J. Nonlinear Var. Anal. 7 (2023), No. 3, pp. 397-407 Available online at http://jnva.biemdas.com https://doi.org/10.23952/jnva.7.2023.3.05

POLYNOMIAL DIFFERENTIATION COMPOSITION OPERATORS FROM WEIGHTED BERGMAN SPACES TO WEIGHTED-TYPE SPACES ON THE UNIT BALL

STEVO STEVIĆ^{1,2}

¹Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia ²Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

Abstract. We introduce a polynomial differentiation composition operator on spaces of holomorphic functions on the open unit ball in the *n*-dimensional complex vector space, and characterize the bound-edness and compactness of the operator from the classical weighted Bergman space to the weighted-type space and the little weighted-type space of holomorphic functions on the unit ball.

Keywords. Holomorphic functions; Polynomial differentiation composition operator; Product-type operator; Weighted Bergman space; Weighted-type space; Compact operator.

1. INTRODUCTION

Throughout this paper, \mathbb{N} denotes the set of positive integers, \mathbb{C} denotes the set of complex numbers, and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. If $k, l \in \mathbb{N}_0$, $k \leq l$, then $j = \overline{k, l}$ is the notation used instead of $j = k, \ldots, l$. We also regard that $\sum_{j=p}^{q} b_j = 0$ and $\prod_{j=p}^{p-1} b_j = 1$, when $p, q \in \mathbb{N}_0$ and q < p.

The open unit ball in the *n*-dimensional complex vector space \mathbb{C}^n , $n \in \mathbb{N}$, we denote by \mathbb{B} . In the case n = 1, the open unit ball is the open unit disk in the complex plane \mathbb{C} and is denoted by \mathbb{D} . The Euclidean inner product in \mathbb{C}^n is defined by

$$\langle z, w \rangle = z_1 \overline{w}_1 + z_2 \overline{w}_2 + \dots + z_n \overline{w}_n,$$

where $z = (z_1, ..., z_n)$ and $w = (w_1, ..., w_n)$ are two points in \mathbb{C}^n . The corresponding norm is defined by $|z| = \langle z, z \rangle^{1/2}$.

The Lebesgue measure on \mathbb{B} is denoted by dV(z), whereas for $\alpha > -1$ is defined a normalized measure on \mathbb{B} as follows $dV_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha}dV(z)$, where c_{α} is chosen such that $V_{\alpha}(\mathbb{B}) = \int_{\mathbb{B}} dV_{\alpha}(z) = 1$. By D_j we denote the partial derivative operator $D_j f(z) = \frac{\partial f}{\partial z_j}(z)$, where $j \in \{1, 2, ..., n\}$. Let Ω be a domain in \mathbb{C}^n . Then by $H(\Omega)$ we denote the space of holomorphic functions on Ω , whereas by $S(\Omega)$ we denote the class of holomorphic self-maps of the domain. Some basic facts on the topic can be found, for example, in the classical books [14] and [15].

The composition operator induced by function $\varphi \in S(\Omega)$ is defined by

$$C_{\varphi}f = f \circ \varphi, \tag{1.1}$$

E-mail addresses: sscite1@gmail.com and sstevic@ptt.rs.

Received September 16, 2022; Accepted November 13, 2022.

^{©2023} Journal of Nonlinear and Variational Analysis

where $f \in H(\Omega)$.

The multiplication operator M_u induced by function u is defined by

$$M_u f = uf, \quad f \in H(\Omega). \tag{1.2}$$

Here we regard/assume that $u \in H(\Omega)$. In the complex plane is defined the (iterated) differentiation operator D^m on $H(\Omega)$ in the standard way $D^m f(z) = f^{(m)}(z)$, where $m \in \mathbb{N}_0$, $f \in H(\Omega)$, $z \in \Omega$, and $D^1 = D$ is the classical differentiation operator, that is,

$$Df = f'. (1.3)$$

Recall that $D^0 = I$, where *I* is the identity operator. Product type operators containing (1.1), (1.2), or (1.3), as well as some other linear operators were studied a lot. In addition to weighted composition operators, the products DC_{φ} and $C_{\varphi}D$ attracted much attention recently; see, for example, [9, 13] and the related references therein.

The weighted differentiation composition operators $D_{\varphi,u}^m := M_u C_{\varphi} D^m$ and their special cases (predominately in the case that $u \equiv 1$) have been studied extensively on subspaces of $H(\mathbb{D})$; see, for example, [10, 25, 26, 27] and the related references therein.

Let \Re be the radial differentiation operator, that is, $\Re f = \sum_{j=1}^{n} z_j D_j f$. By using the operator, in [20], the author defined the following one $\Re_{\varphi,u}^m := M_u C_{\varphi} \Re^m$, and it was further studied later, e.g., in [22]. Note that it is related to the operator $D_{\varphi,u}^m$ acting on the spaces of holomorphic function in a domain in the complex plane. For other product-type operators containing differentiation operators, we refer to [11, 18] and the references therein. A sum of operators of the form $M_u C_{\varphi} D^j$ were investigated first in [23] and [24]. For some subsequent studies of the operator; we refer to [1, 4, 6]. The problem of studying sums of related operators on subspaces of $H(\mathbb{B})$ naturally appears. For a recently introduced operator of this type; see [21].

Here we define a polynomial differentiation composition operator as follows

$$P_{D,\varphi}^m f := \sum_{j=0}^m u_j C_{\varphi} D_{l_j} \cdots D_{l_1} f, \quad f \in H(\mathbb{B}),$$

where $m \in \mathbb{N}_0$, $u_j \in H(\mathbb{B})$, $j = \overline{0, m}$, and $\varphi \in S(\mathbb{B})$.

Let p > 0, $\alpha > -1$, and

$$||f||_{A^{p}_{\alpha}} = \left(\int_{\mathbb{B}} |f(z)|^{p} dV_{\alpha}(z)\right)^{1/p},$$
(1.4)

where *f* is a complex-valued measurable function. The weighted Bergman space $A^p_{\alpha}(\mathbb{B}) = A^p_{\alpha}$ is defined as follows

$$A^p_{\alpha}(\mathbb{B}) = \left\{ f \in H(\mathbb{B}) : \|f\|_{A^p_{\alpha}} < +\infty \right\}.$$

When $p \ge 1$, the quantity/functional in (1.4) is a norm on the space A^p_{α} , and with the norm it is a Banach space. When $p \in (0, 1)$, it is a Frechet space with the translation invariant metric

$$d_{A^p_{\alpha}}(f,g) = \|f-g\|^p_{A^p_{\alpha}}.$$

Some results on the weighted Bergman space and the operators acting from or to the space can be found in, for example, [1, 2, 5, 7, 8, 15].

The notion of weight function, or simply weight, refers to a positive and continuous function on \mathbb{B} . The weighted-type space $H^{\infty}_{\mu}(\mathbb{B}) = H^{\infty}_{\mu}$, where μ is a weight, is defined as follows

$$H^{\infty}_{\mu}(\mathbb{B}) := \left\{ f \in H(\mathbb{B}) : \|f\|_{H^{\infty}_{\mu}} := \sup_{z \in \mathbb{B}} \mu(z)|f(z)| < +\infty \right\},$$

whereas the little weighted-type space is the subspace of H^{∞}_{μ} consisting of $f \in H(\mathbb{B})$ such that

$$\lim_{|z|\to 1}\mu(z)|f(z)|=0,$$

and is denoted by $H^{\infty}_{\mu,0}(\mathbb{B}) = H^{\infty}_{\mu,0}$. It is a closed subspace of H^{∞}_{μ} . The space of bounded holomorphic function is obtained for $\mu(z) \equiv 1$ and denoted by $H^{\infty}(\mathbb{B}) = H^{\infty}$. The corresponding norm on the space is denoted by $\|\cdot\|_{\infty}$.

Let $L: X \to Y$ be a linear operator, where X and Y are two Banach spaces. If there is $M \ge 0$ such that $||Lf||_Y \le M ||f||_X$, for every $f \in X$, the operator is called bounded. We say that the operator is compact if it maps bounded sets in X into relatively compact. By B_X , we denote the unit ball in the space X. For some classical results in the topic, we refer to [3] and [16]. For some recent investigations on the boundedness and compactness of various concrete linear operators on spaces of holomorphic functions on domains in \mathbb{C} or \mathbb{C}^n , we refer to the references included in this paper.

In this paper, we study the boundedness and compactness of the polynomial differentiation composition operator $P_{D,\varphi}^m$ from weighted Bergman spaces to weighted-type spaces on \mathbb{B} .

By *C* we denote some unspecified nonnegative constants, which can be different from one appearance to another. If we write $a \leq b$ (resp. $a \geq b$), then it means that there is a C > 0 such that $a \leq Cb$ (resp. $a \geq Cb$). If the relations hold: $a \leq b$ and $b \leq a$, then we write $a \asymp b$.

2. AUXILIARY RESULTS

Here we give several lemmas which we employ in the proof of the main results in the next section. As usual, we need a characterization for the compactness. It is proved in a standard way. So, we omit the proof. One of the first results of the sort was proved in [17].

Lemma 2.1. Let $p \ge 1$, $\alpha > -1$, $u_j \in H(\mathbb{B})$, $j = \overline{0,m}$, $\varphi \in S(\mathbb{B})$, and μ be a weight function on \mathbb{B} . Then the bounded operator $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is compact if and only if for any bounded sequence $(f_k)_{k \in \mathbb{N}}$ in the space $A_{\alpha}^p(\mathbb{B})$ such that $f_k \to 0$ uniformly on compact subsets of \mathbb{B} as $k \to +\infty$, it follows that $\lim_{k\to+\infty} \|P_{D,\varphi}^m f_k\|_{H_{\mu}^{\infty}(\mathbb{B})} = 0$.

The following result easily follows from Cauchy's estimates for derivatives of holomorphic functions on balls in \mathbb{C}^n , and the subharmonicity of the function $|f|^p$, when $f \in H(\mathbb{B})$ and p > 0 (a generalization of the result can be found, for example, in [22]).

Lemma 2.2. Let p > 0, $\alpha > -1$, and $N \in \mathbb{N}_0$. Then, for every multi-index $\vec{l} = (l_1, l_2, \dots, l_j)$ such that $|\vec{l}| = N$, there is $C_{\vec{l}} > 0$ such that

$$\left|\frac{\partial^N f(z)}{\partial z_{k_1}^{l_1} \partial z_{k_2}^{l_2} \cdots \partial z_{k_j}^{l_j}}\right| \leq \frac{C_{\vec{l}} \|f\|_{A^p_{\alpha}(\mathbb{B})}}{(1-|z|^2)^{\frac{n+1+\alpha}{p}+N}},$$

for every $f \in A^p_{\alpha}(\mathbb{B})$ *and* $z \in \mathbb{B}$ *.*

S. STEVIĆ

The following result is easily proved by [15, Proposition 1.4.10]. We omit this simple and known proof.

Lemma 2.3. Let p > 0 and $\alpha > -1$. Then, for each $a \ge 0$ and $w \in \mathbb{B}$, the following function

$$f_{w,a}(z) = \frac{(1 - |w|^2)^{\frac{n+1+\alpha}{p} + a}}{(1 - \langle z, w \rangle)^{\frac{2(n+1+\alpha)}{p} + a}},$$
(2.1)

belongs to $A^p_{\alpha}(\mathbb{B})$. Moreover,

$$\sup_{w \in \mathbb{B}} \|f_{w,a}\|_{A^p_{\alpha}(\mathbb{B})} \lesssim 1.$$
(2.2)

The following lemma is a known generalization of [12, Lemma 1].

Lemma 2.4. A closed set K in $H^{\infty}_{\mu,0}$ is compact if and only if it is bounded and

$$\lim_{|z|\to 1}\sup_{f\in K}\mu(z)|f(z)|=0.$$

Now we present some of the test functions which are used in the proofs of our main results.

Lemma 2.5. Let p > 0, $\alpha > -1$, $m \in \mathbb{N}$, and $w \in \mathbb{B}$ be such that $w_j \neq 0$, $j = \overline{1, n}$. Then, for each $s \in \{0, 1, ..., m\}$, there are $c_j^{(s)}$, $j = \overline{0, m}$ such that the function $h_w^{(s)}(z) = \sum_{k=0}^m c_k^{(s)} f_{w,k}(z)$, where $f_{w,a}$, defined in (2.1), satisfies

$$D_{l_s} \cdots D_{l_1} h_w^{(s)}(w) = \frac{\overline{w}_{l_1} \overline{w}_{l_2} \cdots \overline{w}_{l_s}}{(1 - |w|^2)^{\frac{n+1+\alpha}{p} + s}}$$
(2.3)

and

$$D_{l_t} \cdots D_{l_1} h_w^{(s)}(w) = 0, \qquad (2.4)$$

for every $t \in \{0, 1, ..., m\} \setminus \{s\}$. In addition,

$$\sup_{w\in\mathbb{B}} \|h_w^{(s)}\|_{A_\alpha^p(\mathbb{B})} \lesssim 1.$$
(2.5)

Proof. Let $d_k = \frac{2(n+1+\alpha)}{p} + k$, $k \in \mathbb{N}_0$, and $h_w(z) = \sum_{k=0}^m c_k f_{w,k}(z)$. We have

$$D_{l_t}\cdots D_{l_1}h_w(z) = \sum_{k=0}^m c_k \frac{d_k d_{k+1}\cdots d_{k+t-1}\overline{w}_{l_1}\overline{w}_{l_2}\cdots \overline{w}_{l_t}(1-|w|^2)^{\frac{n+1+\alpha}{p}+k}}{(1-\langle z,w\rangle)^{d_k+t}},$$

for $t \in \mathbb{N}_0$. Hence,

$$D_{l_t}\cdots D_{l_1}h_w(w) = \frac{\overline{w}_{l_1}\overline{w}_{l_2}\cdots\overline{w}_{l_t}}{\left(1-|w|^2\right)^{\frac{n+1+\alpha}{p}+t}}\sum_{k=0}^m c_k\prod_{l=0}^{t-1}d_{k+l}$$

for $t \in \mathbb{N}_0$. Consider the system

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ d_0 & d_1 & \cdots & d_m \\ \vdots & \vdots & \ddots & \vdots \\ \prod_{k=0}^{s-1} d_k & \prod_{k=0}^{s-1} d_{k+1} & \cdots & \prod_{k=0}^{s-1} d_{k+m} \\ \vdots & \vdots & \ddots & \vdots \\ \prod_{m=1}^{m-1} d_k & \prod_{k=0}^{m-1} d_{k+1} & \cdots & \prod_{k=0}^{m-1} d_{k+m} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_s \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ c_m \end{bmatrix},$$
(2.6)

where the unit in the vector on the right-hand side of (2.6) is on the (s + 1)th position. By [19, Lemma 5], we see that the determinant of the system is different from zero. From this, we have that, for each $s \in \{0, 1, ..., m\}$, there is a unique solution $c_k := c_k^{(s)}$, $k = \overline{0, m}$, to (2.6). Let $h_w^{(s)}(z) := \sum_{k=0}^m c_k^{(s)} f_{w,k}(z)$. Then (2.3) and (2.4) hold. From (2.2), it follows that (2.5) also holds.

3. MAIN RESULTS

Our first result in this section deals with the boundedness of $P_{D,\varphi}^m: A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})$.

Theorem 3.1. Let $p \ge 1$, $\alpha > -1$, $m \in \mathbb{N}$, $u_j \in H(\mathbb{B})$, $j = \overline{0, m}$, $\varphi = (\varphi_1, \dots, \varphi_n) \in S(\mathbb{B})$,

$$\min_{j=\overline{1,n}} \inf_{z \in \mathbb{B}} |\varphi_j(z)| \ge \delta > 0, \tag{3.1}$$

and μ be a weight function on \mathbb{B} . Then the operator $P_{D,\varphi}^m : A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})$ is bounded if and only if

$$M_j := \sup_{z \in \mathbb{B}} \frac{\mu(z) |u_j(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p} + j}} < +\infty, \quad j = \overline{0, m}.$$
(3.2)

Moreover, if the operator $P_{D,\varphi}^m : A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})$ is bounded, then the following asymptotic relationship holds

$$\|P_{D,\varphi}^{m}\|_{A^{p}_{\alpha}(\mathbb{B})\to H^{\infty}_{\mu}(\mathbb{B})} \asymp \sum_{j=0}^{m} M_{j}.$$
(3.3)

Proof. Assume that $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is bounded. Then there is C > 0 such that

$$\|P_{D,\varphi}^m f\|_{H^{\infty}_{\mu}(\mathbb{B})} \le C \|f\|_{A^p_{\alpha}(\mathbb{B})}$$
(3.4)

for every $f \in A^p_{\alpha}(\mathbb{B})$. By Lemma 2.5, for each $s \in \{0, 1, ..., m\}$ and $w \in \mathbb{B}$, there is a function $h^{(s)}_{\varphi(w)} \in A^p_{\alpha}(\mathbb{B})$ such that

$$D_{l_s} \cdots D_{l_1} h_{\varphi(w)}^{(s)}(\varphi(w)) = \frac{\overline{\varphi_{l_1}(w)\varphi_{l_2}(w)} \cdots \overline{\varphi_{l_s}(w)}}{(1 - |\varphi(w)|^2)^{\frac{n+1+\alpha}{p} + s}},$$
(3.5)

and

$$D_{l_t} \cdots D_{l_1} h_{\varphi(w)}^{(s)}(\varphi(w)) = 0,$$
 (3.6)

for every $t \in \{0, 1, ..., m\} \setminus \{s\}$, and $L_s := \sup_{w \in \mathbb{B}} \|h_{\varphi(w)}^{(s)}\|_{A_{\alpha}^{p}(\mathbb{B})} < +\infty$. This together with (3.4)-(3.6), as well as (3.1), implies

$$L_{s} \|P_{D,\varphi}^{m}\|_{A_{\alpha}^{p}(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})} \geq \|P_{D,\varphi}^{m}h_{\varphi(w)}^{(s)}\|_{H_{\mu}^{\infty}(\mathbb{B})}$$

$$= \sup_{z \in \mathbb{B}} \mu(z) \left| \sum_{j=0}^{m} u_{j}(z)D_{l_{j}} \cdots D_{l_{1}}h_{\varphi(w)}^{(s)}(\varphi(z)) \right|$$

$$\geq \mu(w) \left| \sum_{j=0}^{m} u_{j}(w)D_{l_{j}} \cdots D_{l_{1}}h_{\varphi(w)}^{(s)}(\varphi(w)) \right|$$

$$= \mu(w) |u_{s}(w)| \frac{\overline{|\varphi_{l_{1}}(w)|} \cdots \overline{|\varphi_{l_{s}}(w)|}}{(1 - |\varphi(w)|^{2})^{\frac{n+1+\alpha}{p}+s}}$$

$$\geq \delta^{s} \frac{\mu(w) |u_{s}(w)|}{(1 - |\varphi(w)|^{2})^{\frac{n+1+\alpha}{p}+s}}, \qquad (3.7)$$

for every $w \in \mathbb{B}$. Taking the supremum in (3.7) over \mathbb{B} , we get $M_s < +\infty$, for each $s \in \{0, 1, ..., m\}$, and $L_s \|P_{D, \varphi}^m\|_{A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})} \ge \delta^s M_s, s = \overline{0, m}$. Hence

$$\sum_{j=0}^{m} M_j \lesssim \|P_{D,\varphi}^m\|_{A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})}.$$
(3.8)

Assume (3.2) holds. It follows from Lemma 2.2 that

$$\mu(z)|P_{D,\varphi}^{m}f(z)| = \mu(z) \left| \sum_{j=0}^{m} u_{j}(z)D_{l_{j}}\cdots D_{l_{1}}f(\varphi(z)) \right|$$
$$\leq C \sum_{j=0}^{m} \frac{\mu(z)|u_{j}(z)|}{(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}+j}} \|f\|_{A_{\alpha}^{p}(\mathbb{B})}.$$
(3.9)

Taking in (3.9) the supremum over \mathbb{B} , and then over $B_{A^p_{\alpha}(\mathbb{B})}$, and employing (3.2), the boundedness of $P^m_{D,\varphi}: A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})$ follows. Moreover, the relation holds

$$\|P_{D,\varphi}^m\|_{A^p_{\alpha}(\mathbb{B})\to H^{\infty}_{\mu}(\mathbb{B})}\lesssim \sum_{j=0}^m M_j.$$
(3.10)

From (3.8) and (3.10), the relation in (3.3) follows.

Now we characterize the boundedness of $P^m_{D,\varphi}: A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu,0}(\mathbb{B}).$

Theorem 3.2. Let $p \ge 1$, $\alpha > -1$, $m \in \mathbb{N}$, $u_j \in H(\mathbb{B})$, $j = \overline{0, m}$, $\varphi \in S(\mathbb{B})$, and μ be a weight function on \mathbb{B} . Then the operator $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ is bounded if and only if $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is bounded and

$$\lim_{|z| \to 1} \mu(z) |u_j(z)| = 0, \quad j = \overline{0, m}.$$
(3.11)

Proof. If $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ is bounded, then $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is also bounded. Let $f_0(z) \equiv 1$. Since $f_0 \in A_{\alpha}^p(\mathbb{B})$, we have $P_{D,\varphi}^m(f_0) \in H_{\mu,0}^{\infty}(\mathbb{B})$. Hence

$$\lim_{|z|\to 1}\mu(z)|P_{D,\varphi}^m(f_0)(z)| = \lim_{|z|\to 1}\mu(z)|u_0(z)| = 0,$$

402

from which it follows that $u_0 \in H^{\infty}_{\mu,0}(\mathbb{B})$. Let $f_1(z) = z_{l_1}$. The fact $f_1 \in A^p_{\alpha}(\mathbb{B})$, implies $P^m_{D,\varphi}(f_1) \in H^{\infty}_{\mu,0}(\mathbb{B})$, that is,

$$\lim_{|z|\to 1}\mu(z)|P_{D,\varphi}^m f_1(z)| = \lim_{|z|\to 1}\mu(z)|u_0(z)\varphi_{l_1}(z) + u_1(z)| = 0,$$

which together with $|\varphi_{l_1}(z)| < 1$ and the fact $u_0 \in H^{\infty}_{\mu,0}(\mathbb{B})$ implies that $\lim_{|z|\to 1} \mu(z)|u_1(z)| = 0$, that is, $u_1 \in H^{\infty}_{\mu,0}(\mathbb{B})$.

Suppose that we have proved (3.11) for $j = \overline{0,s}$, for some $s \in \{2,3,\ldots,m-1\}$. Let $f_{s+1}(z) = z_{l_1}z_{l_2}\cdots z_{l_{s+1}}$. The fact $f_{s+1} \in A^p_{\alpha}(\mathbb{B})$ implies $P^m_{D,\varphi}(f_{s+1}) \in H^{\infty}_{\mu,0}(\mathbb{B})$. It is easy to see that $f_{s+1}(z) = z_1^{\alpha_1}\cdots z_n^{\alpha_n}$ for some $\alpha_j \in \mathbb{N}_0$, $j = \overline{1,n}$, such that $\sum_{j=1}^n \alpha_j = s+1$. Polynomial f_{s+1} is homogeneous. Thus, for each $t \in \mathbb{N}_0$ with $0 \le t \le s+1$, we have

$$D_{j_t}\cdots D_{j_1}f_{s+1}(z)=\gamma_t z_1^{\alpha_1-k_1(t)}\cdots z_n^{\alpha_n-k_n(t)},$$

for some $\gamma_t \in \mathbb{N}$, where $k_i(t)$ is the number of operators D_i in the product $D_{j_t} \cdots D_{j_1}$. We have $\sum_{i=1}^n k_i(t) = t$ and

$$D_{j_{s+1}} \cdots D_{j_1} f_{s+1}(z) = \gamma_{s+1}, \qquad (3.12)$$

for some $\gamma_{s+1} \in \mathbb{N}$. Thus

$$\lim_{|z|\to 1} \mu(z) |P_{D,\varphi}^m f_{s+1}(z)| = \lim_{|z|\to 1} \mu(z) \left| \sum_{j=0}^{s+1} u_j(z) \gamma_j \prod_{i=1}^n (\varphi_i(z))^{\alpha_i - k_i(j)} \right| = 0,$$

which together with $|\varphi_i(z)| < 1$, $i = \overline{1,n}$, $\alpha_i \ge k_i(j)$, for $i = \overline{1,n}$, $j = \overline{0,s+1}$, the induction hypothesis $u_j \in H^{\infty}_{\mu,0}(\mathbb{B})$, $j = \overline{0,s}$, and (3.12) implies $\lim_{|z|\to 1} \gamma_{s+1}\mu(z)|u_{s+1}(z)| = 0$. This and the fact $\gamma_{s+1} \ne 0$ imply $u_{s+1} \in H^{\infty}_{\mu,0}(\mathbb{B})$. Hence, by the induction we have that (3.11) holds for $j = \overline{0,m}$.

Now suppose that $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is bounded and (3.11) holds. Let *p* be a polynomial. Then

$$\begin{aligned} \mu(z) \bigg| \sum_{j=0}^{m} u_j(z) D_{l_j} \cdots D_{l_1} p(\varphi(z)) \bigg| &\leq \sum_{j=0}^{m} \mu(z) |u_j(z)| |D_{l_j} \cdots D_{l_1} p(\varphi(z))| \\ &\leq \sum_{j=0}^{m} \mu(z) |u_j(z)| ||D_{l_j} \cdots D_{l_1} p||_{\infty}. \end{aligned}$$
(3.13)

Letting $|z| \rightarrow 1$ in (3.13) and employing the estimate

$$\|D_{l_j}\cdots D_{l_1}p\|_{\infty} = \sup_{z\in\mathbb{B}} |D_{l_j}\cdots D_{l_1}p(z)| < +\infty, \quad j = \overline{0,m},$$

and (3.11), we have $P_{D,\varphi}^m p \in H_{\mu,0}^{\infty}(\mathbb{B})$ for each polynomial p. The density of the set of polynomials als in $A_{\alpha}^p(\mathbb{B})$ implies that, for every $f \in A_{\alpha}^p(\mathbb{B})$, there is a sequence of polynomials $(p_k)_{k \in \mathbb{N}}$ such that $\lim_{k \to +\infty} ||f - p_k||_{A_{\alpha}^p(\mathbb{B})} = 0$. This together with the boundedness of $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ implies

$$\|P_{D,\varphi}^m f - P_{D,\varphi}^m p_k\|_{H^{\infty}_{\mu}(\mathbb{B})} \le \|P_{D,\varphi}^m\|_{A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})} \|f - p_k\|_{A^p_{\alpha}(\mathbb{B})} \to 0$$

as $k \to +\infty$. This fact together with fact that $H^{\infty}_{\mu,0}(\mathbb{B})$ is a closed subspace of $H^{\infty}_{\mu}(\mathbb{B})$ implies $P^{m}_{D,\varphi}f \in H^{\infty}_{\mu,0}(\mathbb{B})$, that is, $P^{m}_{D,\varphi}(A^{p}_{\alpha}(\mathbb{B})) \subseteq H^{\infty}_{\mu,0}(\mathbb{B})$. Hence $P^{m}_{D,\varphi}: A^{p}_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu,0}(\mathbb{B})$ is bounded.

S. STEVIĆ

The following theorem investigates the compactness of $P_{D,\varphi}^m: A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$.

Theorem 3.3. Let $p \ge 1$, $\alpha > -1$, $m \in \mathbb{N}$, $u_j \in H(\mathbb{B})$, $j = \overline{0, m}$, $\varphi \in S(\mathbb{B})$, μ be a weight function on \mathbb{B} , and (3.1) hold. Then the operator $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is compact if and only if the operator is bounded and the following condition holds

$$\lim_{|\varphi(z)| \to 1} \frac{\mu(z) |u_j(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p} + j}} = 0,$$
(3.14)

for each $j \in \{0, 1, ..., m\}$.

Proof. If $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is bounded and (3.14) holds for each $j \in \{0, 1, ..., m\}$, then we have that, for every $\varepsilon > 0$, there is $\delta \in (0, 1)$ such that

$$\frac{\mu(z)|u_j(z)|}{(1-|\boldsymbol{\varphi}(z)|^2)^{\frac{n+1+\alpha}{p}+j}} < \varepsilon, \quad j = \overline{0,m},$$
(3.15)

for every $z \in \mathbb{B}$ such that $|\varphi(z)| > \delta$. Assume that $(f_k)_{k \in \mathbb{N}}$ is such that $\sup_{k \in \mathbb{N}} ||f_k||_{A^p_{\alpha}(\mathbb{B})} \leq M$ and $f_k \to 0$ uniformly on compacts of \mathbb{B} . Let $K_{\delta} = \{z \in \mathbb{B} : |\varphi(z)| > \delta\}$. Then by Lemma 2.2 and (3.15), we have

$$\begin{aligned} \|P_{D,\varphi}^{m}f_{k}\|_{H_{\mu}^{\infty}(\mathbb{B})} &= \sup_{z\in\mathbb{B}}\mu(z)\Big|\sum_{j=0}^{m}u_{j}(z)D_{l_{j}}\cdots D_{l_{1}}f_{k}(\varphi(z))\Big| \\ &\leq \sup_{z\in K_{\delta}}\mu(z)\Big|\sum_{j=0}^{m}u_{j}(z)D_{l_{j}}\cdots D_{l_{1}}f_{k}(\varphi(z))\Big| \\ &+\sup_{z\in\mathbb{B}\setminus K_{\delta}}\mu(z)\Big|\sum_{j=0}^{m}u_{j}(z)D_{l_{j}}\cdots D_{l_{1}}f_{k}(\varphi(z))\Big| \\ &\leq C\sum_{j=0}^{m}\sup_{z\in K_{\delta}}\frac{\mu(z)|u_{j}(z)|}{(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}}}\|f_{k}\|_{A_{\alpha}^{p}(\mathbb{B})} \\ &+C\sum_{j=0}^{m}\sup_{z\in\mathbb{B}\setminus K_{\delta}}\mu(z)|u_{j}(z)||D_{l_{j}}\cdots D_{l_{1}}f_{k}(\varphi(z))| \\ &\leq (m+1)MC\varepsilon + C\sum_{j=0}^{m}\sup_{z\in\mathbb{B}\setminus K_{\delta}}\mu(z)|u_{j}(z)|\sup_{|\varphi(z)|\leq\delta}|D_{l_{j}}\cdots D_{l_{1}}f_{k}(\varphi(z))| \\ &\leq (m+1)MC\varepsilon + C\sum_{j=0}^{m}\|u_{j}\|_{H_{\mu}^{\infty}}\sup_{|w|\leq\delta}|D_{l_{j}}\cdots D_{l_{1}}f_{k}(w)|. \end{aligned}$$
(3.16)

Cauchy's estimate together with the fact that $f_k \to 0$ uniformly on compacts of \mathbb{B} as $k \to +\infty$, implies

$$D_{l_i} \cdots D_{l_1} f_k \to 0, \tag{3.17}$$

uniformly on compacts of \mathbb{B} as $k \to +\infty$, for $j = \overline{0,m}$. Let $f_s(z) = \prod_{j=1}^s z_{l_j}$, $s = \overline{0,m}$. Then as in Theorem 3.2, we have $u_j \in H^{\infty}_{\mu}$, $j = \overline{0,m}$, that is, $||u_j||_{H^{\infty}_{\mu}(\mathbb{B})} < +\infty$, $j = \overline{0,m}$. Using (3.17), the fact that $|w| \le \delta$ is compact, letting $k \to +\infty$ in (3.16), and using the fact that $\varepsilon > 0$ is arbitrary, we have $\lim_{k\to +\infty} ||P^m_{D,\varphi}f_k||_{H^{\infty}_{\mu}(\mathbb{B})} = 0$, which implies from Lemma 2.1 that the compactness of $P^m_{D,\varphi}M_u : A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})$ follows.

Suppose now that $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is compact. Then it is bounded. If $\|\varphi\|_{\infty} < 1$, then (3.14) automatically holds for each $j \in \{0, 1, ..., m\}$. Suppose now $\|\varphi\|_{\infty} = 1$. Let $(z_k)_{k \in \mathbb{N}} \subset \mathbb{B}$ such that $|\varphi(z_k)| \to 1$ as $k \to +\infty$, and $h_k^{(s)} := h_{\varphi(z_k)}^{(s)}$, $s = \overline{0, m}$, where $h_w^{(s)}$, $s = \overline{0, m}$, are as in Lemma 2.5. Then

$$\sup_{k\in\mathbb{N}} \|h_k^{(s)}\|_{A^p_\alpha(\mathbb{B})} < +\infty, \quad s = \overline{0, m}.$$
(3.18)

We have that $h_k^{(s)} \to 0$ uniformly on compacts of \mathbb{B} as $k \to +\infty$ for each $s \in \{0, 1, \dots, m\}$. From (3.18) and Lemma 2.1, we have

$$\lim_{k \to +\infty} \|P_{D,\varphi}^m h_k^{(s)}\|_{H^\infty_\mu(\mathbb{B})} = 0, \quad s = \overline{0,m}.$$
(3.19)

Further, it follows from (3.7) that

$$\frac{\mu(z_k)|u_s(z_k)|}{(1-|\varphi(z_k)|^2)^{\frac{n+1+\alpha}{p}+s}} \le C \|P_{D,\varphi}^m h_k^{(s)}\|_{H^{\infty}_{\mu}(\mathbb{B})}, \quad s = \overline{0,m}.$$
(3.20)

Letting $k \to +\infty$ in (3.20) and using (3.19), we obtain (3.14) for $s = \overline{0, m}$.

Theorem 3.4. Let $p \ge 1$, $\alpha > -1$, $m \in \mathbb{N}$, $u_j \in H(\mathbb{B})$, $j = \overline{0, m}$, $\varphi \in S(\mathbb{B})$, μ be a weight function on \mathbb{B} , and condition (3.1) hold. Then the operator $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ is compact if and only if the operator is bounded and

$$\lim_{|z| \to 1} \frac{\mu(z) |u_j(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p} + j}} = 0, \quad j = \overline{0, m}.$$
(3.21)

Proof. Assume that (3.21) holds. We have (3.2), which together with Theorem 3.1, yields the boundedness of $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ immediately. Letting $|z| \to 1$ in (3.9) and using (3.21), we have $\lim_{|z|\to 1} \mu(z) |P_{D,\varphi}^m f(z)| = 0$ for $f \in A_{\alpha}^p(\mathbb{B})$, that is, $P_{D,\varphi}^m f \in H_{\mu,0}^{\infty}(\mathbb{B})$. Hence, $P_{D,\varphi}^m(A_{\alpha}^p(\mathbb{B})) \subset H_{\mu,0}^{\infty}(\mathbb{B})$, from which the boundedness of $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ follows. Taking the supremum in (3.9) over \mathbb{B} and $B_{A_{\alpha}^p(\mathbb{B})}$, and employing (3.2), we obtain

$$\sup_{f\in B_{A^p_{\boldsymbol{\alpha}}(\mathbb{B})}}\sup_{z\in\mathbb{B}}\mu(z)|P^m_{D,\boldsymbol{\varphi}}f(z)|\leq C\sum_{j=0}^mM_j<+\infty,$$

where M_j , $j = \overline{0, m}$, is the quantity in (3.2). Thus, $\{P_{D,\varphi}^m f : f \in B_{A_{\alpha}^p(\mathbb{B})}\}$ is a bounded set in $H_{\mu,0}^{\infty}$. Taking the supremum in (3.9) over $B_{A_{\alpha}^p(\mathbb{B})}$ and letting $|z| \to 1$ in such obtained inequality, we have

$$\lim_{|z|\to 1} \sup_{f\in B_{A^p_{\alpha}(\mathbb{B})}} \mu(z) |P^m_{D,\varphi}f(z)| = 0.$$

From this and Lemma 2.4, it follows that $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ is compact. Suppose that $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ is compact. Then $P_{D,\varphi}^m : A_{\alpha}^p(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ is also compact. From this and Theorem 3.3, we obtain (3.15). From Theorem 3.2, we obtain (3.11), implying that there is $\eta \in (0,1)$ such that

$$\mu(z)|u_j(z)| < \varepsilon (1-\delta^2)^{\frac{n+1+\alpha}{p}+j}, \quad j = \overline{0,m},$$
(3.22)

when $\eta < |z| < 1$ for ε chosen such that (3.15) holds. From (3.22), we have

$$\frac{\mu(z)|u_j(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}+j}} \le \frac{\mu(z)|u_j(z)|}{(1-\delta^2)^{\frac{n+1+\alpha}{p}+j}} < \varepsilon, \quad j = \overline{0,m},$$
(3.23)

when $|\varphi(z)| \leq \delta$ and $\eta < |z| < 1$. From (3.15) and (3.23), relation (3.21) easily follows for $j = \overline{0, m}$.

Acknowledgments

The paper was finished during the investigation supported by the Ministry of Education, Science and Technological Development of Serbia (No. 451-03-68/2022-14/200029).

REFERENCES

- [1] M. S. Al Ghafri, J. S. Manhas, On Stević-Sharma operators from weighted Bergman spaces to weighted-type spaces, Math. Inequal. Appl. 23 (2020), 1051-1077.
- [2] K. Avetisyan, Integral representations in general weighted Bergman spaces, Complex Var. 50 (2005), 1151-1161.
- [3] N. Dunford, J. T. Schwartz, Linear Operators I, Interscience Publishers, Jon Willey and Sons, New York, 1958.
- [4] Z. Guo, L. Liu, Y. Shu, On Stević-Sharma operators from the mixed-norm spaces to Zygmund-type spaces, Math. Inequal. Appl. 24 (2021), 445-461.
- [5] Q. Hu, X. Zhu, Compact generalized weighted composition operators on the Bergman space, Opuscula Math. 37 (2017), 303-312.
- [6] Z. J. Jiang, On Stević-Sharma operator from the Zygmund space to the Bloch-Orlicz space, Adv. Differ. Equ. 2015 (2015), 228.
- [7] S. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc. 45 (2008), 229-248.
- [8] S. Li, Some new characterizations of weighted Bergman spaces, Bull. Korean Math. Soc. 47 (2010), 1171-1180.
- [9] S. Li, S. Stević, Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces, Sb. Math. 199 (2008), 1847-1857.
- [10] S. Li, S. Stević, Weighted differentiation composition operators from the logarithmic Bloch space to the weighted-type space, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 24 (2016), 223-240.
- [11] Y. M. Liu, Y. Y. Yu, Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, J. Math. Anal. Appl. 423 (2015), 76-93.
- [12] K. Madigan, A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679-2687.
- [13] S. Ohno, Products of composition and differentiation on Bloch spaces, Bull. Korean Math. Soc. 46 (2009), 1135-1140.
- [14] W. Rudin, Function Theory in Polydiscs, New York, Amsterdam, WA Benjamin, 1969.
- [15] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , Grundlehren der Mathematischen Wissenschaften. New York, Berlin, Springer-Verlag, 1980.
- [16] W. Rudin, Functional Analysis, 2nd Ed., McGraw-Hill, Inc., New York, 1991.
- [17] H. J. Schwartz, Composition operators on H^p, Thesis, University of Toledo, 1969.
- [18] A. K. Sharma, Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces, Turkish. J. Math. 35 (2011), 275-291.
- [19] S. Stević, Composition operators from the Hardy space to the *n*th weighted-type space on the unit disk and the half-plane, Appl. Math. Comput. 215 (2010), 3950-3955.
- [20] S. Stević, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal. 2010 (2010), 801264.

- [21] S. Stević, C. S. Huang, Z. J. Jiang, Sum of some product-type operators from Hardy spaces to weighted-type spaces on the unit ball, Math. Meth. Appl. Sci. 45 (2022), 11581-11600.
- [22] S. Stević, Z. J. Jiang, Weighted iterated radial composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces on the unit ball, Math. Meth. Appl. Sci. 44 (2021), 8684-8696.
- [23] S. Stević, A. K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 217 (2011), 8115-8125.
- [24] S. Stević, A. K. Sharma, A. Bhat, Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 218 (2011), 2386-2397.
- [25] W. Yang, W. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, Bull. Korean Math. Soc. 48 (2011), 1195-1205.
- [26] W. Yang, X. Zhu, Generalized weighted composition operators from area Nevanlinna spaces to Bloch-type spaces, Taiwanese J. Math. 16 (2012), 869-883.
- [27] X. Zhu, Essential norm and compactness of the product of differentiation and composition operators on Bloch type spaces, Math. Inequal. Appl. 19 (2016), 325-334.