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POLYNOMIAL DIFFERENTIATION COMPOSITION OPERATORS FROM
WEIGHTED BERGMAN SPACES TO WEIGHTED-TYPE SPACES ON THE UNIT
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Abstract. We introduce a polynomial differentiation composition operator on spaces of holomorphic
functions on the open unit ball in the n-dimensional complex vector space, and characterize the bound-
edness and compactness of the operator from the classical weighted Bergman space to the weighted-type
space and the little weighted-type space of holomorphic functions on the unit ball.
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1. INTRODUCTION

Throughout this paper, N denotes the set of positive integers, C denotes the set of complex
numbers, and No = NU{0}. If k,/ € Ny, k <, then j = k,l is the notation used instead of
Jj=k...,l. We also regard that }.9_ b; = 0 and Hf;; bj =1, when p,q € Ny and g < p.

The open unit ball in the n-dimensional complex vector space C", n € N, we denote by B. In
the case n = 1, the open unit ball is the open unit disk in the complex plane C and is denoted by
D. The Euclidean inner product in C” is defined by

(z,w) = 21w +20Wp + -+ - + 2, Wy,

where z = (z1,...,2,) and w = (wy,...,w,) are two points in C". The corresponding norm is
defined by |z| = (z,2)!/2.

The Lebesgue measure on B is denoted by dV (z), whereas for oo > —1 is defined a normalized
measure on B as follows dVy(z) = cq(1 — |z|*)*dV (z), where cq is chosen such that Vi (B) =

JgdVa(z) = 1. By D; we denote the partial derivative operator D;f(z) = g—;(z), where j €
J

{1,2,...,n}. Let Q be a domain in C". Then by H(Q) we denote the space of holomorphic

functions on Q, whereas by S(Q) we denote the class of holomorphic self-maps of the domain.

Some basic facts on the topic can be found, for example, in the classical books [14] and [15].
The composition operator induced by function ¢ € S(Q) is defined by

Cof =fo0, (L.1)
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where f € H(Q).
The multiplication operator M, induced by function u is defined by

M.f =uf, feH(Q). (1.2)

Here we regard/assume that u € H(Q). In the complex plane is defined the (iterated) differenti-
ation operator D™ on H(€) in the standard way D" f(z) = f")(z), where m € N, f € H(Q),
z€ Q, and D' = D is the classical differentiation operator, that is,

Df = f. (1.3)

Recall that D° = I, where I is the identity operator. Product type operators containing (1.1),
(1.2), or (1.3), as well as some other linear operators were studied a lot. In addition to weighted
composition operators, the products DCy and CyD attracted much attention recently; see, for
example, [9, 13] and the related references therein.

The weighted differentiation composition operators D, ,, := M, Co D™ and their special cases
(predominately in the case that u = 1) have been studied extensively on subspaces of H(DD); see,
for example, [10, 25, 26, 27] and the related references therein.

Let R be the radial differentiation operator, that is, R f = }7_, z;D;f. By using the operator,
in [20], the author defined the following one EK’(’;M =M, CoR™, and it was further studied later,
e.g., in [22]. Note that it is related to the operator Dy, , acting on the spaces of holomorphic
function in a domain in the complex plane. For other product-type operators containing dif-
ferentiation operators, we refer to [11, 18] and the references therein. A sum of operators of
the form MuC(ij were investigated first in [23] and [24]. For some subsequent studies of the
operator; we refer to [1, 4, 6]. The problem of studying sums of related operators on subspaces
of H(B) naturally appears. For a recently introduced operator of this type; see [21].

Here we define a polynomial differentiation composition operator as follows

gﬂpf:: ZMJC(PDlj"'Dllfv feHB),
Jj=0

where m € Ny, u; € H(B), j =0,m, and ¢ € S(B).
Letp>0,a>—1,and

= ( frerav) 14

where f is a complex-valued measurable function. The weighted Bergman space A% (B) = A%,
is defined as follows

AL(B) = {f €H(B): |[fllay < +eo}

When p > 1, the quantity/functional in (1.4) is a norm on the space AL, and with the norm it is
a Banach space. When p € (0, 1), it is a Frechet space with the translation invariant metric

A (£.8)=If 8%,

Some results on the weighted Bergman space and the operators acting from or to the space can
be found in, for example, [1, 2, 5, 7, 8, 15].
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The notion of weight function, or simply weight, refers to a positive and continuous function
on B. The weighted-type space HE"(IB%) = H,;’, where U is a weight, is defined as follows

H (8):= {1 € H(B): |y = supi(2)7Q)| < 4=},
z€
whereas the little weighted-type space is the subspace of H,;’ consisting of f € H (B) such that
lim p1(z)|f(2)[ =0,

lz]—1

and is denoted by HiO(IB%) = H:;O. It is a closed subspace of H;;. The space of bounded
holomorphic function is obtained for 1 (z) = 1 and denoted by H**(B) = H*. The corresponding
norm on the space is denoted by || - ||c.

Let L: X — Y be a linear operator, where X and Y are two Banach spaces. If there is M > 0
such that |Lf|ly < M||f||x, for every f € X, the operator is called bounded. We say that the
operator is compact if it maps bounded sets in X into relatively compact. By By, we denote
the unit ball in the space X. For some classical results in the topic, we refer to [3] and [16].
For some recent investigations on the boundedness and compactness of various concrete linear
operators on spaces of holomorphic functions on domains in C or C", we refer to the references
included in this paper.

In this paper, we study the boundedness and compactness of the polynomial differentiation
composition operator Py " from weighted Bergman spaces to weighted-type spaces on B.

By C we denote some unspecified nonnegative constants, which can be different from one
appearance to another. If we write a < b (resp. a 2 b), then it means that there is a C > 0 such
that a < Cb (resp. a > Cb). If the relations hold: a < b and b < a, then we write a < b.

2. AUXILIARY RESULTS

Here we give several lemmas which we employ in the proof of the main results in the next
section. As usual, we need a characterization for the compactness. It is proved in a standard
way. So, we omit the proof. One of the first results of the sort was proved in [17].

Lemma2.l. Letp>1, 00> -1, ujc HB), j= 0,m, ¢ € S(B), and u be a weight function on
B. Then the bounded operator Py, : AL (B) — H, i (B) is compact if and only if for any bounded

sequence (fi)ren in the space AL (B) such that fi — 0 uniformly on compact subsets of B as
k — oo, it follows that limy_, 4o || Py o ficll e (8) = 0

The following result easily follows from Cauchy’s estimates for derivatives of holomorphic
functions on balls in C", and the subharmonicity of the function |f|”, when f € H(B) and p > 0
(a generalization of the result can be found, for example, in [22]).

Lemma 2.2. Let p > 0, o0 > —1, and N € Ny. Then, for every multi-index [ = (11,1, ... 1)
such that |I| = N, there is C; > 0 such that

N f(2) _ Gill.f 1l a2, (m)

1. | = 1 )
0792970 | (1= 7

for every f € AL (B) and z € B.
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The following result is easily proved by [15, Proposition 1.4.10]. We omit this simple and
known proof.

Lemma 2.3. Let p > 0 and oo > —1. Then, for each a > 0 and w € B, the following function

n+l4+o

l_wz T—i—a

frale) = D e
(1= () 70

belongs to A%, (B). Moreover,
SUp || fiv.all gz ) < 1- (2.2)
weB

The following lemma is a known generalization of [12, Lemma 1].

Lemma 2.4. A closed set K in H :f o Is compact if and only if it is bounded and

lim sup p1(z)| f(2)| =
l2[—1rek

Now we present some of the test functions which are used in the proofs of our main results.

Lemma 2.5. Let p >0, o« > —1, m e N, andeBbesuchthatwj%O j=1,n Then for

each s € {0,1,...,m}, there are c§ ) j = 0,m such that the function his ( ) =Y Ock fW7 (2),
where fy, 4, deﬁned in (2.1), satisfies

Wi, Wi, + Wy,

(s) ‘
D, ---D h = 2.3
I I tw (W) (1 - |w|2)n+}l+a+s (2.3)
and
Dy, DR (w) =0, (2.4)
foreveryt € {0,1,....,m}\ {s}. In addition,
sup Hh HAp ) S L (2.5)

Proof. Letd, = <"+”“> +k, k € No, and . (z) = Y7o i fwk (2). We have

o o ntlta y g
Py W Wy oW (L= w2 e
Dl-”Dlh (Z): Ck 12 ! s
t 1w k;() (1 _ <Z,W>)dk+[
for r € Ny. Hence,
Wi Wi, - W
Dlz o 'Dlth(W) = — n+l+tt1+[ Z CkHdk+l

(1—wp?)



POLYNOMIAL DIFFERENTIATION COMPOSITION OPERATORS 401

fort € Ny. Consider the system

1 1 1 11 co 0
do d; d,, c1 0
s—1 s—1 s—1
ITd T1desr - Tldeim || o | =] 1 |, (2.6)
k=0 k=0 k=0

m—1 m—1 m—1
T4 [1dker - T1dksm
ki

Cm 0

where the unit in the vector on the right-hand side of (2.6) is on the (s + 1)th position. By
[19, Lemma 5], we see that the determinant of the system is different from zero. From this,

(s)

we have that, for each s € {0,1,...,m}, there is a unique solution ¢ :=¢;”’, k = 0,m, to (2.6).
Let h( )( ) =Y Ock fw7 (z). Then (2.3) and (2.4) hold. From (2.2), it follows that (2.5) also
holds. O

3. MAIN RESULTS
Our first result in this section deals with the boundedness of Py, : Ay(B) — Hy (B).

Theorem 3.1. Let p>1, 00> -1, meN, u; e HB), j=0,m, ¢ = (@1,...,¢,) € S(B),
(2)| > 6 >0, (3.1)

j=1,nz€
and |1 be a weight function on B. Then the operator Py, : AG(B) — H (B) is bounded if and
only if
Z) Uiz _
Mj = sup 'U( >‘ J<n-21|+a - < o0, J: O,m. (32)
€8 (1- @) 7"

Moreover, if the operator Py, : Ay (B) — Hy;(B) is bounded, then the following asymptotic
relationship holds

m

HPK(pHAg(B)—W;(B) = ;)Mj- (3.3)
J:
Proof. Assume that Py, : A% (B) — Hy (B) is bounded. Then there is C > 0 such that
125, of || 152 B) < CIIf Nl a2, m) (3.4)

for every f € A (B). By Lemma 2.5, for each s € {0, 1,... ,m} and w € B, there is a function

hE;()W) € AL, (B) such that
5 w W):.-- . w
Dy Dy, (p(w)) = 2P0 0), 33
(1= o))"
and
Dy, Dy, k), (@(w)) =0, (3.6)
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foreveryt € {0,1,...,m}\ {s}, and L; := sup,,.p ||h ||Ap < +-oo. This together with (3.4)-
(3.6), as well as (3.1), implies

Lol1PB. o llaz 8y 1 8) = 1P ||Hw

—suppu(z

z€B

01D (910)|

) J;)uj(w)Dlj...Dllhfggw)((p(w))‘

o, (W) |, (W)

=1 (w) s ()
(1= lp() )7
S lpmP)

for every w € B. Taking the supremum in (3.7) over B, we get M, < +oo, for each s €
{0,1,....m}, and L[| PR | 47 m) B)H(B) 2 8°Mj, s = 0,m. Hence

m
Y M; S NP ollag )z @) (3.8)
i=0
Assume (3.2) holds. It follows from Lemma 2.2 that
1(2)|Pp o f(2) Zuj ;o Di f(9(2))

n @)
oz L (39
Jgu—w(z)m Ehb

Taking in (3.9) the supremum over B, and then over B,» (B)> and employing (3.2), the bounded-
ness of Py, : A4 (B) — H;7 (B) follows. Moreover, the relation holds

<C

m
||P31,¢||A§(BHH;(]B) S ZMj' (3.10)

From (3.8) and (3.10), the relation in (3.3) follows. O

Now we characterize the boundedness of Pp, : AG (B) — H;;(B).

Theorem 3.2. Let p > 1, a > —1, meN, u; € H(B), j =0,m, ¢ € S(B), and u be a weight
function on B. Then the operator Pp ,, : AL(B) — Hp7o(B) is bounded if and only if Ppj
Ay (B) — Hy (B) is bounded and
lim p(z)|uj(z)| =0, j=0,m. (3.11)
|z|—1
Proof. 1f P, :AL(B) — H o(B) is bounded, then Pp, : Ag(B) — H;;(B) is also bounded.
Let fo(z) = 1. Since fy € AL(B), we have P ,(fo) € H,; o(1B). Hence

tim 1(2) BB (f0) (@) = lim 1(2)}uo(2) | = 0
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from which it follows that up € Hyy o (B). Let fi(z) =z, . The fact fi € AL (B), implies Ppo(fi) €

Hy o(B), that s,

lim 1 ()IPBpf1(2)] = lim p()luo()@n (2) + ()] =0,

which together with |y, (z)| < 1 and the fact up € H}; ((B) implies that limy,| ,; u(z)[u1(z)| =0,
thatis, u; € Hy7 ((B).

Suppose that we have proved (3.11) for j =0,s, for some s € {2,3,...,m—1}. Let fy11(z) =
21,2, 2, - The fact fyy 1 € Al (B) implies PR o(fs+1) € Hyo(B). Itis easy to see that fi11(z) =
Z‘lxl -+ -z9n for some o € Ny, j = 1,n, such that 27:1 oj = s+ 1. Polynomial f; is homoge-
neous. Thus, for each t € Ny with 0 <t < s+ 1, we have

Dj,---Dj fir1(z) = ,},le —ki (1) _‘thn—kn(t)7

for some ¥ € N, where k;(¢) is the number of operators D; in the product D, ---D;,. We have
—1ki(t) =1t and

Dj., - Dj fy+1(2) = Yit1, (3.12)
for some Y11 € N. Thus
s+1 n )
‘;fm w(z )|Pgl,(pfs4r1( 7)| = hm p(z Z u] H Z)) —ki(j)| — 0,

which together with |@;(z)| < 1, i = 1,n, o > k;(j), for i = 1,n, j = 0,5+ 1, the induction
hypothesis u; € Hy;o(B), j = 0,5, and (3.12) implies lim;|_,; ¥%-+11(2)|#s+1(2)| = 0. This and
the fact ¥, # 0 imply uz1q € H;LO,O (B). Hence, by the induction we have that (3.11) holds for
j=0,m.

Now suppose that Py, :A%(B) — H;; (B) is bounded and (3.11) holds. Let p be a polynomial.
Then

IN

~
Il
o

) éuj(Z)Dz,-'--Dllp((P(Z)) 1(2) @)Dy Dy p(9(2)]

IA

1
o

1(@)|uj(2)[[Dy; -+ Dy pllo- (3.13)

Letting |z| — 1 in (3.13) and employing the estimate

11, Dy pllo = sup|Dy; - Diyp(R)] < +oo, - j=0rm
z€

and (3.11), we have Ppy oP € H:f o(IB) for each polynomial p. The density of the set of polynomi-

als in A%, (B) implies that, for every f € AL (B), there is a sequence of polynomials (py)xen such

that limg, 4o || /' — Pkl a2 8) = 0. This together with the boundedness of Ppy , : AL(B) — H;7 (B)

implies

1PD.0f — Fp o Pill iz 8) < I1PD gl Az m) - 113 1S — Pellaz ) — O

as k — +eo. This fact together with fact that H;;;(B) is a closed subspace of H;;(B) implies

PR of € Hyo(B), thatis, Py ,(AL(B)) C Hyyo(B). Hence Py, : AG(B) — Hy (B) is bounded.
U
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The following theorem investigates the compactness of Py, : AG(B) — H (B).

Theorem3.3. Letp > 1, a > —1,meN, u; € H(B), j=0,m, ¢ € S(B), u be a weight function
on B, and (3.1) hold. Then the operator Py, AL (B) — Hy (B) is compact if and only if the
operator is bounded and the following condition holds

2)|Uj\Z
L (314
P (11— (o))" F

foreach j€{0,1,... ,m}.
Proof. If Py, : A4 (B) — H(B) is bounded and (3.14) holds for each j € {0,1,...,m}, then
we have that, for every € > 0, there is 0 € (0, 1) such that

2)|u;(2)] -

<e, j=0,m, (3.15)
(I—]o()]?)

for every z € B such that [@(z)| > 6. Assume that (fi)ken is such that supcr || fillazm) < M

and f; — 0 uniformly on compacts of B. Let Kg = {z € B : |¢(z)| > 6}. Then by Lemma 2.2
and (3.15), we have

n+l+0t+j

HPg,(pkaHﬁ( _sg]g/,t ‘ Z uj(z ~-D11fk(§0(2))‘

Z

<sup u(z ‘ Z uj(z "Dllfk((P(Z»‘
€K
+ sup u(z ‘ Z uj(z "Dllfk((P(Z))‘

Z€B\Kj5
¥ wp—HEW@L_ L,
= n+l+oc+J k A

j=07€Ks (1 — Iso( )

—|—CZ sup 1(z)|u;(2)||Dy; -+ Dy, fi(@(2))]

j=0 ZEB\K(\;

(m+1)MC€+CZ sup p(z)|uj(z)| sup \Dz, Dy, fi(9(2))]
j=0z€B\Ks lp(z)|<o

(m+1)MC8+CZ ||I/tj||[-[°° sup |Dl Dllfk(w)}. (3.16)

w|<8
Cauchy’s estimate together with the fact that f; — O uniformly on compacts of B as k — oo,
implies
Dlj . 'Dllfk — 0, (3.17)

uniformly on compacts of B as k — oo, for j = 0,m. Let fs(z) = [T)= 138 = 0,m. Then as in
Theorem 3.2, we have u; € H;/', j = 0,m, that is, Hu]HHm < +oo, j=0,m. Using (3.17), the
fact that |w| < 8 is compact, 1ett1ng k — +o0in (3.16), and usmg the fact that € > 0 is arbitrary,
we have limy_, o || PR o fi| #z() = 0, which implies from Lemma 2.1 that the compactness of

Pp oMy : AG(B) — Hy; (B) follows.
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Suppose now that Pjj , : A (B) — H;7(B) is compact. Then it is bounded. If ||| < 1, then
(3.14) automatically holds for each j € {0,1,...,m}. Suppose now ||@|| = 1. Let (zx)ren C B
such that |@(z;)| — 1 as k — +eo, and A" := ")

o(e) S = 0,m, where nY, s =0,m, are as in
Lemma 2.5. Then

supl|h |4 ) < +eo, 5 =0,m. (3.18)
keN

We have that h,(:) — 0 uniformly on compacts of B as k — oo for each s € {0,1,...,m}. From
(3.18) and Lemma 2.1, we have

- (5 —0. s—0m
Jim ([P o |z =0, s=0.m (3.19)

Further, it follows from (3.7) that

i) |us(z - —
e 1 Gl . 7 (3.20)
2NN —+s P M
(I—=lo@)?) 7
Letting k — -0 in (3.20) and using (3.19), we obtain (3.14) for s = 0, m. 0

Theorem3.4. Letp > 1, @ > —1,meN, u; € H(B), j=0,m, ¢ € S(B), u be a weight function
on B, and condition (3.1) hold. Then the operator Py, :AL(B) — Hpo(B) is compact if and
only if the operator is bounded and

p(2)]u;(2)]

lim ntle =

P (1-le@@)P)
Proof. Assume that (3.21) holds. We have (3.2), which together with Theorem 3.1, yields
the boundedness of Py, : Ay (B) — H;;(B) immediately. Letting |z| — 1 in (3.9) and using
(3.21), we have limy;,; u(z)|Pp,f(z)| = 0 for f € AL(B), that is, Ppof € Hyo(B). Hence,
PK(P(Aﬁ(IB)) C Hy(B), from which the boundedness of Ppj, : AL(B) — Hp(B) follows.
Taking the supremum in (3.9) over B and B,» (B)* and employing (3.2), we obtain

j=0,m. (3.21)

m
sup  sup i (2)|Ppof (1) S C Y. Mj < +oo,
fEBAg(]m z€B j=0

where M, j =0,m, is the quantity in (3.2). Thus, {P} ,f : f € Byp )} is a bounded set in H;7 .
Taking the supremum in (3.9) over B, (B) and letting |z| — 1 in such obtained inequality, we
have

lim sup u(z)|Ppef(2)] =0.

|Z‘*>1 fGBAgC(B)

From this and Lemma 2.4, it follows that Py, : AL (B) — Hj7((B) is compact. Suppose that
PR, Aq(B) — Hyo(B) is compact. Then Py, : Ag(B) — H (B) is also compact. From this
and Theorem 3.3, we obtain (3.15). From Theorem 3.2, we obtain (3.11), implying that there is
n € (0,1) such that

n+l+oa +j

n(@uj(z)| <e(1-8%"» 7, j=0,m, (3.22)
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when 1 < |z| < 1 for € chosen such that (3.15) holds. From (3.22), we have

1(2)|uj(z)] 1 (2)|uj(z)] .
! n+l+a < nJ+l+oc+j < 87 .] = 07m7 (323)

(I-lp@P) 7 7 (1-8%) 7
when |@(z)] < 8 and ) < |z| < 1. From (3.15) and (3.23), relation (3.21) easily follows for
j=0,m. O
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