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DENGFENG LÜ1, SHUWEI DAI2,∗

1School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, China
2College of Technology, Hubei Engineering University, Xiaogan 432000, China

Abstract. This paper is devoted to studying the following Chern-Simons-Schrödinger equation with
Hartree type nonlinearity:

− 1
2m

∆ψ +ωψ +
2e4

mκ2

(∫ +∞

|x|

a(τ)
τ

ψ
2(τ)dτ +

a2(|x|)
|x|2

)
ψ = (Rα ∗F(ψ))F ′(ψ) in R2,

where e > 0 is a parameter, m,ω,κ > 0 are constants, a(τ) = 1
2
∫

τ

0 sψ2(s)ds, and F ∈ C1(R,R). By
using variational methods and perturbation arguments, the existence of positive solutions for the above
equation is derived. In addition, the asymptotic behavior of solutions with regard to the parameter e is
also considered.
Keywords. Asymptotic behavior; Chern-Simons-Schrödinger equation; Hartree type nonlinearity; Ground
state solution; Variational methods.

1. INTRODUCTION

In this paper, we focus on the following Chern-Simons-Schrödinger equation with Hartree
type general nonlinearities:

− 1
2m

∆ψ +ωψ +
2e4

mκ2

(∫ +∞

|x|

a(τ)
τ

ψ
2(τ)dτ +

a2(|x|)
|x|2

)
ψ = (Rα ∗F(ψ))F ′(ψ) in R2, (1.1)

where m,ω,κ > 0 are constants, e > 0 is a parameter, a(τ) = 1
2
∫

τ

0 sψ2(s)ds, Rα : R2→R is the
Riesz potential of order α ∈ (0,2) defined for all x ∈ R2 \{0} by

Rα(x) =
Cα

|x|2−α
, where Cα =

Γ(2−α

2 )

π2αΓ(α

2 )
,

Γ is the Gamma function, and ∗ denotes the standard convolution in R2.
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The inspiration for studying (1.1) derives from the following Chern-Simons-Schrödinger sys-
tem 

iDtφ + 1
2m(D1D1 +D2D2)φ +g(φ) = 0,

∂A1
∂ t −

∂A0
∂x1

=− e
mκ

Im(φ̄D2φ),

∂A2
∂ t −

∂A0
∂x2

= e
mκ

Im(φ̄D1φ),

∂A1
∂x2
− ∂A2

∂x1
= e

2κ
|φ |2,

(1.2)

in which i denotes the imaginary unit, φ is a complex scalar field, Ak = Ak(t,x1,x2) : R3→ R
is the gauge field, and Dk = ∂k + ieAk is the covariant derivative for k = 0,1,2. System (1.2)
appeared firstly in [10] comprising the Schrödinger equation augmented by the gauge field Ak.
The Chern-Simons-Schrödinger system has been investigated extensively due to its close con-
nection in applications. For example, it has been applied in high-temperature superconductivity,
quantum Hall effect and the second quantized N body anyon problem, etc. For more detailed
physical background of the system, we refer the readers to [7]. For system (1.2), if we look for
standing wave solutions, namely, the solutions to (1.2) in the form: φ(t,x) = eiωtψ(|x|), A0(t,x) = A0(|x|),

A1(t,x) = e
κ

x2
|x|2 a(|x|), A2(t,x) =− e

κ

x1
|x|2 a(|x|),

(1.3)

where ω > 0 is a given frequency, ψ(x),A0(x) and a(x) are real valued functions, substitut-
ing (1.3) into system (1.2) with g(ψ) = λ |ψ|p−2ψ , we deduce the following Chern-Simons-
Schrödinger equation:

− 1
2m

∆ψ +ωψ +
2e4

mκ2

(
ζ +

∫ +∞

|x|

a(τ)
τ

ψ
2(τ)dτ +

a2(|x|)
|x|2

)
ψ = λ |ψ|p−2

ψ in R2, (1.4)

where a(τ) = 1
2
∫

τ

0 sψ2(s)ds and ζ is an integration constant of A0(|x|). In what follows we can
take ζ = 0.

When 2 < p < 4, the existence and nonexistence results of (1.4) for different value of ω > 0
were proved through investigating the geometry of the energy functional in [21] by Pomponio
and Ruiz. In [25], Yuan, with the variational methods, acquired the multiplicity results for the
L2-normalized solutions to (1.4) for p > 2, p 6= 4. When p > 6, in [11], the authors obtained the
existence of least energy sign-changing solutions for the equation

−∆ψ +ωψ +µ

(∫ +∞

|x|

a(τ)
τ

ψ
2(τ)dτ +

a2(|x|)
|x|2

)
ψ = |ψ|p−2

ψ in R2, (1.5)

where ω,µ > 0. In [24], Xia obtained the existence, nonexistence, and multiplicity of solutions
to (1.5) for 2 < p < 4 by using the fibering method. Huh, in [9], showed concern for the
existence of infinitely many solutions to (1.5) for p > 6. More results on the Chern-Simons-
Schrödinger equations were present in [2, 7, 8, 18] and the references therein.

Besides, in many physical applications, the Hartree-type nonlinearities appear naturally, that
is, g(x,u) = (w(x)∗F(u)) f (u), where F ∈ C 1(R,R) and f = F ′. In [13], Lieb proved the exis-
tence and uniqueness (up to translations) of the ground state solution to the following equation

−∆u+u = (|x|−1 ∗ |u|2)u, u ∈ H1(R3). (1.6)
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Equation (1.6) is usually called Choquard equation, which arises in various branches of math-
ematical physics, such as the quantum theory of large systems of nonrelativistic bosonic atoms
and molecules, physics of multiple-particle systems, and so on; see, e.g., [14]. Lions [15] ob-
tained the existence of a sequence of radially symmetric solutions for (1.6) by using variational
methods. Recently, Ma and Zhao [17] considered the generalized Choquard equation

−∆u+u =
(
|x|−α ∗ |u|p

)
|u|p−2u, u ∈ H1(RN), (1.7)

where α ∈ (0,N). Under some assumptions on N,α and p, by using an integral version of the
moving planes method, they certified that every positive solution of (1.7) is radially symmetric
and monotone decreasing about some point. Moroz and Van Schaftingen [19] obtained the
regularity, positivity, and radial symmetry of the ground state solutions, as well as the decay
asymptotics at infinity for these ground state solutions. Further results for related problems, we
refer to [1, 5, 6, 16, 20] and the references therein.

Stimulated by the above papers, in this paper, we study the Chern-Simons-Schrödinger equa-
tion with Hartree type general nonlinearities. We assume that the nonlinearity F satisfies the
following hypotheses:
(F1) F ∈C1(R,R) and lim

t→0

F(t)

|t|1+
α
2
= 0;

(F2) for each θ > 0, there exists C(θ) > 0 such that |F ′(t)| ≤ C(θ)min{1, |t|α2 }eθ |t|2 for any
t > 0;
(F3) there exists t0 ∈ R such that F(t0) 6= 0.

Our result is the following:

Theorem 1.1. If (F1)−(F3) hold, then there exists e∗> 0 such that, for any e∈ (0,e∗), equation
(1.1) has a positive solution ψe ∈ H1(R2). Moreover, up to a subsequence, ψe→ ψ? strongly
in H1(R2) as e→ 0+, where ψ? is a ground state solution to the equation

− 1
2m

∆ψ +ωψ = (Rα ∗F(ψ))F ′(ψ) in R2. (1.8)

Remark 1.1. The existence of the ground states solutions to equation (1.8) was achieved in [3].
More precisely, if (F1)−(F3) hold, then equation (1.8) has a ground state solution ψ0 ∈H1(R2).
It is well known that (F1)− (F3) are almost necessary for the existence of solutions of (1.8).

We note that Chern-Simons-Schrödinger equation (1.1) is doubly nonlocal, and it is not a
pointwise identity since the appearance of the Chern-Simons term

(∫+∞

|x|
a(τ)

τ
ψ2(τ)dτ + a2(|x|)

|x|2

)
ψ

and the Hartree term (Rα ∗F(ψ))F ′(ψ). The two nonlocal terms give rise to some mathematical
difficulties and make the problem more interesting.

2. PRELIMINARIES

First, we give some notations:

• H1(R2) is the usual Sobolev space endowed with norm ‖w‖H1 =
(∫

R2(|∇w|2 +w2)dx
) 1

2 . For

fixed m,ω > 0, we also use the notation ‖w‖ =
(∫

R2( 1
2m |∇w|2 +ωw2)dx

) 1
2 which is a norm

equivalent to ‖w‖H1 .
• For any 1≤ p < ∞, we denote by ‖w‖Lp(R2) the standard norm of Lp(R2).
• → (respectively ⇀) denotes strong (respectively weak) convergence.

Now we introduce the following Trudinger-Moser inequality in R2.
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Lemma 2.1. (see [3]) If u ∈ H1(R2), then
∫
R2(eβ |u|2−1)dx <+∞ for any β > 0. Moreover, if

‖∇u‖L2(R2) ≤ 1, and β ∈ (0,4π), then there exists a constant C(β ), which depends only on β

such that ∫
R2

min{1, |u|2}eβ |u|2dx≤C(β )
∫
R2
|u|2dx.

The following Hardy-Littlewood-Sobolev inequality is required to deal with the Hartree non-
local term.

Lemma 2.2. (see [12], Theorem 4.3) For any p∈ [1, 2
α
) and f ∈ Lp(R2), there exists a constant

C(α, p) such that
‖Rα ∗ f‖

L
2p

2−α p (R2)
≤C(α, p)‖ f‖Lp(R2).

Lemma 2.3. (see [3]) For any p ∈ [1, 2
α
), q ∈ ( 2

α
,+∞), and f ∈ Lp(R2)∩Lq(R2), there exists

a constant C(α, p,q) such that

‖Rα ∗ f‖L∞(R2) ≤C(α, p,q)
(
‖ f‖Lp(R2)+‖ f‖Lq(R2)

)
.

The corresponding energy functional of problem (1.1) is defined by

Ee(ψ) =
1

4m
‖∇ψ‖2

L2(R2)+
ω

2
‖ψ‖2

L2(R2)+
e4

4mκ2

∫
R2

ψ2(x)
|x|2

(∫ |x|
0

τψ
2(τ)dτ

)2

dx

− 1
2

∫
R2
(Rα ∗F(ψ))F(ψ)dx. (2.1)

Under our assumptions, using the Lemmas 2.1 and 2.2, it is easy to check that energy functional
Ee is well-defined and a C1 functional, and its critical point ψ is a weak solution to (1.1).

Since we are interested in the positive solutions of (1.1), from now on, we assume that F(t) =
0 for all t ≤ 0. If e = 0, equation (1.1) becomes − 1

2m∆ψ +ωψ = (Rα ∗F(ψ))F ′(ψ) in R2,
which will be referred as the limit problem of (1.1). We use the notations

E0(ψ) =
1

4m
‖∇ψ‖2

L2(R2)+
ω

2
‖ψ‖2

L2(R2)−
1
2

∫
R2
(Rα ∗F(ψ))F(ψ)dx.

Let us list some properties of E0 (see, e.g., [3]).

Lemma 2.4. Let F satisfy (F1)− (F3). Then the following properties hold:

(i) there exist η ,θ > 0 such that E0(ψ) ≥ θ for ‖ψ‖ = η , and there exists e0 ∈ H1(R2)
such that ‖e0‖> η and E0(e0)< 0;

(ii) there exists a critical point ψ0 ∈ H1(R2) of E0 such that

E0(ψ0) = c0 := inf
γ∈Λ

max
0≤t≤1

E0(γ(t)),

where Λ = {γ ∈C([0,1],H1(R2)) : γ(0) = 0,γ(1) = e0};
(iii) c0 = inf{E0(ψ) : E ′0(ψ) = 0,0 6= ψ ∈ H1(R2)};
(iv) the set A := {ψ ∈ H1(R2) : E ′0(ψ) = 0,E0(ψ) = c0} is compact in H1(R2).
(v) there exists a path γ0(t) ∈ Λ passing through ψ0 at t = 1

2 and satisfying

E0(ψ0)> E0(γ0(t)), ∀ t ∈ [0,1]\{1
2
}.
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From Lemma 2.4, when e > 0 small enough, Ee(e0) < 0. Thus Ee has the mountain pass
geometry and we can define

ce := inf
γ∈Λ

max
0≤t≤1

Ee(γ(t)),

where
Λ = {γ ∈C([0,1],H1(R2)) : γ(0) = 0,γ(1) = e0}.

Furthermore, there exists a (PS)ce sequence {ψn} for Ee, that is, Ee(ψn)→ ce and E ′e(ψn)→ 0
as n→ ∞. However, under conditions (F1)− (F3), it is not easy to prove the (PS)ce sequence
{ψn} is bounded. To deal with this obstacle, we define a modified mountain pass energy level
of Ee by

me := inf
γ∈ΛL

max
0≤t≤1

Ee(γ(t)), (2.2)

where

ΛL =
{

γ ∈ Λ : sup
0≤t≤1

‖γ(t)‖ ≤ L
}
, L = 2max

{
sup

ψ∈A
‖ψ‖, sup

0≤t≤1
‖γ0(t)‖

}
. (2.3)

By the choice of L, one easily checks that γ0(t) ∈ ΛL. From Lemma 2.4 (ii) and (v), we infer
that

c0 = m0 = inf
γ∈ΛL

max
0≤t≤1

E0(γ(t)).

However, since ΛL ( Λ, the standard mountain pass theorem cannot be directly applicable, so
other arguments are indispensable for showing that me is a critical value.

Lemma 2.5. If (F1)− (F2) hold, {ψn} is bounded in H1(R2), and ψn ⇀ ψ weakly in H1(R2)
as n→ ∞, then there hold:

(i) (Rα ∗F(ψn))F ′(ψn)⇀ (Rα ∗F(ψ))F ′(ψ) in Lq
loc(R

2) for all q≥ 1 as n→ ∞;
(ii)

∫
R2(Rα ∗F(ψn))F(ψn)dx→

∫
R2(Rα ∗F(ψ))F(ψ)dx as n→ ∞.

Proof. Since {ψn} is bounded in H1(R2), by (F1)− (F2), we have that {F(ψn)} is bounded in
Lp(R2) for every p≥ 4

2+α
. Moreover, up to subsequences, we can assume that ψn→ ψ almost

everywhere as n→∞. By the continuity of the function F , we conclude F(ψn)→ F(ψ) almost
everywhere as n→ ∞. This implies that F(ψn)⇀ F(ψ) weakly in Lp(R2) for every p ≥ 4

2+α

as n→ ∞. Notice that 2
α
> 4

2+α
. By Lemmas 2.2 and 2.3, we have

Rα ∗F(ψn)⇀ (Rα ∗F(ψ)) weakly in L
4

2−α (R2)∩L∞(R2) as n→ ∞.

By condition (F2) and Lemma 2.1, the sequence {F ′(ψn)} is bounded in Lp(R2) for every p≥
2
α

, and by continuity F ′(ψn)→F ′(ψ) almost everywhere as n→∞. Therefore, F ′(ψn)→F ′(ψ)

strongly in Lq
loc(R

2) for every q≥ 1 as n→∞. Hence (Rα ∗F(ψn))F ′(ψn)⇀ (Rα ∗F(ψ))F ′(ψ)

in Lq
loc(R

2) for all q≥ 1 as n→ ∞. �

Let H1
rad(R

2) = {w ∈ H1(R2) : w is radially symmetric}, we note that H1
rad(R

2) is a natural
constraint for Ee, that is, a critical point of Ee|H1

rad(R2) is also a critical point of Ee (see [9]).

Hence, we can consider the functional Ee restricted to H1
rad(R

2). Let us recall the compactness
lemma for radial functions from [22].

Lemma 2.6. H1
rad(R

2) is compactly embedded in Lp(R2) for every p ∈ (2,+∞).
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For any ψ ∈ H1
rad(R

2), let

T (ψ) =
∫
R2

ψ2(x)
|x|2

(∫ |x|
0

τψ
2(τ)dτ

)2

dx.

Note that ∫ s

0
rψ

2(r)dr =
∫

Bs

1
2π

ψ
2(y)dy≤Cs2.

Then

T (ψ)≤C
∫
R2

ψ
2(x)

(∫
B|x|

ψ
4(y)dy

)
dx≤C‖ψ‖6. (2.4)

Moreover, we can check that T (ψ) ∈C1(H1
rad(R

2),R), and for any χ ∈ H1
rad(R

2),

〈T ′(ψ),χ〉= 2
∫
R2

ψ(x)χ(x)
|x|2

(∫ |x|
0

τψ
2(τ)dτ

)2
dx

+4
∫
R2

ψ2(x)
|x|2

(∫ |x|
0

τψ
2(τ)dτ

)(∫ |x|
0

τu(τ)χ(τ)dτ

)
dx.

Furthermore, for the Chern-Simons nonlocal term T (ψ), we have the following compactness
properties, which can be found in [4] (see Lemma 3.2).

Lemma 2.7. Assume that ψn ⇀ ψ weakly in H1
rad(R

2). Then

(i) limn→∞ T (ψn) = T (ψ);
(ii) limn→∞〈T ′(ψn),ψn〉= 〈T ′(ψ),ψ〉;

(iii) limn→∞〈T ′(ψn),χ〉= 〈T ′(ψ),χ〉, ∀ χ ∈ H1
rad(R

2).

Lemma 2.8. Suppose that (F1)−(F3) hold. Then there holds lim
e→0+

me = c0, where me is defined

in (2.2).

Proof. It is easy to obtain that me ≥ c0 for all e ≥ 0. On the other hand, by Lemma 2.4, there
exists γ0(t) ∈ Λ satisfying

max
0≤t≤1

E0(γ0(t)) = E0(ψ0) = c0.

Then we obtain that

me ≤ max
0≤t≤1

Ee(γ0(t)) = max
0≤t≤1

(
E0(γ0(t))+

e4

mκ2

∫
R2

|γ0(t)(x)|2

|x|2
(∫ |x|

0

τ

2
|γ0(t)(τ)|2dτ

)2
dx
)

≤c0 +
e4

mκ2 max
0≤t≤1

∫
R2

|γ0(t)(x)|2

|x|2
(∫ |x|

0

τ

2
|γ0(t)(τ)|2dτ

)2
dx. (2.5)

Note that γ0(t) ∈ ΛL. Using (2.4), we have

max
0≤t≤1

∫
R2

|γ0(t)(x)|2

|x|2
(∫ |x|

0

τ

2
|γ0(t)(τ)|2dτ

)2
dx≤C max

0≤t≤1
‖γ0(t)‖6 ≤CL6,

which yields

e4

mκ2 max
0≤t≤1

∫
R2

|γ0(t)(x)|2

|x|2
(∫ |x|

0

τ

2
|γ0(t)(τ)|2dτ

)2
dx→ 0 as e→ 0. (2.6)
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Therefore, by (2.5) and (2.6), we deduce that me ≤ c0 +o(1) as e→ 0, which implies that

limsup
e→0

me ≤ c0. (2.7)

This completes the proof. �

For ρ > 0, we use the notation Bρ(ψ) := {v ∈ H1
rad(R

2) : ‖ψ − v‖ ≤ ρ}. For any subset A
of H1

rad(R
2), we set

Aρ :=
⋃

ψ∈A

Bρ(ψ).

Lemma 2.9. Suppose that (F1)− (F3) hold. Let ρ > 0 be a fixed number and suppose that
there exist sequences {en}→ 0 and {ψn} ⊂A ρ satisfying

lim
n→∞

Een(ψn)≤ c0, and lim
n→∞

E ′en
(ψn) = 0.

Then there exists ρ0 > 0 such that for ρ ∈ (0,ρ0), up to a subsequence, ψn→ψ ∈A as n→∞.

Proof. By the definition of A ρ and Lemma 2.4(iv), we know that there is zn ∈A such that

dist(ψn,A ) = dist(ψn,zn)≤ ρ.

Then, passing to a subsequence, there exists z ∈ A such that zn→ z. Hence, dist(ψn,z) ≤ 2ρ

for n large enough. Therefore, {ψn} is bounded, and then we may assume that ψn ⇀ ψ in
H1

rad(R
2). Note that B2ρ(z) is weakly closed in H1

rad(R
2). We infer that ψ ∈B2ρ(z) ⊂A 2ρ ,

which implies ψ 6= 0 for ρ > 0 small enough.
Since E ′en

(ψn)→ 0 as n→ ∞ and {ψn} is bounded, then by Lemma 2.5 and Lemma 2.7, for
all χ ∈C∞

0 (R2), we obtain

〈E ′0(ψ),χ〉=
∫
R2
(

1
2m

∇ψ∇χ +ωψχ)dx−
∫
R2
(Rα ∗F(ψ))F ′(ψ)χdx

= lim
n→∞

(∫
R2
(

1
2m

∇ψn∇χ +ωψnχ)dx−
∫
R2
(Rα ∗F(ψn))F ′(ψn)χdx

)
= lim

n→∞

(
〈E ′en

(ψn),χ〉− en〈T ′(ψn),χ〉
)
= 0.

Hence E ′0(ψ) = 0. It indicates that ψ is a nontrivial critical point of E0. Moreover, since
ψn ∈A ρ , we can obtain

c0 ≤ E0(ψ)≤ lim
n→∞

E0(ψn) = lim
n→∞

E0(ψn)+ lim
n→∞

enT (ψn)

= lim
n→∞

Een(ψn)≤ c0.
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Thus E0(ψ) = c0 and ψ ∈ A . In addition, by the condition limn→∞ Een(ψn) ≤ c0 and Lemma
2.5, we reach that

liminf
n→∞

‖ψn‖2 ≥ ‖ψ‖2 =2
(
E0(ψ)+

∫
R2
(Rα ∗F(ψ))F(ψ)dx

)
=2
(

c0 +
∫
R2
(Rα ∗F(ψ))F(ψ)dx

)
≥2
(

lim
n→∞

Een(ψn)+
∫
R2
(Rα ∗F(ψ))F(ψ)dx

)
= lim

n→∞
‖ψn‖2 + lim

n→∞

en

4
T (ψn)

−2
(

lim
n→∞

∫
R2
(Rα ∗F(ψn))F(ψn)dx−

∫
R2
(Rα ∗F(ψ))F(ψ)dx

)
= lim

n→∞
‖ψn‖2.

Therefore, ψn→ ψ strongly in H1
rad(R

2) as n→ ∞. This completes the proof. �

3. PROOF OF THE MAIN RESULT

In what follows, we always support that (F1)− (F3) hold. Set

`e = max
0≤t≤1

Ee(γ0(t)),

where γ0(t) is obtained in Lemma 2.4 (v). Note that γ0(t) ∈ΛL. From the definition (2.2) of me,
we have

me ≤ max
0≤t≤1

Ee(γ0(t)) = `e.

Moreover, arguing as the proof of Lemma 2.8, one has lime→0 `e ≤ c0, which together with the
conclusion of Lemma 2.8 yields that

lim
e→0

me = lim
e→0

`e = m0 = c0. (3.1)

Also, we define
E `e

e = {ψ ∈ H1(R2) : Ee(ψ)≤ `e}.
Then we have the following lemma.

Lemma 3.1. Let ρ1,ρ2 be two numbers satisfying 0 < ρ2 < ρ1 < ρ0. Then there are constants
σ > 0 and e0 > 0 depending on ρ1 and ρ2 such that, for e ∈ (0,e0), there holds:

‖E ′e(ψ)‖ ≥ σ for all ψ ∈ E `e
e ∩ (A ρ1 \A ρ2).

Proof. Assume by contradiction that, for some ρ1,ρ2 > 0 satisfying ρ0 > ρ1 > ρ2, there exist a
sequence {en} with lim

n→∞
en = 0 and a sequence of functions {ψn} ⊂A ρ1 \A ρ2 such that

lim
n→∞

Een(ψn)≤ c0 and lim
n→∞

E ′en
(ψn) = 0.

Then by Lemma 2.9, one has that there exists ψ ∈A such that ψn→ ψ strongly in H1
rad(R

2).
Thus we obtain that dist(ψn,A )→ 0 as n→ ∞, contradicting the relation ψn 6∈ A ρ2 for all
n ∈ N+. �
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Lemma 3.2. Let ρ > 0 be a fixed real number. Then there exists δ > 0 such that if e > 0 is
small enough,

t ∈ [0,1] and Ee(γ0(t))≥ me−δ implies that γ0(t) ∈A ρ .

Proof. We argue by contradiction and assume that, for some ρ > 0, there are sequences {δn}→
0, {en}→ 0 and {tn} ∈ [0,1] such that

Een(γ0(tn))≥ men−δn but γ0(tn) 6∈A ρ .

Assuming tn→ t0 ∈ [0,1], up to a subsequence, and by taking a limit, we have

c0 ≥ E0(γ0(t0))≥ c0 and γ0(t0) 6∈A
ρ

2 .

On the other hand, by Lemma 2.4(iv), we obtain γ0(t0)∈A . Thus we reach a contradiction. �

Lemma 3.3. For any ρ < ρ0 and sufficiently small e> 0 depending on ρ , there exists a sequence
{ψn} ⊂ E `e

e ∩A ρ such that E ′e(ψn)→ 0 as n→ ∞.

Proof. To the contrary, we assume that there are ρ < ρ0 and sequences {en} → 0 and {dn} ⊂
(0,+∞) such that

‖E ′en
(ψ)‖ ≥ dn > 0 for all ψ ∈ E

`en
en ∩A ρ .

Moreover, by Lemma 3.1, there exists constant σ > 0 such that

‖E ′en
(ψ)‖ ≥ σ > 0 for all ψ ∈ E

`en
en ∩ (A ρ \A

ρ

2 ). (3.2)

Furthermore, there exists constant M > 0 such that

‖E ′en
(ψ)‖ ≤M, ∀ ψ ∈A ρ .

Since ρ is a fixed number, by Lemma 3.2, we can take δ ∈ (0, 2σ2ρ

M ) small enough such that

t ∈ [0,1] and Ee(ϕ0(t))≥ me−
δ

4
⇒ ϕ0(t) ∈A

ρ

2 . (3.3)

By (3.1) and en→ 0, we can take n large enough such that

`en−men < min
{

δ

4
,
σ2ρ

2M
− δ

4

}
. (3.4)

Hereafter, we fix n so large that (3.3) and (3.4) hold. For the sake of simplicity, we denote en as
e.

Now we are concerned with a pseudo-gradient vector field Ve of Ee, and take a neighborhood
Ne of E `e

e ∩A ρ satisfying Ne ⊂BL(0) (see [23]), where L is defined in (2.3). Note that for
any ψ ∈Ne there hold

‖Ve(ψ)‖ ≤ 2min{1,‖E ′e(ψ)‖} and 〈E ′e(ψ),Ve(ψ)〉 ≥min{1,‖E ′e(ψ)‖}‖E ′e(ψ)‖.
We observe that me < L for e small enough. Let ηe ∈C1,1(H1

rad(R
2), [0,1]) be defined by ηe = 1

on E `e
e ∩A ρ and ηe = 0 on H1

rad(R
2)\Ne. We also denote by ξe a C1,1(R, [0,1]) function such

that ξe(τ) = 1 if |τ −me| ≤ δ

2 , ξe(τ) = 0 if |τ −me| ≥ δ . Considering the following Cauchy
initial value problem{

∂

∂ t Φe(ψ, t) =−ηe(Φe(ψ, t))ξe(Ee(Φe(ψ, t)))Ve(Φe(ψ, t))),

Φe(ψ,0) = ψ,
(3.5)
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we can assert that there exists a global solution Φe : H1
rad(R

2)×R→ H1
rad(R

2) of the above
initial value problem (3.5).

Next, we claim that, for all 0≤ t ≤ 1, there is te > 0 such that

Ee(Φe(γ0(t), te))≤ me−
δ

4
.

Indeed, let te := δ

2σ2 if, for any 0≤ t ≤ 1, there exists some τ0≤ te such that Ee(Φe(γ0(t),τ0))≤
me− δ

4 . Since

d
dt

Ee(Φe(ψ, t))≤−ηe(Φe(ψ, t))ξe(Ee(Φe(ψ, t)))‖E ′e(Φe(ψ, t))‖2, (3.6)

which implies that d
dτ

Ee(Φe(γ0(t),τ))≤ 0, then we obtain

Ee(Φe(γ0(t), te))≤ Ee(Φe(γ0(t),τ0))≤ me−
δ

4
.

This concludes the claim.
On the other hand, if

Ee(Φe(γ0(t),τ)> me−
δ

4
, ∀ τ ∈ [0, te], (3.7)

then we have by Lemma 3.2 that

Φe(γ0(t),0) = γ0(t) ∈A
ρ

2 and ξe(Ee(Φe(γ0(t),τ))) = 1, ∀ τ ∈ [0, te].

(i) If Φe(γ0(t),τ)) ∈ A ρ for all τ ∈ [0, te], then ηe(γ0(t),τ)) = 1 for all τ ∈ [0, te]. Further-
more, from (3.2) and (3.6) one has d

dτ
Ee(Φe(γ0(t),τ))≤−σ2. Thus we obtain

Ee(Φe(γ0(t), te)) =Ee(γ0(t))+
∫ te

0

∂

∂τ
Ee(Φe(γ0(t),τ))dτ

≤`e−
∫ te

0
σ

2dτ

=`e−
δ

2
< me−

δ

4
(by (3.4)),

which is a contradiction to (3.7).
(ii) If there exists some τ ∈ [0, te] such that Φe(γ0(t),τ) 6∈A ρ , then there exist some 0≤ τ1 <

τ2 ≤ te such that Φe(γ0(t),τ1) ∈ ∂A
ρ

2 , Φe(γ0(t),τ2) ∈ ∂A ρ and Φe(γ0(t),τ) ∈ A ρ \A
ρ

2 for
all τ ∈ (τ1,τ2). We notice that

ρ

2
≤ ‖Φe(γ0(t),τ2)−Φe(γ0(t),τ1)‖=

∥∥∥∥∫ τ2

τ1

∂

∂τ
Φe(γ0(t),τ)dτ

∥∥∥∥
≤
∫

τ2

τ1

∣∣∣ ∂

∂τ
Φe(γ0(t),τ)

∣∣∣dτ

≤
∫

τ2

τ1

Mdτ = M(τ2− τ1).
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It follows that τ2− τ1 ≥ ρ

2M . Hence,

Ee(Φe(γ0(t), te))≤Ee(Φe(γ0(t),τ2))

=Ee(γ0(t))+
∫

τ2

0

∂

∂τ
Ee(Φe(γ0(t),τ))dτ

≤Ee(γ0(t))+
∫

τ2

τ1

∂

∂τ
Ee(Φe(γ0(t),τ))dτ

≤`e−σ
2(τ2− τ1)

≤`e−
σ2ρ

2M
< me−

δ

4
(by (3.4)),

which is also a contradiction to (3.7).
Finally, we set γ̃0(t) = Φe(γ0(t), te). Then γ̃0(t) ∈ ΛL and Ee(γ̃0(t)) < me for all 0 ≤ t ≤ 1,

contradicting the definition of me. Thus we complete the proof. �

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.3, we know that there exists e∗> 0 such that, for e∈ (0,e∗),
there exists {ψe

n} ⊂ E `e
e ∩A ρ such that E ′e(ψ

e
n)→ 0 as n→ ∞. Since A is compact, it is easy

to see that {ψe
n} is bounded in H1

rad(R
2). Passing to a subsequence, we may assume that

ψ
e
n ⇀ ψ

e ∈ H1
rad(R

2).

Moreover, we can obtain that E ′e(ψ
e) = 0. Hence ψe is a critical point of Ee. Now we claim

that ψe ∈A ρ . Indeed, by the fact ψe
n ∈A

ρ

2 , there is vn ∈A satisfying ‖vn−ψe
n‖ ≤

ρ

2 . Then
from the compactness of A , there exists v ∈A such that vn→ v in A as n→ ∞, which means
that, for all n, ψn ∈Bρ(v), a weakly closed set in H1

rad(R
2). Thus it follows that ψe ∈Bρ(v),

by the choice of ρ , ψe 6= 0. Hence, ψe is the desired solution to (1.1).
Next, we consider the asymptotic behavior of ψe as e→ 0. For any sequence {en} ⊂ (0,e∗)

with en↘ 0 as n→ ∞, let {ψen} ⊂ H1
rad(R

2) be a sequence positive solutions obtained above.
Note that, for any sequence {en} converging to 0, the sequence {ψen} satisfies all the assump-
tions of Lemma 2.9. Thus {ψen} converges to some ψ? ∈A . This completes the proof. �
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