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Abstract. In this paper, the boundedness and compactness of the identity operator from Q, spaces into
tent spaces ﬂfy are completely characterized in the unit ball of C" when g > 2. As an application, the
boundedness of the extended Cesaro operator 7, from Q; to the space F(p, g,s, p) is obtained. Moreover,
the essential norm and compactness of 7, are also investigated.
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1. INTRODUCTION

Let B be the open unit ball of C", and let S be the boundary of B. When n = 1, B is the open
unit disk in complex plane C and always denoted by D. For any two points z = (z1,22,** ,2x)
and w = (wy,wp, -+ ,wy) in C", we define (z,w) = zyw1 + - - - + 2,W, and

A= V&2 = a4+l

Let a € B\{0}. Set
Z a
Sa = {zEB: la| <l|z| < 1,|1 = (=, —)| < 1—|a|}.
2| |al
The set S, is called the Carleson block and introduced in [2]. From [2], we see that the Carleson
block plays an essential role when studying some holomorphic function spaces in the unit ball.
Let H(IB) denote the space of all holomorphic functions on B. For any f € H(B), its complex
gradient V f and invariant gradient V f are defined by

Vi@ = (L@ 520, 5L @)) and V() =V(700)(0)

respectively. Here, o7 is the Mobius transformation of B. For all a,z € B,

(1—|a|2)(1—|z|2) |1—<Cl Ga(Z)>|_ 1_|a|2

1_‘Ga(z)|2: |1—<Z,a>|2 _m.

(1.1)
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We refer the readers to [26] for more information about o,.
The Mdobious invariant space Q,, was introduced by Aulasikari, Xiao and Zhao in the unit
disk (see [1]). Based on [1], the Q,, space was extended to the unit ball in C" by Ouyang, Yang

and Zhao in [16] by using the invariant gradient Y f of a holomorphic function f, i.e.,

0= {f €H(E) :sup | VP’ (z.a)dV () <o},

acB

where dV is the normalized volume measure on B and g(z,a) = log|o,(z)|~! is the Green’s

function for B with logarithmic singularity at a. In [16], the authors proved that, on the unit ball
of C",

BMOA when p=1;
0, = %  when pe (1,n 7)s
C when p<"lorp> > L

In [8], Li and Ouyang demonstrated that, if “=— 1 <p< a equivalent norm on Q) is given

n— 1’
by
115, = !f(0)12+sup . (RF@)P(1 = [2*) (1= |oa(2) )PV (2) < oo,
where Rf(z) =YY" |z af denotes the radial derivative f.

Let 0 < p < oo, ¢ > —1. The Dirichlet type space 2% on the unit ball is the space consisting
ofall f € H(B) such that

1115, = !f(O)!’”r/B [Rf)IP(1—[2)%aV (2) <

Let 0 < p<o0,0<s<oo, —n—1< g<oo, and g+ s > —1. The general space F(p,q,s)
consists of all f € H(B) such that

(ralam

gy = O +s0p [ IRFQP(1—12P)(0 ~ lou(2) PV () <

Obviously, Z4 = F(p,,0) and Q, = F (2,1 —n,np). The space F(p,q,s) was first introduced
by Zhao [25] in the unit disc and called general function space because it can obtain many
function spaces, such as BMOA space, Q,, space, Bergman space AL, Hardy space H 2, Bloch
space 4, and Dirichlet type spaces Z5, if it takes special parameters of p,q,s. See [23, 25] and
the references therein for more results about general function spaces in the unit disk and the
unit ball.

Let g € H(B). The extended Cesaro operator 7, is given by

7) = /lf(tz)iﬁg(tz)ﬂ, f€H(B), z€B.
0 t

T, is also called Riemann-Stieltjes operator. The operator T, was introduced in [4], and was
studied in [4, 5, 6,7, 9, 10, 11, 12, 14, 15, 17, 19, 20, 22, 27].

Motivated by [18], we define a more general function spaces F(p,q,s,t) in the unit ball of
C". For p > 0,¢g > —n— 1,5 > 0,t > 0 such that g+ s > —1, let F(p,q,s,t) consist of all
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holomorphic functions f such that

Hf”ppqst 1£(0 )|p+Sup— [Rf(2)|P(1—1z*)1(1 - [0a(2)|*) dV (z) <
<% (log 2 \\2> /

It is easy to check that F'(p,g,s,?) is a Banach space under norm || - || p(p 4.5.1) With p > 1.
., . q
Let 0 < A,q < oo, s >0, and u be a positive Borel measure on B. The tent space 9“(;4)
consists of all measure functions f satisfying

1
a =su 2)|%du(z) < oo, 1.2
IVt 0= 528 e iog e o, "0 (1.2
which extends the tent space on the unit disk [13] to the unit ball.
In [17], Peng and Ouyang studied the boundedness and compactness of the operator Ty :
Oy — Oy when ”n;l <x <y < ;%;. Among others, they demonstrated that T, : O, — Q) is
bounded if and only if

sup (1og (=) [ 196(a) (1 = ) (1 = au(0)P) "V 2) <

acB

In this paper, under some mild conditions, by using Carleson block instead of non-isotropic
balls, we prove that the identity operator I; : Q, — Zf’s(u) is bounded if and only if
1(Sa)

sup < oo,
act (1~ [a]*(log (274

As an application, we prove that T, : O, — F(p,q,s, p) is bounded if and only if g € F(p, q,s).
Moreover, we also estimate the essential norm of T, : O — F(p,q,s, p) and characterize the
compactness of Ty : Oy — F(p,q,s,p).

In this paper, constants are denoted by C, which are positive and may differ from one occur-
rence to the next. We say that A < B if there exists a constant C such that A < CB. The symbol
A~ B means that A < B < A.

2. EMBEDDING Q, INTO A TENT SPACE

In this section, we describe the boundedness of the identity operator from Qx(% <x<1)
space into a tent space on the unit ball of C". For this purpose, we state some well-known
results for the proof of main results in this paper. The following estimate is well known and
useful; see, e.g., See [26, Theorem 1.12].

Lemma 2.1. Supposet > 0and c > —1. Forall z € B,

/ (1—|wP)av(w) 1
B

’l B <Z’W>’t - (1 — ‘Z‘z)l*(;fn—l

witht >c+n—+ 1.

Lemma 2.2. [24, Theorem 3.1] Suppose s,t >0 and c > —1. Forall a,z € B,
—|w|?)cav (w) - 1
|1— a,w)PF[1=(zw)|" (1=[zP)= 1= ({a,2)]*
witht >c+n+1>s.
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In [3], Du and the first author of this paper characterized the embedding of Dirichlet type
spaces 2}, into Lebesgue spaces L9 (d ) in the unit ball of C" by using Carleson blocks. Among
others, they proved the following result, which is used in this paper.

Lemma 2.3. [3, Theorem 1.1] Suppose 0 < p < g < oo, o@ > —1, and U is a positive Borel
measure on B. Suppose that p < a+n+ 1. Then the identity operator I, : Db — Li(du) is
bounded if and only if

oo,

Moreover,

q ~
1all 2 agayy = M-

Now we are in a position to state and prove our main result in this section.

Theorem 2.1. Let "n;l <x<1,2<g<o0,0<s5<g< oo, ”xq < A, and U be a positive Borel
measure. Then the identity operator l; : Qy — %qs(,u) is bounded if and only if

M, = sup H(Sa) < oo, @.1)

acB (1 — |a|) (log 1_2|a|)s_

Moreover,
q ~
HIdHQxﬁ%q’J(lJ) ~ MZ-

Proof. Suppose that I; : O, — %ﬁs(,u) is bounded. For any a € B, let

Ja(z) =log

I— <Z7a> ‘
Then || fu||o, S 1 by [16]. As a approaches S,
K (Sa) /
~ [fa(2)[*dp(z)
(1~ laD*(log 24~ (1 [a])? logl s Js, e
S Ifall

S ||fquxHIdH‘éx_>%‘1 (n)°

So (2.1) holds and M < HIdHQ ST ()

Conversely, suppose that (2.1) holds Let f € Oy and a € B. By [16, Theorem 3.8] and the
fact that O, C 4, one has

[f(@)] < 17 1lg, log (22)

2
1—la|
Thus

o RN,
= g g S g s <MW
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Since 0 < 5 < g < oo, one has
S S
sup K(Sa) < sup i‘( a) 5
(1—a|)* (log 1=)*~4

aeB (1 - |a|))L  acB
By Lemma 2.3, we have ||Id||q9 < M. Let y be fixed and large enough. As a
2

2 L1(d
n,, L)

=M, < oo,

approaches S, we obtain

1
Jri= (1—’61’)&(105’1 2‘ ‘)s s, |f(Z)—f(a)|qdli(Z)
< o e - st
<(1_|a|2)y ‘f() ( )‘(]d

B |1 — (z,a)]P+A KE)

2

< Mo(1—[al?y (f (a)? (1— z2>25“”dv<z>) -

( ~ f(a) )
y+A
—(z,a)) ©
Using (2.2), we have

b = (1= [aP15@) = 5O) £ (1 [aP) (tog >

It follows from (1.1) that
y+A
A

P Z)a q
(1—[aP)s (1 )T ™

_ /]B RfE)P1— 21— |ou(z) )™ )

q
i) 1715, S 115,

2
W@y oy

2
5 ”fHQxa

Similarly, we have

b= (1=laP)7 [ 172~ fla)

(1—(z,a)) ©

% _ %+lfn
< [ 1@ - lap U UED Yy

1= (za) v
_ f(a)P
< [0 - v
=1L,(f).

We claim I,(f) < ||f ||2Qx for a moment and prove it later. Then,

q q
J2 SMa(Ja1 + I3, +J53) S M| FII7), -
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Therefore, for any f € Q. and a € B, we obtain
1
(1= lal)*(log 27" .
< M.

f(@)1du(z) ST +92 S M1},

which implies ||1;]| 0 7 ()
Now we prove that I,(f) < || f HZQX Let 3 be large enough and
l <e&e<min{nx—n+3,nx+1}.

From [26, page 51], Holder’s inequality, and Lemma 2.1, for any f € H(B) and a € B, we see
that

£ 00u(2) — fo0u(0)
( [ R(f 0 00) (w ><1w2>ﬁdv<w>>2

1= (e, w)"*P
/m Al g U el
1= (gw)[r*P B [1—(gw)P
N [ B e o)
TR 1= {gw)["*P |

Therefore, by Fubini’s theorem and Lemma 2.2, we obtain

_ (1 —[zfym!
= oo oo

o ’Z|2>nx—n+2—£

o0o,)(w — |w|?)B+E a w
< [ mroampa - i ([ v ) avin

N/ [R(f 0.0a) (w)P(1 = [w]?)™ 3"
1= (a,w)]?

dv (z)

dv(w)

—|lw 2\2
= [ o a) PO~ W) (1~ e Py v

1= (a,w)|?
S|If 0 0a— f004(0)|[,
<IN,
The proof is complete. 0

3. EXTENDED CESARO OPERATOR T, : QO — F(p.q,s,p)

In this section, we study the boundednss, compactness, and the essential norm of the extended
Cesaro operator T, : Oy — F(p,q,s,p). We need the following equivalent characterization of
functions in F(p, q,s,1).

Proposition 3.1. Let f e H(B), 1 > 0,0 < p,s <o, and —n—1 < g < oo such that g+s > —1.
Then f € F(p,q,s,t) if and only if

Ms(f) = sup / R@)P( = 227 aV (2) < oo. G.1)

ach (1 —la])® logl
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~ Ms(f).

Proof. Let f € F(p,q,s,t) and f(0 ) =0. Foranyae B and z€ S,, 1 —|a| = |1 —(a,z)|.
2 _ (I-]aP)(1-|2*)

(0 , we have

Moreover, if f(0) =0, then ||f||p F(p.gss)

Combining with 1 — |o,(z)|* =

1 2 X
(1= Jaly(og - Z) o B@P (P
%—/ 1Rf(2)P(1—[z*)2(1 - |oalz)|*) dV (2)
(loglf\a\»
SSUP— 1Rf(2)|P(1—1z*)2(1 - |op(2)|*) dV (2).
<5 (log |b|2) /

Therefore, M3(f) < ||f||p Flpaqsi)”
Conversely, assume that (3.1) holds. Fix o« > 2. For any a € B\{0}, let

Lool<al —\a|>}.

It is easy to check that (see [2, Proposition 1] for example) (3.1) holds for S, ¢.
Suppose that a is fixed. Let k be the largest integer such that 1 —2¥~1(1 —a|) > 0

Sua={z€Bilal <l <111 -5

D= (1=2(1-la)
a a ,
jal
a®) =0, and Sy o = B. Then, for any given j = 1,2,--- k, for any z € Sa(j)’a\Sa@-,l)’a, if
7 # 0, either

]:071723'”7](_17

a¥)| < |z] < |aU V)], ‘1_<ﬂ p ’>‘<a(1—|a ) (3.2)
or
aU <zl <1, a(l—|aiD)) < ‘1 - <|§,,%>‘ <a(l—a)). (3.3)

If z satisfies (3.2) and z # 0, then |1 — (a,z)| > 1 —|z| > 1 —|aU~D| =2/71(1 —|a|). Similarly,
if z satisfies (3.3) and z # 0, then

a =z

1— ~ [{a,2)|(1—al|z])
<_7_>
lal " |z |allz|
> a2’ (1—a]) = (1 - a]) — |a|(1 - |2])
> a2/ (1—al) = (1 = a]) =2/~ (1~ |a])
227 (1 ~ fa).
So,when j=1,2,--- kandz € S ;) ,\S,;-1) o Dy using the fact that

[1—(a,2)[ >

1-aa)l < |1 2 |+ LA D <o

jallz] ~
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we have

1—la| 1

R — . 34
T (a)P ~ 21— ) od
When z € S o) , it is obvious that
1 —|a| 1
~ . 3.5
1= {adP " 1=l e
LetS (1), =@. As |a| approaches 1, by (3.4) and (3.5), we have
1
—z/ Rf@IP(1=[2*)(1 = [0a(2)|*)°aV (2)
(toefz)
1—|al?
k 1
~Y o SRRV
=0 [22(1 — |a])Js <10g - |a|2) .S
. 1
<Y [ AP 1Pav ()
320 [223(1 ~ [a])* (log 2 ) S0
. 1 : 2 !
S Z ) VR 27(1 = [a])[* (logm> M;(f)
=0 2271 = |aD) i (tog 57
t
2
= 1 (lo2 vty
S Z 2js ; M;(f)
Jj=0 (log1 ‘a‘)
SMs(f)
So, 50 S Ms(f) when f(0) = 0. The proof is complete. O

Theorem 3.1. Let g € H(B), ”%1 <x<1,2<p<oo, 0<s<oo and —n—1 < g < oo such
that g+ s > —1 and 2s > nxp. Then the operator Ty : Qx — F(p,q,s, p) is bounded if and only
ifg € F(pvq’s)' Moreover, lfg(O) =0, then HTgHQX—>F(p,q,s.,p) ~ Hg”F(p,q,s)'

Proof. Suppose that g € F(p,q,s) and g(0) = 0. By Proposition 3.1, we have

1
161~ 580 = . (@171 = )V (2) <
ac a

Let dug(z) = |Rg(2)|P(1 — |2?)4FdV(z ) By Theorem 2.1, the identity operator I; : Q) —

T8, (Lg) is bounded and ||I;]|? s T (1g) I ng . Therefore, by Proposition 3.1, for any
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f € Oy, we have

1
T.f1” A su / R(T,f)(2)|P(1— |z*)TTdV (z
|| gf“F(p’q’s’p) ae£(1_|a|)s(10gl 2| | P s, | ( gf)( )| ( | | ) ( )

=su )|P|R p 2yg-+s g
up ‘a,)( = /|f ) PIRe ()P (1 [P Hav ()
=sup 1 () Pty (2

et (1~ [a])*(log  2)7 Js,
A AN T

Thatis, [|Tgll 0, F(p.g.s.p) < ll€llF(p.g.s)-
Conversely, assume that T, : O, — F(p,q,s, p) is bounded. For any a € B, set

2
a(2) =log ——.
fa(2) S p——
Then || fallo, S 1. As |a| — 1, for any z € S,, we have |1 — (a,z)| = 1 —|a| and

N 2

2
log——— | ~log——.
1= (z,a) I—la|

By Proposition 3.1, we have

/ Re()I7(1 - [P)7 v (2)

< 9{ a p q+s
o 2y BTV )

“(1—al) (

Nl gfa”?(p,qﬁm)

p
5 H TgHQX_>F(PQ>S,p) !
and therefore, (|g|F(p.q.5) < | Tell0i=F(p.g.5,p) When g(0) = 0. The proof is complete. O

Next, we give an estimation for the essential norm of T, : Qx — F(p,q,s, p). First, we recall
some definitions. Let (X, || -||x) and (Y,]| - ||y) be Banach spaces and T : X — Y be a bounded
linear operator. The essential norm of 7 : X — Y, denoted by ||T'||. x—y, is defined by

| T||ex—y =inf{||T — K||x—y : K is compact from X to Y }.

It is easy to see that 7' : X — Y is compact if and only if ||T||o x—y = 0.
The following lemma is demonstrated in the case of the unit disk; see [21, Lemma 3.7 ].
However, it is still valid for the case of the unit ball of C". We omit the details; see [17, Lemma

3.1].

Lemma 3.1. Let X,Y be two Banach spaces of analytic functions on B. Suppose that
(1) the point evaluation functionals on Y are continuous;
(2) the closed unit ball of X is a compact subset of X in the topology of uniform convergence
on compact sets;
(3) T : X —Y is continuous when X and Y are given by the topology of uniform convergence
on compact sets.
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Then, T is a compact operator if and only if, for any bounded sequence {f,} in X such that
{fu} converges to zero uniformly on every compact set of B, the sequence {T f,} converges to
zero in the norm of Y.

Lemma 3.2. Let g € H(B), ”n;l <x<1,2<p<oo 0<s<oo,and —n—1 < q < oo such that
qg+s>—1and2s > nxp. If Rg € H”, then Ty : Oy — F(p,q,s, p) is compact.

Proof. Give {fi} C Q, such that { f;} converges to zero uniformly on compact subsets of B and
supy || fello, < 1. By Proposition 3.1, we have

1
ITefell g5,p) = S0P
) ol (1~ Ja])*(log 13

L @R (1 Py v )
Letr € (0,1). By Oy C % and (2.2), we have

1
(1~ Jal)*(log 22)7

1R gll7- 1. fell 2 \» .
Sl | (log ) (1= kP av ()
(1= Jal)*(log =)7 Js,vm \ 5 1=

Rel el (1~ lal)” [
(1~ lal)*(log 2

Ninfioa) = o T Py v ()

2 p
(log =) (1= |z)7*dlz).
1—z]

max{r|al}

When |a| < rand n > s, we have

_ 2\’
(o) S Il el (1~ ol (1og 2 ) 1= et

2 p
< IelfelLll, (rog 1 ) (1=rree

When |a| < rand n < s, we obtain
2 \* 1
(o) S Il (1 e (tog 2 ) (1t

7 \7”
S ||9{8||€1°°ka||px (log:> (1—p)atntt,

When |a| > r, since g+n+ 1 > 0, we have

2 p
o) S Il ulf, (102 ) (1= lahen

2 \? "
S 19l LAl (1og 2 ) (1=,
Since ¢g+s+1>0and g+n+ 1 >0, for any given € > 0, there exists a re € (0,1) such that

Ji(re, fi.a) < €]|Rgll= fellg,
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Meanwhile, it is easy to check that

R 1 1412 s
lre o) = oog S IR~ P av ()

IIEKgIIHN SUP-j<y, 1fi(2)IP o
(1—al)*(log = Hz)p /a(l |2]7)77%dV (z)

< IRglf- sup |fu()[P (1~ la]) !

|z[<re

< [Rgllz- sup |fi(2)I”.

\Z|§re

So, by Proposition 3.1, we have

lim [Ty fellF (p.g.s.p) = Jim sup (/i (re, fi, @) +Ja(re. fira) < €l| Rl /llg,

*acB
By the arbitrariness of &, we arrive at klim | TefillF(p.g,5,p) = O- That is to say, T, : Qr —
%OO b Sl

F(p,q,s,p) is compact. The proof is complete. 0

Theorem 3.2. Let g € H(B), ”%1<x§1,2<p<oo,()<s<oo, and —n —1 < g < o such
that q+s > —1 and 2s > nxp. If Ty : Qx — F(p,q,s,p) is bounded, then

1
: - P(1 _ 1,12\q+s
|| g”e ,Ox—F(p,q,s 7p) h‘g‘lil';p (1 . ’al)s /Sa |9{g(Z)| (1 |Z| ) dV(Z)

Proof. For any a € B, let

Ja(z) = (log 2‘ |2)_1 (mﬁ)z, ZEB.

By the proof of [17, Theorem 3.1], sup,cp || fallo, S 1 and {f,} converges to O uniformly on

compact subsets of B as |a| — 1. So, for any compact operator K : O, — F(p,q, s, p), by Lemma
3.1 and Proposition 3.1, we have

1Ty — K|[” 2 limsup || (Ty — K) ful

p q,&P)
la|—1
> 11|II|lSL}P ||Tgfa||F (P.g:5,p)
al—
1
> Jimsup KT, f) (@) (1 = [V (2

-1 (1=lal)*(log =55)7 Js.

~ nmsupm /S @)1~ ) av o)

|a|—1

Therefore,

1 A
A hmsupm/saW{g(z)’p(l—|z‘2)q+ av(z).

la]—1
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On the other hand, by Lemma 3.2, for any r € (0,1) and g € F(p,q,s), letting g,(z) = g(rz),
we have that T, : Qx — F(p,q,s, p) is compact. By Theorem 3.1 and Proposition 3.1,

| gHeQx—>F(pqsp) <limsup ||T, — Ty, ||”

r—1

~ limsup [|g — gr|7
r—1 Flpa.s)

%limsupsup / 1Re(z) — Re,r(2)|P(1 = |z[2)4TdV (z)
r—1 acB 1_| |

: = limsupsupG(g,a,r).
r—1 acB

Let & € (0,1) be given and large enough.
Case 1: |a| < §. It is easy to check that

G(g,a,r) < C(8)||1Rg —Rgrllyp —0, as r—1.

Case2: § < |a|<r. Foranyz€B,lete € (0,%) be pre-fixed,

De(z) ={CeB:[f—zf <e(l-[z)}

and xg be the characteristic function of the set E. Then, by the subharmonicity of |Rg,| and
Fubini’s theorem, we have

/s [Rer(2)[P (1~ [2*) 7" aV (2)

S [ O P 1) ([ (0= R (€15, )V @) aV Q)
Suppose Xp, (r)(&) s, (z) = 1. Then, we have z € S, and
1= 12 < (1L +e)(1 =) < (1~ Jaf?) <3(1 Ja]).

Moreover, we can choose a & > 1 such that xp, (.,)(£)xs,(z) = 1. Then

1= ()| < 3a(1 - )

when |a| > & and 6 € (0, 1) is large enough. Let a’ = (1 —3(1 |a|)) . Then we have
/s [Rg ()P (1~ |27V ()

< /S Re(L)|P(1—[¢2) ! ( La- |Z|2)q+sXDg(rz)(C)xsa(z)dV(z)) V().

For any { € Sy ¢, we see that xp, (,,)(£) = 1 implies
|Cl—rlz] <e(l—rlz]), —[C]+rlz] <e(l—rlz]),

1.€.,

16l-¢
r(1—e)

<|z|<
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Here, it is should be point out that since z € B, |(€ —¢ gy < 1. Thus

rlel = 18| S 1181, 1=rlel = 1=

and . 1
llme _r—re-fglve _1-ff C-DO-e)
r(l—eg) r(l1—eg) r(l—eg) r(l1—eg)
So, when § € Sy 4, letting 1, = 7> we have from XDy (r2)(§) = 1 that [§ —rz| < &(1 —rlz]) and
—rz 1
mengl<ing — o+ e e S e )
i @l r|Z| ol rlz]
MZ\-!CH rlz|
<(1-— .
e -
So,
L= 1P 2, ()25, (DY 2
< [0 e (n)
1—|z)7d|z do(n
~ Sl o= ¢ IS )
|C| —¢ q+s+1
<(1-— n —
st-1g (1- 555

<(1 . |C|)q+s+n+1'

By a direct calculation, we have

/S\%gr(Z)V’(l—\le)q“dV(Z)S/S [Re(O)IP (1 1C1)av (£).

d o

Therefore, letting

H(s.) = = [ 1@ (1= )7 v @),
By [2, Proposition 1], we have
1
G(g,a,r) SH(g,a)+ ;[ [Rer(@)IP(1—[z)TFav (z)
(1—lal)* Js,
SH(ga)+H(gd)S  sup  H(ga)= sup H(ga).
|a|>min{8,36 -2} la]>36-2
Case 3: |a| > max{r,8}. Obviously,

|Regr(2)| < sup{|Rg(E)] - [C] = lal}-
Let 7* = é(2]z| — 1) and € be small enough such that D¢(z) C S+ for any z € IB%\%IB%. When
|C| = |a|, we have

1 S
Re(S)F < S Aoy /DS(Q|9?g(5)I”(1—Iélz)q+ av(§)

H(g,G") _ 1

(1= gt = (1= lal) T+ 25
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So,

1 s .
Ty o B QU@ S s H( )

Therefore, letting r — 1, we have

717 S sp Hga)
SeQFPasp) ™ 362261

1
SO Ty Js, @I =DV )

As & — 1, we get the desired result. The proof is complete. 0

By Theorem 3.2, we immediately obtain the following corollary.

Corollary 3.1. Letr g € H(B), "n;l <x<1,2<p<o,0<s<oo, and —n—1 < g < o such
that q+s > —1 and 2s > nxp. If T, : Qx — F(p,q, s, p) is bounded, then Ty : O, — F(p,q,s,p)
is compact if and only if

1
limsup ———— / Re(2)|P(1— |22)7aV () = 0.
-1 (1=lal])* Js,
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