of ∆S on S3 is given by

PS(z,w, ; t) =
e

t
2

(2πt)
3
2

∑
k∈Z

e−
(ζ+2kπ)2

2t ϕ
(
ζ +2kπ

)
,

where

ϕ(ζ ) =
(

ζ

sin ζ

)
.

6.2. Heat kernel for subLaplacian on S3. Let Pcr(z,w; t) be the heat kernel of ∆cr with pole
at z which satisfies

∂Pcr

∂ t
−∆crPcr =0

lim
t→0+

Pcr =δ (z−w).
(6.12)

Since ∆cr is invariant with respect to complex (unitary) rotations of Cn+1, it follows that Pcr(z,w; t)
is a function depending only on one complex variable

z · w̄ =
n+1

∑
k=1

zk · w̄k = z1 · w̄1 + · · ·+ zn+1 · w̄n+1 = cosθ · eiφ

and its complex conjugate z̄ ·w, or of 2 real variables θ and φ with 0≤ θ ≤ π

2 and 0≤ φ ≤ 2π .
Thus, we may write

Pcr(z,w; t) = Pcr
(∣∣z ·w|,arg(z ·w); t) = Pcr

(
cosθ ,φ ; t).

In particular, we may assume that z = (1,0, . . . ,0), and then w1 = z · w̄ = cosθ · eiφ . One
extends θ , φ to a complex system of spherical coordinates (θ ,φ) = (θ1, . . . ,θn,φ1, . . . ,φn,φn+1)
on S2n+1, and then w can be identified as (θ ,φ). Hence, ∆cr restricted to functions of θ and φ

yields the operator

Lcr =
1
2

∂ 2

∂θ 2 +
(
(n−1)cot θ + cot(2θ)

) ∂

∂θ
+

1
2

tan2
θ · ∂ 2

∂φ 2 . (6.13)
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It is obvious that Lcr is not elliptic since 1
2 tan2 θ · ∂ 2

∂φ 2 vanishes at θ = 0. However, we know
that [

∂

∂θ
, tan θ

∂

∂φ

]
=

1
cos2 θ

· ∂

∂φ
,

which does not vanish at θ = 0, hence Lcr is a sub-elliptic operator of step 2.
We can follow the idea in Greiner’s celebrated paper [19] to look for a solution Scr of the

Hamilton-Jacobu equation induced by the sub-elliptic heat equation ∂

∂ t −Lcr:

0 =
∂Scr

∂ t
+

1
2

[(
∂Scr

∂θ

)2
+
(
1− 1

cos2 θ

)(∂Scr

∂φ

)2
]
, (6.14)

in the form of an action integral along the bicharacteristics η +H with

H(θ ,ω,τ) =
1
2

(
ω

2 + tan2
θ · τ2

)
,

as solutions of

θ̇ =−ω =
√

2H− tan2 θ · τ2 and φ̇ = tan2
θ · τ.

The first equation above yields

±dθ

ds
=

√
2H +

(
1− 2

1+ cos(2θ)

)
τ2

=
|τ|

sin(2θ)

k2
√

k2 +1

√
1−
(k2 +1

k2 cos(2θ)− 1
k2

)2
,

where k2 = 2H
τ2 . Now by standard method, one has

k2 +1
k2 cos(2θ)− 1

k2 = sin
(
±2|τ|

√
k2 +1(s− s0)

)
, (6.15)

with some s0 that we need to determined later. When s0 = 0, (6.15) becomes

1 = sin
(
±2|τ|

√
k2 +1s

)
.

Using the addition formula of the sine function in (6.15) gives us

k2 +1
k2 cos(2θ)− 1

k2 = cos
(

2|τ|
√

k2 +1s
)
.

Then substract 1 from each side leads to

sin2 (
θ(s)

)
=

E2

E2 + τ2 sin2 ((E2 + τ
2)s
)
.

Hence,

1− sin2 (
θ(s)

)
=1− E2

E2 + τ2 sin2 ((E2 + τ
2)s
)

=
(
1+

τ2

E2 + τ2 tan2 (√E2 + τ2 s
)
·
(
1+ tan2 (√E2 + τ2 s

))−1
.
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Combining with φ̇ = tan2 θ · τ , we conclude that

dφ = − τ ds+
τ ds

cos2 θ(s)

= − τ ds+d
(

τ√
E2 + τ2

tan
(√

E2 + τ2 s
))

×
(

1+
τ√

E2 + τ2
tan
(√

E2 + τ2 s
))−2

,

which implies that

φ(s)−φ(0) = tan−1
(

τ√
E2 + τ2

tan
(√

E2 + τ2 s
))
− τ s.

In order to find the action function S = Ht = E2

2 t, we may assume that φ(0) = 0. Then at
s = t, one has

tan
(
φ + τ t

)
=

τ√
E2 + τ2

tan
(√

E2 + τ2 t
)
. (6.16)

Applying standard argument, we have

S = Ht =
−(τt)2 +

(
cos−1(cos θ · cos(φ + τt))+2kπ

)2

2t
.

Since τ does not appear in the final form of Pcr, so we may use an old trick to sum over v = τt
where τ is treated as a running parameter, even though φ(0) = 0 in (6.16) is supposed to fix it.

Denote
γ(v) = −v2 +

(
cos−1(cos θ · cos(φ + v))

)2
,

then S will be positive on the imaginary axis so we set g(v) = γ(−iv) and obtain

g(v) =v2 +
(

cos−1(cos θ · cos(φ − iv))
)2

= v2 +ν
2

=v2−
(

cosh−1(cos θ · cosh(v+ iφ))
)2

= v2−ρ
2,

where
cos ν = cos θ · cos(φ − iv) = cosh ρ, ρ = iν .

In summary, we have the following theorem.

Theorem 6.2. The heat kernel Pcr of ∆cr on S3 is given by

Pcr(z,w, ; t) =
e

t
2

(2πt)2 ∑
k∈Z

∫ +∞

−∞

e−
(v2−(ρ+2kiπ))2

2t

(
ρ

sinh ρ

)
dv,

where (θ ,φ) 6= (0,π).

7. REAL-WORLD APPLICATIONS

We conclude with a represetative real-world application that utilizes the kernel and mani-
fold concept, specifically clinical data modeling. Modeling patient clinical records, such as
Electronic Health Records (EHRs), is complicated for multiple reasons. Among complicating
factors are those that arise from both the need to compare patient records across patients and
the necessity to model the duration between medical events, where the duration and the impact
of that duration varies.
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In [36, 37], a kernel method to model graph-based medical data was proposed. The disclosed
approach provides similarity measurements across patient records. In [11, 38], the authors fur-
ther discussed how distance affects EHR representation learning. They demonstrated the per-
formance difference between Euclidean and cosine distance-defined kernel functions. In most
cases, cosine rather than Euclidean distance performs better due to its spherical properties. The
degree of improvement using cosine rather than Euclidean distance roughly correlated to the du-
ration of the affliction treated, the longer the affliction the greater was the improvement. Note,
however, that for predominantly one-shot treatment ailments, such as those diseases treated by
a single regimen of antibiotics, Euclidean distance often performed slightly, but rarely statis-
tically significantly, better. The aforementioned approach, trained and relying on nationalized
health records, is in limited clinical use and is disclosed in [16].

Most recently, in [39], the authors identified the representation difference between Euclidean
and cosine distance manifolds and how they benefit self-supervised contrastive learning [25].
Such difference enhances self-supervised learning by discovering robust representations of
complex patient medical records across different geometries. The geometry properties are built
along with Euclidean and cosine distance manifolds.

Remark. We may consider a manifold with negative curvature also. In that case, we need to
approximate the manifold in a local neighborhood using a hyperbolic space:

hn =
{

x ∈ Rn : |x|< 2
}

with gh = 4
∑

n
j=1 dx j⊗dx j

(4−|x|2)2 .

One may construct the heat kernel Kh
n (t,ρ(x,y)) on the hyperbolic space as follows:

Kh
n (t,ρ(x,y)) =

e−`
2t

(2π)`(4πt)
1
2

( −1
sinhρ

∂

∂ρ

)`
e−

ρ2
4t , n = 2`+1

and

Kh
n (t,ρ(x,y)) =

e−(2`1)
2t/4

2(2π)`(2πt)
3
2

( −1
sinhρ

∂

∂ρ

)` ∫ ∞

r

se−
s2
4t

(cosh(s)− coshρ)
1
2
, n = 2`+2

The method to obtain the result is inspired by results in [15] and [18]. We omit the details here.
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