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Abstract. This paper is devoted to studying the following Chern-Simons-Schrodinger equation with
Hartree type nonlinearity:
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where e > 0 is a parameter, m,, k > 0 are constants, a(t) = 1 [ sy*(s)ds, and F € C'(R,R). By
using variational methods and perturbation arguments, the existence of positive solutions for the above
equation is derived. In addition, the asymptotic behavior of solutions with regard to the parameter e is
also considered.
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1. INTRODUCTION

In this paper, we focus on the following Chern-Simons-Schrédinger equation with Hartree
type general nonlinearities:

_L 2e* +°°M ) a2(|x|) - . , R
Ay oyt g </ -y (t)de+ P )w—(Ra F(y))F'(y) inR%, (1.1)

where m, @, k > 0 are constants, e > 0 is a parameter, a(7) = 5 [; sy (s)ds, Rq : R* — Riis the
Riesz potential of order & € (0,2) defined for all x € R?\ {0} by

C r(%%)
Ra(X):M%7 where Cy = —v I%(g)
2

T is the Gamma function, and * denotes the standard convolution in R2.
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The inspiration for studying (1.1) derives from the following Chern-Simons-Schrodinger sys-

tem
(

iD§ + - (D1 Dy +D2D2)¢ +g(¢) =0,

0A 0A =
G o = " aeim(9D29),

(1.2)

JdA 0A T
Gt~ 9n = meim(¢D1¢),

A1 _ 94 _ e |2
\ In ox; ~ 2K ’

in which i denotes the imaginary unit, ¢ is a complex scalar field, Ay = Ay (t,x1,x2) : R® = R
is the gauge field, and D, = J; + ieA; is the covariant derivative for k = 0,1,2. System (1.2)
appeared firstly in [10] comprising the Schrodinger equation augmented by the gauge field A;.
The Chern-Simons-Schrodinger system has been investigated extensively due to its close con-
nection in applications. For example, it has been applied in high-temperature superconductivity,
quantum Hall effect and the second quantized N body anyon problem, etc. For more detailed
physical background of the system, we refer the readers to [7]. For system (1.2), if we look for
standing wave solutions, namely, the solutions to (1.2) in the form:

9(1,x) = ey (|x]),  Ao(t,x) =Ao(lx]),

e X e X (13)
AVe0) = £ Zallxl), Aar,) = % Sha(lx]),

where @ > 0 is a given frequency, y(x),Ap(x) and a(x) are real valued functions, substitut-
ing (1.3) into system (1.2) with g(w) = A|w|P~2y, we deduce the following Chern-Simons-
Schrodinger equation:

N 2
/+ @wz(f)df—i—M) v=Aly|P %y inR? (14)

1 A 2¢*

m ""“"”*W(C* M- P
where a(7) = 3 | sy*(s)ds and { is an integration constant of Ag(|x|). In what follows we can
take { = 0.

When 2 < p < 4, the existence and nonexistence results of (1.4) for different value of @ > 0
were proved through investigating the geometry of the energy functional in [21] by Pomponio
and Ruiz. In [25], Yuan, with the variational methods, acquired the multiplicity results for the
L?-normalized solutions to (1.4) for p > 2, p # 4. When p > 6, in [11], the authors obtained the
existence of least energy sign-changing solutions for the equation

too 2
—AY+ oY+ </| | &;)yfz(r)dr—k 2 |§C”§D) v =y ?y inR? (1.5)
X

where @, 1 > 0. In [24], Xia obtained the existence, nonexistence, and multiplicity of solutions
to (1.5) for 2 < p < 4 by using the fibering method. Huh, in [9], showed concern for the
existence of infinitely many solutions to (1.5) for p > 6. More results on the Chern-Simons-
Schrédinger equations were present in [2, 7, 8, 18] and the references therein.

Besides, in many physical applications, the Hartree-type nonlinearities appear naturally, that
is, g(x,u) = (w(x) * F(u))f(u), where F € €' (R,R) and f = F’. In [13], Lieb proved the exis-
tence and uniqueness (up to translations) of the ground state solution to the following equation

—Au+u= (x| uPu, ueH(R?). (1.6)
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Equation (1.6) is usually called Choquard equation, which arises in various branches of math-
ematical physics, such as the quantum theory of large systems of nonrelativistic bosonic atoms
and molecules, physics of multiple-particle systems, and so on; see, e.g., [14]. Lions [15] ob-
tained the existence of a sequence of radially symmetric solutions for (1.6) by using variational
methods. Recently, Ma and Zhao [17] considered the generalized Choquard equation

—Au+tu= (|x|7“*\u|p)\u|p*2u, ue H' (RY), (1.7)

where a € (0,N). Under some assumptions on N, & and p, by using an integral version of the
moving planes method, they certified that every positive solution of (1.7) is radially symmetric
and monotone decreasing about some point. Moroz and Van Schaftingen [19] obtained the
regularity, positivity, and radial symmetry of the ground state solutions, as well as the decay
asymptotics at infinity for these ground state solutions. Further results for related problems, we
refer to [1, 5, 6, 16, 20] and the references therein.

Stimulated by the above papers, in this paper, we study the Chern-Simons-Schrodinger equa-
tion with Hartree type general nonlinearities. We assume that the nonlinearity F satisfies the
following hypotheses:

(Fy) F € C'(R,R) and lim Et) —o;

1—0 1|2
(IF,) for each 6 > 0, there exists C(6) > 0 such that |F’'(r)] < C(6)min{1, ]t]%}e""‘z for any
t>0;
(IF3) there exists 7y € R such that F(zy) # 0.
Our result is the following:

Theorem 1.1. If (Fy) — (IF3) hold, then there exists e* > 0 such that, for any e € (0,¢e*), equation
(1.1) has a positive solution y¢ € H! (Rz). Moreover, up to a subsequence, Y — W* strongly
in H'(R?) as e — 0%, where W* is a ground state solution to the equation

oAy Oy = (Rex FW)F (y) in B2 (1:8)

Remark 1.1. The existence of the ground states solutions to equation (1.8) was achieved in [3].
More precisely, if (IF1) — (IF3) hold, then equation (1.8) has a ground state solution y € H' (R?).
It is well known that (F;) — (FF3) are almost necessary for the existence of solutions of (1.8).

We note that Chern-Simons-Schrodinger equation (1.1) is doubly nonlocal, and it is not a

S ey +oo a(T) 2 a(]x])
pointwise identity since the appearance of the Chern-Simons term W oV (t)dt+ FE A4
and the Hartree term (Rq * F (y))F’(y). The two nonlocal terms give rise to some mathematical

difficulties and make the problem more interesting.

2. PRELIMINARIES

First, we give some notations:
1
e H'(IR?) is the usual Sobolev space endowed with norm [|w|| ;1 = ( fg2(|VW[* +w?)dx) 2. For

fixed m,® > 0, we also use the notation ||w|| = (fa (5 |VW[* + a)wz)dx)% which is a norm
equivalent to ||w|| 1.
e For any 1 < p < co, we denote by ||w||;»(g2) the standard norm of LP(R?).
e — (respectively —) denotes strong (respectively weak) convergence.
Now we introduce the following Trudinger-Moser inequality in R.
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Lemma 2.1. (see [3]) If u € H'(R?), then [g (emb"2 —1)dx < +oo for any B > 0. Moreover; if
IVul| 22y < 1, and B € (0,47), then there exists a constant C(B), which depends only on 3
such that

/ min{1,]uf*}ePl"dx < C(B) / juf2dx.
R2 R2

The following Hardy-Littlewood-Sobolev inequality is required to deal with the Hartree non-
local term.

Lemma 2.2. (see [12], Theorem 4.3) For any p € [1, %) and f € LP(R?), there exists a constant
C(a, p) such that

IRacs £l 3, o < C@ ) e

Lemma 2.3. (see [3]) Forany p € [1,2), q € (2,+), and f € LP(R*) N L1(R?), there exists
a constant C(a, p,q) such that

|Ra *f||L°°(R2) <C(a,p,q) (||f||LP(R2) + ||f||Lq(R2)> :

The corresponding energy functional of problem (1.1) is defined by

1 (0] et V2 (x l 2
ge(‘l’) = %“VWH%z(Rz) + 5”"’”[2}([&2) + i Je |x|(2) </0 Tllﬂ(r)df) dx
1
R PP @

Under our assumptions, using the Lemmas 2.1 and 2.2, it is easy to check that energy functional
&, is well-defined and a C! functional, and its critical point y is a weak solution to (1.1).

Since we are interested in the positive solutions of (1.1), from now on, we assume that F (1) =
0 for all t < 0. If e = 0, equation (1.1) becomes —5-Ay + @y = (Rq x F(y))F'(y) in R?,
which will be referred as the limit problem of (1.1). We use the notations

1 2 0] 2 1
W) = 3 VW) 3 VIR =5 [, Rex F(W)F(p)d.
Let us list some properties of & (see, e.g., [3]).

Lemma 2.4. Let F satisfy (F1) — (F3). Then the following properties hold:

(i) there exist 1,0 > 0 such that &(y) > 0 for ||w| = n, and there exists ey € H'(R?)
such that |leo|| > 1 and &y(eo) < 0;
(ii) there exists a critical point Wy € H' (R?) of & such that

(W) = co == ;nf Jnax &o(¥(1)),

<t<1
where A= {y € C([O 1],H' (R?)) : y(0) = 0,7(1) = ¢g};
(iii) co = inf{&o(w) : &(w) = OO#WGHl(Rz)}

(iv) the set of := {y € H'(R?) : &(y) = 0,8 (y) = co} is compact in H'(R?).
(V) there exists a path Y(t) € A passing through yy att = 5 L and satisfying

éo(Yo) > o(n(1)), Vi € [0, 1]\{5}-
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From Lemma 2.4, when e > 0 small enough, &,(ep) < 0. Thus &, has the mountain pass
geometry and we can define

:= inf &E(v(t
e 1= inf max (Y(1)),

where

A={rec((0,1,H'(R?):7(0) = 0,7(1) = eo}.
Furthermore, there exists a (PS)., sequence {y,} for &,, that is, &,(y;,) — ¢, and &, (y,) — 0
as n — oo. However, under conditions (IF;) — (F3), it is not easy to prove the (PS),, sequence

{y,} is bounded. To deal with this obstacle, we define a modified mountain pass energy level
of &, by

e = inf Eu(y(t)), 2.2
me = inf max (v(1)) (2.2)
where
Ap={yeA: sup ||y()| <L}, L=2max{ sup ||y, sup [|%()|}. (2.3)
0<t<1 4 0<t<1

By the choice of L, one easily checks that (7) € Az. From Lemma 2.4 (ii) and (v), we infer
that

co=my= ylenAfL [max Eo(y(1)).

However, since Ay C A, the standard mountain pass theorem cannot be directly applicable, so
other arguments are indispensable for showing that m, is a critical value.

Lemma 2.5. If (F) — (F2) hold, {w,} is bounded in H'(R?), and y,, — w weakly in H' (R?)
as n — oo, then there hold:

(i) (Ra*F(,))F (W) = (Ra*F(w))F'(y) in LI (R?) forall g >1asn— oo;
(i) Jr2 (R * F (W) F (Y)dx = [z (Ra + F(y))F (w)dx as n — .

Proof. Since {y,} is bounded in H'(R?), by (F;) — (IF,), we have that {F(y,)} is bounded in
LP(R?) for every p > Z;La. Moreover, up to subsequences, we can assume that Y, — y almost
everywhere as n — co. By the continuity of the function F, we conclude F(y,) — F(y) almost
everywhere as n — oo, This implies that F(y,,) — F(y) weakly in LP(R?) for every p > 2%‘

as n — oo. Notice that % > 24%' By Lemmas 2.2 and 2.3, we have

Ra*F(y,) — (Rg * F(w)) weakly in L7 (R%) N L=(R%) as n — .

By condition () and Lemma 2.1, the sequence {F’(y,)} is bounded in L”(R?) for every p >
2 and by continuity F’(y,) — F’(y) almost everywhere as n — co. Therefore, F'(y,) — F'(y)
strongly in L] (IR?) for every g > 1 as n— 0. Hence (Ro *F (W,))F' (W) = (Ra* F (y))F'(y)

in ! (R?) forall g > 1asn — oo O
Let H! (R?) = {w € H'(R?) : w is radially symmetric}, we note that H' ;(R?) is a natural

constraint for &,, that is, a critical point of &/ (®2) is also a critical point of &, (see [9]).

Hence, we can consider the functional &, restricted to Hrla d(Rz). Let us recall the compactness
lemma for radial functions from [22].

Lemma 2.6. H!

rad

(R?) is compactly embedded in LP (R?) for every p € (2,+o0).
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Forany y € H. (R?), let
2 x 2
T (y) :/RZ w|x|(§) (/0 Tl[/z(f)df> dx.
Note that
/S ry?(r)dr = sz(y)dy < Cs?.
0 B, 2T
Then

Twc [ v ( /

Moreover, we can check that 7 (y) € C'(H! ,(R?),R), and for any y € H! ,(R?),

w“(y)dy) dx < C[|y|°. (2.4)
[x]

x) ¥ (x |x|
7o =2 [P ([T o) o

R2
v?(x) (/O|X| Tlllz(’b')dl'> </0|X| Tu(r)x(r)d»c)dx.

R x|

Furthermore, for the Chern-Simons nonlocal term .7 (y), we have the following compactness
properties, which can be found in [4] (see Lemma 3.2).

Lemma 2.7. Assume that W, — y weakly in H' ,(R?). Then
(i) limy o0 7 (Y) = 7 (¥);
(i) limyseo (T (W), W) = (T (W), W)
(i) 1imy—seo (T (W), X) = (T (W), X), ¥ X € Hyyg(R?).

Lemma 2.8. Suppose that (F) — (F3) hold. Then there holds lim+ me = co, where m, is defined
e—0
in (2.2).
Proof. 1t is easy to obtain that m, > cq for all ¢ > 0. On the other hand, by Lemma 2.4, there
exists () € A satisfying
max &(1(t)) = &o(Wo) = co.

0<r<1
Then we obtain that

et x)|? x|
me < uax 8,0(0) = max (&000)+ 525 [ OO 2y o)ar) e

0<r<l1 mK?

et @)@ ¢ e 21\
< . — . .
Scot a3 L p (/O 5 10()(0)] dr) dx 2.5)

Note that 9p(7) € Ar. Using (2.4), we have
[@O@F KM 2.\? 6 6
LR TS — < <
[max /Rz X2 (/0 S10()(@)] dr) dx < C max, % (0)||® < CLS,

which yields
et |}’0(f)(x)|2< Mz
0

—— max
2

2
mk2 0ot Jr2 P |70(t)(r)|2dr> dx—0 as e — 0. (2.6)
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Therefore, by (2.5) and (2.6), we deduce that m, < co+ o(1) as e — 0, which implies that

limsupm, < cgp. 2.7
e—0

This completes the proof. 0

For p > 0, we use the notation %, (y) :={ve H\ ,
of H' (R?), we set

rad

(R?) : ||y —v|| < p}. For any subset A
yeA

Lemma 2.9. Suppose that () — (F3) hold. Let p > 0 be a fixed number and suppose that
there exist sequences {e,} — 0 and {y,} C /P satisfying

. < 1 / = V.
r}grgogen(ll/n) = €0, and r}l_g}ogen(wn) 0

Then there exists py > 0 such that for p € (0,p9), up to a subsequence, W, — Y € </ as n — oo.

Proof. By the definition of .&/P and Lemma 2.4(iv), we know that there is z, € ./ such that
dist(yy, o) = dist(y,,z,) < p.

Then, passing to a subsequence, there exists z € <7 such that z, — z. Hence, dist(y,,z) < 2p
for n large enough. Therefore, {y,} is bounded, and then we may assume that y, — v in
H! ,(R?). Note that %, (z) is weakly closed in H! ,(R?). We infer that y € %, (z) C &/?P,
which implies y # 0 for p > 0 small enough.

Since &, (Y,) — 0 as n — oo and {y,} is bounded, then by Lemma 2.5 and Lemma 2.7, for
all y € C3(R?), we obtain

@20 = [ G+ ound— [ (RexF)F (y)xd

= lim </Rz(%Vanx+anX)dx_ /Rz(Ra *F(wn))F’(wn)xdx)
= lim ((&, ().2) — ea(T" (Vi) 1)) =O.

Hence &j(y) = 0. It indicates that y is a nontrivial critical point of &. Moreover, since
Vv, € o/P, we can obtain

co < &o(y) < lim &y(yn) :r}i_{?ogO(‘//n) +,}g{}o€n9(%)

n—oo
=N < en.
r}l_>llool éden ( %) Cco
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Thus &y(y) = co and y € 7. In addition, by the condition lim,_, &, (W) < ¢o and Lemma
2.5, we reach that

timin [y = w2 =2(&(w) + | (Recx F(y))F ()a)
2(co+ [, (Rax F(y)F(y)d)
zz(grolﬁn(wn)+/RZ(Ra*F(w))F(w)dx)
= lim [[ys | + lim = 7 (y3)

=2((fim [ (RaxF () F(w)de— [ (Rax F(w)F (w))
= lim [[y|*.

Therefore, W, — W strongly in H. ;,(R?) as n — oo. This completes the proof. O

3. PROOF OF THE MAIN RESULT

In what follows, we always support that (IF;) — (F3) hold. Set
£ = max &.(0(0)).

0<t
where 9(¢) is obtained in Lemma 2.4 (v). Note that % (z) € Ar. From the definition (2.2) of m,,
we have
< = t,.
Me = Orgflgxl Ee(W(1)) =Le

Moreover, arguing as the proof of Lemma 2.8, one has lim,_,o £, < co, which together with the
conclusion of Lemma 2.8 yields that

limm, = lim ¥, = my = cyp. 3.1)
e—0 e—0

Also, we define
S ={y e H'(R?): &(y) < Le}.
Then we have the following lemma.

Lemma 3.1. Let p1, p2 be two numbers satisfying 0 < pa < p1 < po. Then there are constants
6 > 0 and ey > 0 depending on py and p; such that, for e € (0,eq), there holds:

& (W)l = o forall ye &N (P \ ).
Proof. Assume by contradiction that, for some py, p > 0 satisfying pg > p1 > p», there exist a
sequence {e,} with li_r>n e, = 0 and a sequence of functions {y, } C &7P! \ &P such that

Then by Lemma 2.9, one has that there exists y € &/ such that y,, — y strongly in Hrla d(Rz).
Thus we obtain that dist(y,,o/) — 0 as n — oo, contradicting the relation y,, ¢ /P2 for all

neNT. O
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Lemma 3.2. Let p > 0 be a fixed real number. Then there exists & > 0 such that if e > 0 is
small enough,

t€[0,1] and &,(y(t)) > me— & implies that Y (r) € &/P.

Proof. We argue by contradiction and assume that, for some p > 0, there are sequences {8, } —
0, {ex} — 0 and {z,} € [0, 1] such that

Ee(W(tn)) > me, — &, but Y(ty) ¢ /P
Assuming t, — 1y € [0, 1], up to a subsequence, and by taking a limit, we have

P
co = 60(10(to)) = co and (i) & /2.
On the other hand, by Lemma 2.4(iv), we obtain Yy(#9) € <. Thus we reach a contradiction. [

Lemma 3.3. For any p < po and sufficiently small e > 0 depending on p, there exists a sequence
{w,} C &N/ P such that & (y,) — 0 as n — oo,

Proof. To the contrary, we assume that there are p < pg and sequences {e,} — 0 and {d,} C
(0, 4c0) such that

1€, (W)|| > dy >0 forall ye &N,
Moreover, by Lemma 3.1, there exists constant o > 0 such that
1€, (W) > 6 >0 forall we &N (P \o?). (3.2)
Furthermore, there exists constant M > 0 such that
1€, (W)l <M, ¥ y €.

Since p is a fixed number, by Lemma 3.2, we can take 0 € (0, %) small enough such that

0
r€[0.1] and & (go(n) Zme— = o) €t (3.3)
By (3.1) and e, — 0, we can take n large enough such that
. [8 o%p &
fen—men<m1n{z,2—1\5—z}. (3.4)

Hereafter, we fix n so large that (3.3) and (3.4) hold. For the sake of simplicity, we denote ¢, as
e.

Now we are concerned with a pseudo-gradient vector field V, of &, and take a neighborhood
N, of @@ff Na/P satisfying A, C Z1(0) (see [23]), where L is defined in (2.3). Note that for
any y € .4, there hold

IVe(w)ll < 2min{L, [|&;(w)|[} and (& (), Ve(y)) > min{1,||& (y)[ HI & (W)l
We observe that m, < L for e small enough. Let 1, € C1H(H! ,(R?),[0,1]) be defined by 17, = 1
on &N.e/P and N, =0on H' ,(R?)\ 4;. We also denote by & a C1!(R, [0, 1]) function such
that &,(t) = 1if |t —m,| < g, & (1) =0if |t —m,| > 5. Considering the following Cauchy
initial value problem

{ %fbe(llf,f) = —Ne(Pe(V,1))Ee(e(Pe(Y,1)))Ve(Pe (1)),
@, (y,0) =y,

(3.5)
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(R?) xR — H!

rad

we can assert that there exists a global solution ®, : H! (R?) of the above

rad
initial value problem (3.5).
Next, we claim that, for all 0 <t < 1, there is ¢, > 0 such that

Indeed, let?, := % if, forany 0 <r < 1, there exists some Ty < #, such that &, (P, (1 (), 7)) <

me — % Since

SE@V.0) £ Nl @WE(E @IS @, 36

which implies that %é"e (De(W(t),7)) <0, then we obtain

0

Ee(Pe(W(t),te)) < Ee(Pe(W0(2),70)) < me — s

This concludes the claim.
On the other hand, if

0
Ee(Pe(W(2),T) > me — 7 V1 el0,z], (3.7)
then we have by Lemma 3.2 that

D, (10(1),0) =n(t) € /7 and Ee(Eu(Pe(W(2),7))) =1, ¥V T €[0,1,].

() If ®,(y0(z),7)) € /P for all T € [0,2,], then N.((),7)) =1 for all T € [0,7,]. Further-
more, from (3.2) and (3.6) one has &, (P.(¥(t), 7)) < —o>. Thus we obtain

£ @el(0)10) =600 + [ @el(0), )T

1
gﬁe—/ o’dt
0

0 0
=l — B <me— 2 (by (3.4)),

which is a contradiction to (3.7).
(ii) If there exists some T € [0,7,] such that ®,(y(¢), T) &€ /P, then there exist some 0 < 7] <

7, < t, such that D, (3 (1), 71) € 0.7 %, ®.(1(t),T) € d.o/P and ®e(Y(t),7) € &P\ /% for
all T € (71, 72). We notice that

1'28

S IORSEXCORA PPN
d

(%)
< _
- /1, ot

o
g/ Mdt =M(m —11).
T

@, (1(1), r)‘dr
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It follows that 7, — 71 > %. Hence,

Eo(De(10(1) 1)) <E(De(W(1), B2))
=Gt */Tz 0 . (@e(1), ))de

Sge()/()(t))+/f %ge(q)e(%(t)”c))dr

<ly—0*(mn—1)
2
o°p o
<lp— —— —— (by (3.4
2P <me—2 (by (3.4)),
which is also a contradiction to (3.7).
Finally, we set ¥ (1) = ®.(%(t),t.). Then % (r) € AL and &, (W (1)) < m, forall 0 < <1,

contradicting the definition of m,. Thus we complete the proof. 0
Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.3, we know that there exists e* > 0 such that, for e € (0,¢*),
there exists {y¢} C &% M .a7P such that & (y¢) — 0 as n — oo. Since .27 is compact, it is easy
to see that {y¢} is bounded in H! ;(R?). Passing to a subsequence, we may assume that

IV - II/ €H, md (Rz)
Moreover, we can obtain that &) (y¢) = 0. Hence y* is a critical point of &,. Now we claim
that y* € &/P. Indeed, by the fact y¢ € o 7, there is v, € .« satisfying [va — || < 5. Then
from the compactness of <7, there exists v € <7 such that v, — v in &/ as n — oo, which means
that, for all n, W, € %,(v), a weakly closed set in H\ ,(R?). Thus it follows that y* € %, (v),
by the choice of p, y¢ # 0. Hence, y° is the desired solution to (1.1).

Next, we consider the asymptotic behavior of y* as e — 0. For any sequence {e,} C (0,¢e")
with e, \ 0 as n — oo, let {y*»} C H d(]Rz) be a sequence positive solutions obtained above.
Note that, for any sequence {e, } converging to 0, the sequence {y*"} satisfies all the assump-
tions of Lemma 2.9. Thus {y*"} converges to some y* € <7 This completes the proof. 0J
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