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Abstract. In this paper, a forward-backward splitting algorithm with two inertial parameters (one non-
negative and the other non-positive) extrapolation step is proposed for finding a zero point of the sum
of maximal monotone and co-coercive operators in real Hilbert spaces. One of the interesting features
of our proposed algorithm is that no online rule on the inertial parameters with the iterates is needed.
The weak convergence result of the proposed algorithm is established under some standard assumptions.
Numerical results arising from LASSO problems in compressed sensing, image processing, and SCAD
penalty problems are provided to illustrate the behavior of our proposed algorithm.
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1. INTRODUCTION

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉. The problem of finding
a zero of the sum of two monotone operators, i.e.,

Find x ∈ H such that 0 ∈ (Ax+Bx), (1.1)

where A : H→ H is the co-coercive operator and B : H→ 2H is a maximal monotone operator,
plays a vital role in the study of optimization theory. It has found various real applications in
some concrete problems, such as image processing, machine learning, linear inverse problem.
Due to its importance, several authors investigated appropriate algorithms for seeking its solu-
tions. One of the well-known algorithms for solving Problem (1.1) is the forward-backward
splitting algorithm which was introduced by Passty [23] as follows: for x0 ∈ H,

xk+1 = (I +λB)−1(I−λA)xk, k ≥ 1, (1.2)

where λ > 0. In each step of the iterates, the forward step involves A and the backward step
involves B. This algorithm includes in special cases, other important iterative processes for
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solving optimization problems, such as the gradient descent algorithm and the proximal point
algorithm. It is well known that the sequence generated by (1.2) converges weakly to some
solution of Problem (1.1). Moreover, several modifications of the forward-backward splitting
algorithm have been introduced for solving Problem (1.1); see, e.g., [11, 12, 13, 20, 29, 30, 31].

On the other hand, an inertial proximal point algorithm for finding the zero point of a maximal
monotone operator was introduced by Alvarez and Attouch [1] in 2001 as follows: for any
xk−1,xk ∈ H and parameter θk ∈ [0,1), λk > 0,

find xk+1 ∈ H : 0 ∈ λkB(xk−1)+ xk−1− xk−θk(xk− xk−1), ∀k ≥ 1,

which is equivalent to
xk+1 = JB

λk
(xk +θk(xk− xk−1)), k ≥ 1,

where JB
λk

= (I + λkB)−1, B is a maximal monotone operator, and the inertial is induced by
the term θk(xk− xk−1). The inertial extrapolation term was first introduced by Polyak [25] as a
heavy ball method and was later employed as an inertial process by Nesterov [22] for solving
minimization problems. Recently, numerous authors incorporated the inertial extrapolation step
to accelerate the convergence properties of various algorithms; see, e.g., [4, 24, 33] to mention
but a few. It turns out that the introduction of term θk and two iterates xk−1,xk considerably
improves the speed of convergence for the inertial proximal point algorithm. This can be ex-
plained from the fact that vector xk− xk−1 acts as an impulsion term and θk acts as a speed
regulator. Thus, the inertial extrapolation step can be regarded as a procedure for speeding up
the convergence properties of other associated algorithms in the literature.

Motivation and Innovation. Poon and Liang [27, 28] pointed out some limitations of some
optimization algorithms with one-step inertial extrapolation step xk + θk(xk − xk−1), like the
Douglas-Rachford splitting algorithm and ADMM with one-step inertial extrapolation step,
using this example on feasibility problem.

Example 1.1. Let T1,T2 ⊂ R2 be two subspaces such that T1∩T2 6= /0. Find x ∈ R2 such that
x ∈ T1∩T2.

It was demonstrated in [28, Section 4] that two-step inertial Douglas-Rachford splitting al-
gorithm

xk+1 = FDR(xk +θ(xk− xk−1)+δ (xk−1− xk−2))

has faster convergence than the one-step inertial Douglas-Rachford splitting algorithm

xk+1 = FDR(xk +θ(x+−xk−1))

for Example 1.1. It was also revealed from Example 1.1 that the one-step inertial Douglas-
Rachford splitting algorithm

xk+1 = FDR(xk +θ(xk− xk−1))

converges slower than the Douglas-Rachford splitting algorithm

xk+1 = FDR(xk),

where

FDR :=
1
2

(
I +(2PT1− I)(2PT2− I)

)
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is the Douglas-Rachford splitting operator. We can deduct from this example that one-step
inertial Douglas-Rachford splitting algorithm may fail to provide acceleration and in certain
cases, the use of inertia of more than two points xk and xk−1 could speed up convergence (see,
for example, [19, Chapter 4]). For example, the following two-step inertial extrapolation

wk = xk +θ(xk− xk−1)+δ (xk−1− xk−2) (1.3)

with θ ≥ 0 and δ ≤ 0 can provide acceleration as discussed in [19, Chapter 4]. The failure of
one-step inertial acceleration of ADMM was also discussed in [27, Section 3] and [21]. Polyak
[26] also pointed out that the multi-step inertial algorithms can boost the speed of optimization
algorithms even though neither the convergence nor the rate result of such multi-step inertial
algorithms is established in [26].

In most of the forward-backward splitting algorithms with more than one inertial parameter
extrapolation step existing in the literature, an online rule on the inertial parameters with the
iterates (which is a summability condition of the inertial parameters and the sequence of iter-
ates) has always been applied during numerical implementations of such algorithms (see, for
example, [19, 15, 39] and the references therein).

It is based on this observation above that we propose a forward-backward splitting algorithm
with two-step inertial extrapolation as given in (1.3) above with no online rule on the inertial
parameters and the iterative sequence. Consequently, weak convergence result is obtained. Our
results in this paper also serve as extensions of the forward-backward splitting algorithm with
one-step inertial extrapolation considered in [1, 2, 3, 4, 24, 33, 12, 13, 29, 34, 36].

Summarily, our contributions in this paper are highlighted as follows:
• We introduce a splitting algorithm which is a forward-backward splitting algorithm with

two-step inertial extrapolation and give a weak convergence analysis.
• We carefully design some computational experiments which demonstrate that our pro-

posed algorithm is efficient and performs better than some related algorithms in the
literature.

Organization. The paper is organized as follows: We first recall some basic definitions and
results in Section 2. We present our main results in Section 3, which involves weak convergence
results of our proposed Algorithm 1 with an application of our results to the proximal gradient
algorithm. Numerical experiments are found in Section 4 and we conclude with some final
remarks in Section 5, the last section.

2. PRELIMINARIES

In this section, we give some definitions and basic results that are used in our subsequent
analysis. The weak and the strong convergence of {xk} ⊂ H to x ∈ H is denoted by xk ⇀ x and
xk→ x as n→ ∞ respectively. For any x,y ∈ H, it is known that

‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2, (2.1)

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, (2.2)
and

‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2,∀α ∈ R. (2.3)
A mapping T : H→ H is called

(i) nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖ for all x,y ∈ H;
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(ii) firmly nonexpansive if ‖T x−Ty‖2 ≤ ‖x− y‖2−‖(I−T )x− (I−T )y‖ for all x,y ∈ H.
Equivalently ‖T x−Ty‖2 ≤ 〈x− y,T x−Ty〉 for all x,y ∈ H;

(iii) averaged if T can be expressed as the averaged of the identity mapping I and a non-
expansive mapping S, i.e., T = (1− β )I + βS with β ∈ (0,1). Alternatively, T is β -
averaged if

‖T x−Ty‖2 ≤ ‖x− y‖2− 1−β

β
‖(I−T )x− (I−T )y‖2,∀x,y ∈ H,β ∈ (0,1).

Next, we state some classes of functions that play an essential role in our convergence anal-
ysis.

Definition 2.1. A mapping A : H→ H is said to be

(i) L-Lipschitz continuous with Lipschitz constant L > 0 if

‖Ax−Ay‖ ≤ L‖x− y‖ ∀x,y ∈ H;

(ii) monotone if

〈Ax−Ay,x− y〉 ≥ 0 ∀x,y ∈ H;

(iii) η-strongly monotone if there exists a constant η > 0 such that

〈Ax−Ay,x− y≥ η‖x− y‖2 ∀x,y ∈ H,

(iv) α co-coercive (or α-inverse strongly monotone) if there exists a constant α > 0 such
that

〈Ax−Ay,x− y〉 ≥ α‖Ax−Ay‖2 ∀x,y ∈ H.

Definition 2.2. A multivalued mapping B : H→ 2H is said to be monotone if, for any x,y ∈ H,
〈x− y, f −g〉 ≥ 0, where f ∈ Bx and g ∈ By. The Graph of A is defined by

Gr(B) := {(x, f ) ∈ H×H : f ∈ Ax}.

When Gr(B) is not properly contained in the graph of any other monotone mapping, we say
that B is maximal. It is well-known that, for each x ∈H, and λ > 0, there is a unique z∈H such
that x ∈ (I +λB)z. The single-valued operator JB

λ
(x) is called the resolvent of B (see [6]).

3. MAIN RESULTS

In this section, we introduce a forward-backward splitting algorithm with two-step inertial
extrapolation to find the zero point of the sum of maximal monotone and co-coercive operators
in real Hilbert spaces. Consequently, we give weak convergence results for the sequence of
iterates generated by the algorithm below.

In the sequel, we assume that the following conditions are satisfied:

Assumption 3.1. (i) A : H → H is α co-coercive operator and B : H → 2H is maximal
monotone operator;

(ii) The solution set (A+B)−1(0) of Problem (1.1) is nonempty;
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Algorithm 1 Double Inertial Parameters Forward-Backward Splitting Method (DIPFBSM)

1: Choose θ ∈ [0,1),δ ≤ 0,λ ∈ (0,2α),x−1,x0,x1 ∈ H arbitrarily and set k = 1.
2: Compute {

wk = xk +θ(xk− xk−1)+δ (xk−1− xk−2)

xk+1 = JB
λ
(wk−λAwk)

3: Set k← k+1 and goto 2.

Let us assume the following conditions on the inertial factors θ and δ .

Assumption 3.2. (i) 0≤ θ < min{1
3 ,

1−β

1+β
}, β := 2α

4α−λ
;

(ii) δ ≤ 0 such that

max
{
− (1−β −θ −βθ)

1−β
,
βθ(1+θ)− (1−β )(1−θ)2

1+θ

}
< δ ;

and

βθ(1+θ)− (1−β )(1−θ)2 < (2θ −β +2)δ +(1−2β )δ 2.

Lemma 3.1. The sequence {xk} generated by Algorithm 1 is bounded when both Assumption
3.1 and Assumption 3.2 are satisfied with λ ∈ (0,2α).

Proof. Observe that by [8, Theorem 7], we have that JB
λ
(I−λA) is 2α

4α−λ
− averaged. Thus, our

proposed Algorithm 1 can be converted to a fixed point iteration of the form:{
wk = xk +θ(xk− xk−1)+δ (xk−1− xk−2)

xk+1 = Twk,
(3.1)

where T := JB
λ
(I−λA). Let x∗ ∈ F(T ) = (A+B)−1(0). Then

wk = xk +θ(xk− xk−1)+δ (xk−1− xk−2)− x∗

= (1+θ)(xk− x∗)− (θ −δ )(xk−1− x∗)−δ (xk−2− x∗).

Consequently, we have

‖wk− x∗‖2 = ‖(1+θ)(xk− x∗)− (θ −δ )(xk−1− x∗)−δ (xk−2− x∗)‖2

= (1+θ)‖xk− x∗‖2− (θ −δ )‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+(1+θ)(θ −δ )‖xk− xk−1‖2 +δ (1−θ)‖xk− xk−2‖2

−δ (θ −δ )‖xk−1− xk−2‖2. (3.2)

Observe that

2θ〈xk+1− xk,xk− xk−1〉 = 2〈θ(xk+1− xk),xk− xk−1〉
≤ 2|θ |‖xk+1− xk‖‖xk− xk−1‖
= 2θ‖xk+1− xk‖‖xk− xk−1‖

and so
−2θ〈xk+1− xk,xk− xk−1〉 ≥ −2θ‖xk+1− xk‖‖xk− xk−1‖. (3.3)



632 L.O. JOLAOSO, Y. SHEHU, J.C. YAO, R. XU

Also,

2δ 〈xk+1− xk,xk−1− xk−2〉 = 2〈δ (xk+1− xk),xk−1− xk−2〉
≤ 2|δ |‖xk+1− xk‖‖xk−1− xk−2‖

which implies that

−2δ 〈xk+1− xk,xk−1− xk−2〉 ≥ −2|δ |‖xk+1− xk‖‖xk−1− xk−2‖. (3.4)

Similarly, we note that

2δθ〈xk−1− xk,xk−1− xk−2〉 = 2〈δθ(xk−1− xk),xk−1− xk−2〉
≤ 2|δ |θ‖xk−1− xk‖‖xk−1− xk−2‖
= 2|δ |θ‖xk− xk−1‖‖xk−1− xk−2‖

and thus,

2δθ〈xk− xk−1,xk−1− xk−2〉 = −2δθ〈xk−1− xk,xk−1− xk−2〉
≥ −2|δ |θ‖xk− xk−1‖‖xk−1− xk−2‖. (3.5)

By (3.3), (3.4), and (3.5), we obtain

‖xk+1−wk‖2 = ‖xk+1− (xk +θ(xk− xk−1)+δ (xk−1− xk−2))‖2

= ‖xk+1− xk−θ(xk− xk−1)−δ (xk−1− xk−2)‖2

= ‖xk+1− xk‖2−2θ〈xk+1− xk,xk− xk−1〉
−2δ 〈xk+1− xk,xk−1− xk−2〉+θ

2‖xk− xk−1‖2

+2δθ〈xk− xk−1,xk−1− xk−2〉+δ
2‖xk−1− xk−2‖2

≥ ‖xk+1− xk‖2−2θ‖xk+1− xk‖‖xk− xk−1‖
−2|δ |‖xk+1− xk‖‖xk−1− xk−2‖+θ

2‖xk− xk−1‖2

−2|δ |θ‖xk− xk−1‖‖xk−1− xk−2‖+δ
2‖xk−1− xk−2‖2

≥ ‖xk+1− xk‖2−θ‖xk+1− xk‖2−θ‖xk− xk−1‖2

−|δ |‖xk+1− xk‖2−|δ |‖xk−1− xk−2‖2 +θ
2‖xk− xk−1‖2

−|δ |θ‖xk− xk−1‖2−|δ |θ‖xk−1− xk−2‖2 +δ
2‖xk−1− xk−2‖2

= (1−|δ |−θ)‖xk+1− xk‖2 +(θ 2−θ −|δ |θ)‖xk− xk−1‖2

+(δ 2−|δ |− |δ |θ)‖xk−1− xk−2‖2. (3.6)

Since T is β -averaged quasi-nonexpansive, we obtain

‖xk+1− x∗‖2 = ‖Twk− x∗‖2

≤ ‖wk− x∗‖2− (1−β )

β
‖wk−Twk‖2. (3.7)
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Using (3.2) and (3.6) in (3.7), we obtain

‖xk+1− x∗‖2 ≤ (1+θ)‖xk− x∗‖2− (θ −δ )‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+(1+θ)(θ −δ )‖xk− xk−1‖2 +δ (1+θ)‖xk− xk−2‖2

−δ (θ −δ )‖xk−1− xk−2‖2− (1−β )

β
(1−|δ |−θ)‖xk+1− xk‖2

−(1−β )

β
(θ 2−θ −|δ |θ)‖xk− xk−1‖2

−(1−β )

β
(δ 2−|δ |− |δ |θ)‖xk−1− xk−2‖2

= (1+θ)‖xk− x∗‖2− (θ −δ )‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+

[
(1+θ)(θ −δ )−

(
1−β

β

)
(θ 2−θ −|δ |θ)

]
‖xk− xk−1‖2

+δ (1+θ)‖xk− xk−2‖2−
(

1−β

β

)
(1−|δ |−θ)‖xk+1− xk‖2

−
[

δ (θ −δ )+

(
1−β

β

)
(δ 2−|δ |− |δ |θ)

]
‖xk−1− xk−2‖2

≤ (1+θ)‖xk− x∗‖2− (θ −δ )‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+

[
(1+θ)(θ −δ )−

(
1−β

β

)
(θ 2−θ −|δ |θ)

]
‖xk− xk−1‖2

−
(

1−β

β

)
(1−|δ |−θ)‖xk+1− xk‖2

−
[

δ (θ −δ )+

(
1−β

β

)
(δ 2−|δ |− |δ |θ)

]
‖xk−1− xk−2‖2

Therefore,

‖xk+1− x∗‖2−θ‖xk− x∗‖2−δ‖xk−1− x∗‖2

+

(
1−β

β

)
(1−|δ |−θ)‖xk+1− xk‖2

≤ ‖xk− x∗‖2−θ‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+

(
1−β

β

)
(1−|δ |−θ)‖xk− xk−1‖2

+

(
(θ −δ )(1+θ)−

(
1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

)
‖xk− xk−1‖2

−
[

δ (θ −δ )+

(
1−β

β

)
(δ 2−|δ |− |δ |θ)

]
‖xk−1− xk−2‖2. (3.8)

For each k ≥ 1, define

Γk := ‖xk− x∗‖2−θ‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+

(
1−β

β

)
(1−|δ |−θ)‖xk− xk−1‖2.
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We first show that Γk ≥ 0, ∀k ≥ 1. Note that

‖xk−1− x∗‖2 ≤ 2‖xk− xk−1‖2 +2‖xk− x∗‖2.

Hence,

Γk = ‖xk− x∗‖2−θ‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+

(
1−β

β

)
(1−|δ |−θ)‖xk− xk−1‖2

≥ ‖xk− x∗‖2−2θ‖xk− xk−1‖2−2θ‖xk− x∗‖2

−δ‖xk−2− x∗‖2 +

(
1−β

β

)
(1−|δ |−θ)‖xk− xk−1‖2

= (1−2θ)‖xk− x∗‖2 +

[(
1−β

β

)
(1−|δ |−θ)−2θ

]
‖xk− xk−1‖2

−δ‖xk−2− x∗‖2. (3.9)

By Assumption 3.2 (i) and (ii), we obtain

|δ |< 1−θ − 2θ(
1−β

β

) =
1−β −θ −βθ

1−β
.

We then obtain from (3.9) that Γk ≥ 0 for all k ≥ 0 since

−(1−β −θ −βθ)

1−β
< δ

and θ < 1
3 from Assumption 3.2 (i) and (ii). Consequently, we obtain from (3.8) that

Γk+1−Γk ≤
(
(θ −δ )(1+θ)−

(
1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

)
‖xk− xk−1‖2

−
[

δ (θ −δ )+

(
1−β

β

)
(δ 2−|δ |− |δ |θ)

]
‖xk−1− xk−2‖2

−
(
(θ −δ )(1+θ)−

(
1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

)
(‖xk−1− xk−2‖2

−‖xk− xk−1‖2)+((θ −δ )(1+θ)−
(

1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

−δ (θ −δ )−
(

1−β

β

)
(δ 2−|δ |− |δ |θ))‖xk−1− xk−2‖2

= c1

(
‖xk−1− xk−2‖2−‖xk− xk−1‖2

)
− c2‖xk−1− xk−2‖2, (3.10)

where

c1 :=−
(
(θ −δ )(1+θ)−

(
1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

)
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and

c2 :=−
(
(θ −δ )(1+θ)−

(
1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

−δ (θ −δ )−
(1−β

β

)
(δ 2−|δ |− |δ |θ)

)
.

In view of |δ |=−δ , we have that

c1 =−
(
(θ −δ )(1+θ)−

(
1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

)
> 0

which is equivalent to

θ(1+θ)−
(

1−β

β

)
(1−θ)2

(1+θ)
(

1+ 1−β

β

) < δ . (3.11)

By Assumption 3.2 (ii), we see that (3.11) holds and thus c1 > 0. Also,

c2 :=−
(
(θ −δ )(1+θ)−

(
1−β

β

)
(θ 2−2θ −|δ |θ −|δ |+1)

−δ (θ −δ )−
(1−β

β

)
(δ 2−|δ |− |δ |θ)

)
> 0 (3.12)

implies that

θ(1+θ)−
(

1−β

β

)
(1−θ)2 <

(
1+

1−β

β

)
δ (1+θ)

+δ (θ −δ )+

(
1−β

β

)
(δ 2 +δ (1+θ)). (3.13)

By Assumption 3.2 (ii), we have that inequality (3.13) is satisfied. Therefore, c2 > 0 from
(3.12). From (3.10), we obtain

Γk+1 + c1‖xk− xk−1‖2 ≤ Γk + c1‖xk−1− xk−2‖2

−c2‖xk−1− xk−2‖2. (3.14)

Letting Γ̄k := Γk + c1‖xk−1− xk−2‖2, we obtain from (3.14) that Γ̄k+1 ≤ Γ̄k, which implies that
sequence {Γ̄k} is decreasing and thus lim

k→∞
Γ̄k exists. Consequently, we have from (3.14) that

lim
k→∞

c2‖xk−1− xk−2‖2 = 0. Hence,

lim
k→∞
‖xk−1− xk−2‖= 0. (3.15)

Using (3.15) and existence of limit of {Γ̄k}, we have that

lim
k→∞

Γk := lim
k→∞

[
‖xk− x∗‖2−θ‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

+

(
1−β

β

)
(1−|δ |−θ)‖xk− xk−1‖2

]
(3.16)
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exists. Also,

‖xk+1−wk‖ = ‖xk+1− xk−θ(xk− xk−1)−δ (xk−1− xk−2)‖
≤ ‖xk+1− xk‖+θ‖xk− xk−1‖+ |δ |‖xk−1− xk−2‖→ 0, n→ ∞.

So, we obtain limk→∞ ‖wk−Twk‖= 0. Again, Note that

‖wk− xk‖ ≤ θ‖xk− xk−1‖+ |δ |‖xk−1− xk−2‖→ 0, n→ ∞.

Since limk→∞ Γk exists and limn→∞ ‖xk− xk−1‖ = 0, we have from (3.9) that {xk} is bounded.
�

Theorem 3.1. Let λ ∈ (0,2α) with both Assumption 3.1 and Assumption 3.2 fulfilled. Then
{xk} generated by Algorithm 1 converges weakly to a point in (A+B)−1(0).

Proof. (i) Using (3.15) in (3.16), we have that

lim
k→∞

[
‖xk− x∗‖2−θ‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

]
exists. By Lemma 3.1, we have that {xk} is bounded. We first show that any weak cluster point
of {xk} is in F(T ), where T is as defined in (3.1). Suppose {xnk}⊂ {xk} such that xnk ⇀ v∗ ∈H.
Since ‖wk−xk‖→ 0, k→∞, we have ynk ⇀ v∗ ∈H. By the result that ‖wk−Twk‖→ 0, n→∞,
and by the demiclosedness of T , we have that v∗ ∈ F(T ) = (A+B)−1(0).

We now prove that xk ⇀ x∗ ∈ F(T ). Let us assume that there exist {xkn} ⊂ {xk} and {xk j} ⊂
{xk} such that xkn ⇀ v∗,n→ ∞ and xk j ⇀ x∗, j→ ∞. We show that v∗ = x∗. Observe that

2〈xk,x∗− v∗〉= ‖xk− v∗‖2−‖xk− x∗‖2−‖v∗‖2 +‖x∗‖2, (3.17)

2〈−θxk−1,x∗− v∗〉 = −θ‖xk−1− v∗‖2 +θ‖xk−1− x∗‖2

+θ‖v∗‖2−θ‖x∗‖2 (3.18)

and

2〈−δxk−2,x∗− v∗〉 = −δ‖xk−2− v∗‖2 +δ‖xk−2− x∗‖2

+δ‖v∗‖2−δ‖x∗‖2. (3.19)

Addition of (3.17), (3.18), and (3.19) gives

2〈xk−θxk−1−δxk−2,x∗− v∗〉 =
(
‖xk− v∗‖2−θ‖xk−1− v∗‖2−δ‖xk−2− v∗‖2

)
−
(
‖xk− x∗‖2−θ‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

)
+(1−θ −δ )(‖x∗‖2−‖v∗‖2).

According to (3.16), we have

lim
k→∞

[
‖xk− x∗‖2−θ‖xk−1− x∗‖2−δ‖xk−2− x∗‖2

]
exists and

lim
k→∞

[
‖xk− v∗‖2−θ‖xk−1− v∗‖2−δ‖xk−2− v∗‖2

]
exists. This implies that

lim
k→∞
〈xk−θxk−1−δxk−2,x∗− v∗〉
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exists. Now,

〈v∗−θv∗−δv∗,x∗− v∗〉 = lim
n→∞
〈xkn−θxkn−1−δxkn−2,x∗− v∗〉

= lim
k→∞
〈xk−θxk−1−δxk−2,x∗− v∗〉

= lim
j→∞
〈xk j −θxk j−1−δxk j−2,x∗− v∗〉

= 〈x∗−θx∗−δx∗,x∗− v∗〉,

which yields

(1−θ −δ )‖x∗− v∗‖2 = 0.

Since δ ≤ 0 < 1− θ , we obtain that x∗ = v∗. Hence, {xk} converges weakly to a point in
F(T ) = (A+B)−1(0). �

Remark 3.1. (i) When θ = 0 = δ , Algorithm 1 reduces to the algorithms in [12, 13, 36]. When
δ = 0, Algorithm 1 reduces to the algorithms in [1, 2, 3, 4, 24, 33, 29].

(ii) The summability conditions of the inertial parameters and the sequence of iterates im-
posed in [15, Theorem 4.2 (35)], and [19, Chapter 4] are dispensed with in the convergence
analysis of Algorithm 1.

(iii) Algorithm 1 is one of the few available splitting algorithms with two-step inertial extrap-
olations to solve inclusion problem (1.1).

(iv) [18, Algorithm 1] is a special case of Algorithm 1 when A≡ 0.

Consider the convex minimization problem

min
x∈H

F(x) := f (x)+g(x), (3.20)

where

(A) f : H→ R is convex, L-smooth function (for L > 0), i.e.,

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖ ∀x,y ∈ H,

(B) g : H→ R∪{+∞} is convex and proper lower semicontinuous,
(C) the optimal points x∗ = argminxF(x) 6= /0.

A commonly used approach for solving Problem (3.20) is the proximal gradient algorithm
which can be described as: for x0 ∈ H, xk+1 = proxλg(x

k − λ∇ f (xk)) forall k ≥ 0, where
proxλg(x) = argminu∈C

{
g(x)+ 1

λ
‖x−u‖2} and λ > 0 is a stepsize. It is well known that

proxλg is firmly nonexpansive and the set of fixed points of proxλg coincides with the set of
minimizer of g (see [6]). Moreover, since ∇ f is L-Lipschitz continuous, it is 1

L co-coercive.
Also, the subdifferential of g which is defined by

∂g(x) = {u ∈ H : 〈y− x,u〉+ f (x)≤ f (u), ∀y ∈ H}

is maximally monotone (see [6, Theorem 21.2]).
Algorithm 1 reduces to the following algorithm for solving convex minimization problem

(3.20).
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Algorithm 2 Double Inertial Parameters Forward-Backward Splitting Method (DIPFBSM)

1: Choose θ ∈ [0,1),δ ≤ 0,λ ∈ (0, 2
L),x

−1,x0,x1 ∈ H arbitrarily and set k = 1.
2: Compute {

wk = xk +θ(xk− xk−1)+δ (xk−1− xk−2)

xk+1 = proxλg(w
k−λ∇ f (wk))

3: Set k← k+1 and goto 2.

Corollary 3.1. Let f : H→ R be a convex and L-smooth function with L > 0 and g : H→ R∪
{+∞} be a convex and proper lower semicontinuous. Suppose the solution set Argmin(F) 6= /0.
Let {xk} be a sequence generated by Algorithm 2. Assume that Assumption 3.2 is satisfied.
Then sequence {xk} converges weakly to a point in Argmin(F).

4. NUMERICAL SIMULATIONS

In this section, we implement Algorithm 1 on MATLAB and run some numerical experiments
using Least Absolute Selection and Shrinkage Operator (LASSO) [35] and Smoothly Clipped
Absolute Deviation Problem (SCAD) [16] penalty problem. We compare the performance of
the proposed Algorithm 1 with other related algorithms which include FISTA in [7], FISTA-CD
in [10], cGIGPM in [38], and PGM in [37] . All codes were run on a PC with specifications:
Intel(R) Core (TM) i7-9700 CPU @ 3.00 GHz 3.00 GHz, 8.0 GB installed RAM with MATLAB
R2019b 9.7.0.1190202.

4.1. Application to LASSO Problem in Compressed Sensing.

Example 4.1. Given matrix A ∈ RM×N , a vector b ∈ RM, λ a positive scalar, the l1-norm regu-
larized least squares model can be expressed as

min
x∈RN

{
1
2
||Ax−b||22 +λ ||x||1

}
. (4.1)

The l1 regularization is a popular concept and has gained a lot of popularization in different
areas. For example, when the least-squares problem is posed with l1 penalty, this is called
LASSO, and Basis Pursuit Denoising [14].

Compressed sensing is very important when it comes to the problem of efficiently acquiring
and reconstructing a signal. This signal processing technique has to do with solving under-
determined linear systems Ax = b (linear equations where N � M). In this case, where the
number of unknowns is greater than the number of equations, the linear system generates many
solutions or could result in no solution. The approach to solving such a system is known as
the linear least-squares algorithm (finding the minimum l2-norm solution). The above l1-norm
regularized least squares model (4.1) can be computed to recover x when x is sparse which is
the case in most applications. The model given in (4.1) is most often referred to as LASSO.
Standard general algorithms such as an Interior Point Method (IPM), [20], can be used to solve
the LASSO problem by reformulating the problem as a second-order cone programming. How-
ever, the computational complexity of such traditional methods is too high to handle large-scale
data encountered in many real-life applications.
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The LASSO problem is a special case of (3.20) where

f (x) =
1
2
‖Ax−b‖2, g(x) = λ‖x‖1.

Its gradient ∇ f = A∗Ax−A∗b is Lipschitz continuous with Lipschitz constant L( f ) = ‖A∗A‖.
The proximal map with g(x) = λ ||x||1 is given as

proxg(x) = argmin
u

λ ||x||1 +
1
2
||u− x||22,

which is separable in indices. Thus, for x ∈ RN ,

proxg(x) = proxλ ||.||1(x)

= (α1, · · · ,αN),

where

αk = sgn(xk)max{|xk|−λ ,0} for k = 1,2, . . . ,N.

We begin by testing our proposed Algorithm 1 with a real signal that has been compressed
with the ultimate goal of reconstructing a length-N sparse signal from M observation, with
M� N. We cut the real signal given in [32] to the same length of the simulated one and use
data from the Case Western Reserve University in [32], where a comprehensive study of the
signals is done.

We test the Algorithm 1 (DIPFBSM) with FISTA in [7], FISTA-CD in [10] and cGIGPM in
[38]. We choose N = 212 and M = 210 for the experiment. The vector b is randomly generated
by the normal distribution with SNR = 40, A is generated via the normal distribution with
mean zero and variance one, and x ∈ RN is generated by a uniform distribution in [-2,2]. We
set L = ‖AT A‖, and use the following parameters for the algorithms: we take θ = 0.49,δ =
−0.5,λ = 1.5L for Algorithm 1 (DIPFBSM); λ = 1/L for FISTA; λ = 1/L,a = 3 for FISTA-
CD; and α = 0.35,β = 0.5L,λ0 = 0.005,λ = min{λ0,min{α/β ,(2−2α−ε)/(1−β )}/L} for
cGIGPM. We studied the efficiency of the algorithms using the following stopping criterion

MSE =
1
N
‖xk− x∗‖< 10−3,

where xk is an estimated signal of x∗. Figure 4.1 demonstrates the graphs of objective function
value against the number of iterations and CPU time by each algorithm and Figure 4.2 contains
the reconstructed signal by each algorithm.

From the numerical results in Figure 4.1 and Figure 4.2, we see that all the tested algo-
rithms are able to reconstruct the noise signal efficiently. Moreover, Algorithm 1 (DIPFBSM)
possesses the lowest execution time of other tested algorithms in this case. Also, Algorithm
1 (DIPFBSM) has lower MSE values than FISTA, FISTA-CD, and cGIGPM. Thus Algorithm
1 (DIPFBSM) is more efficient than FISTA, FISTA-CD, and cGIGPM in reconstructing the
signal.
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FIGURE 4.1. Example 4.1, graphs of objective function values against CPU
time in seconds (left) for the signal reconstruction.

FIGURE 4.2. Example 4.1, From the top, Original signal, observed data, and
recovered signal by DIPFBSM, FISTA, FISTA-CD, and cGIGPM when

N = 4096 and M = 1024.

4.2. Application to image processing.

Example 4.2. Consider the application of Algorithm 1 to image restoration problem and com-
pare its efficiency with FISTA in [7], FISTA-CD in [10], and cGIGPM in [38]. The image
restoration problem is formulated by the following model z = Ax+ b, where x is the original
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image, z is the degraded image, A is a blurring matrix, and b is the noise. One of the efficient al-
gorithms for recovering the original image is the l1-norm regularized least square model (4.1).
In this case, A represents the blurring operator, x is the original image and b is the observed
image. Our aim here is to recover the original image x given the data of the blurred image z.
We consider the greyscale image of M pixels wide and N pixel height, each value is known to
be in the range [0,255]. Let D = M×N. The quality of the restored image is measured by the
signal-to-noise ratio defined as

SNR = 20× log10

(
‖x‖2

‖x− x∗‖2

)
,

where x is the original image and x∗ is the restored image. Typically, the larger the SNR,
the better the quality of the restored image and this leads to the curves in Figure 6. In our
experiments, we used the grey test image Pout (291×240), Cameraman (256×256) and Tyre
(205× 232), while each test image is degraded by Gaussian 7× 7 blur kernel with standard
deviation 4. We also used similar parameters as in Example 4.1 for the test algorithms with the
initial values taken as x0 = 0 ∈ RD and x1 = 1 ∈ RD. Figure 4.3-4.5 show the restored images
by the algorithms using the test images Pout.tif, cameraman.tif and tyre.tif. Figure 4.6 shows
the graphs of SNR values against the number of iterations for each test image. In Table 1, we
report the time (in seconds) and SNR values for each algorithm in the experiments.

From the computational results, we see that Algorithm 1 (DIPFBSM) performs more effi-
ciently in terms of SNR values and CPU time for reconstructing the degraded images than other
tested algorithms.

FIGURE 4.3. Example 4.2, Top demonstrates original image of Cameraman
(left) and degraded image of Cameraman (right); Bottom shows recovered

image by IRFBSM, FISTA, FISTA-CD and cGIGPM.
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FIGURE 4.4. Example 4.2, Top shows original image of Tyre (left) and
degraded image of Tyre (right); Bottom shows recovered image by DIPFBSM,

FISTA, FISTA-CD and cGIGPM.

FIGURE 4.5. Example 4.2, Top shows original image of Coins (left) and
degraded image of Coins (right); Bottom shows recovered image by DIPFBSM,

FISTA, FISTA-CD and cGIGPM.
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FIGURE 4.6. Example 4.2, Graphs of SNR value against number of iterations
for Cameraman (left), Tyre (middle) and Coins (right) test images.
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TABLE 1. Computational result for Example 4.2

Algorithms Cameraman Tyre Coins
Time (secs) SNR Time (secs) SNR Time(secs) SNR

DIPFBSM 20.6072 34.5685 9.2108 39.2236 11.9821 32.7439
FISTA 26.9805 34.2205 10.8231 38.1461 14.92222 32.1087
FISTA-CD 26.3214 34.5441 12.3832 37.5964 17.6809 32.2273
cGIGPM 26.1604 34.7533 12.6887 37.2201 17.7146 32.4618

4.3. Application to SCAD penalty problem. Next, we apply our result to solve the SCAD
penalty problem arising in statistical learning.

Example 4.3. The SCAD penalty problem can be formulated as follows (see, e.g. [16]):

min
x∈RN

1
2
‖Ax−b‖2

2 +
N

∑
i=1

gκ(|xi|), (4.2)

where A ∈ RM×N , b ∈ RM, and SCAD penalty function gκ(·) is defined by

gκ(θ) =


κ|θ | if |θ | ≤ κ,

−θ 2 +2aκ|θ |−κ2

2(a−1)
, if κ < |θ | ≤ cκ,

(a+1)κ2

2
, if |θ |> cκ,

(4.3)

where a > 2 and κ > 0 correspond to the knots of the quadratic spline functions.
Note that gκ(·)+ ω

2 | · |
2 is convex in R if ω ≥ 1

a−1 (see, [17, Theorem 3.1]). Then, SCAD
penalty problem (4.2) can be reformulated as the following:

min
x∈RN

F(x) := f (x)+g(x),

where

f (x) =
1
2
‖Ax−b‖2

2−
1

2(a−1)
‖x‖2 and g(x) =

N

∑
i=1

gκ(|xi|)+
1

2(a−1)
‖x‖2.

In our experiment, we compare Algorithm 1 (DIPFBSM) with the FISTA in [7], FISTA-CD
in [10], PGM in [37] and cGIPGM in [38]. The matrix A is normally distributed with zero
mean and variance one, x is a random sparse vector with density 0.01 and b is the noise vec-
tor. Following [38], the parameters a and κ are chosen as a = 3.7 and κ = 0.1 in our exper-
iments. We fixed the maximum iteration as 100 and test the algorithms for different values
of M and N. We take L = max(eig(AT A)) and choose the following parameters for each algo-
rithm: θ = 0.4,δ =−0.28,λ = 1.3L for DIPFBSM; λ = 1

1.5L for FISTA and PGM; a = 5,λ =
1

1.5L for FISTA-CD; βk = 0.35
√

L/(L+ l) and λk =
1
L for PGM, where l = |min(eig(AT A))|;

βk = β = 0.7L
L+l , αk = 2β

1+β
and λk = min{α/β ,(1.99− 2α)/(1−β )}/L for cGIGPM, where

l = |min(eig(AT A))|. Each algorithm is initialized at x0 = x1 = 0 ∈ RN and we considered the
values of M and N given as follows:
Case I: M = 100,N = 300;
Case II: M = 200,N = 500;
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Case III: M = 500,N = 1000.
Figure 4.7 shows the graphs of objective function value against the number of iterations in each
case. In Table 2, we record the objective function value at the last iteration and CPU time taken
by each algorithm for each case. The plot trend of Algorithm 1 (DIPFBSM) in Figure 4.7 shows
that DIPFBSM is stable which is a desirable property and in the application, it shows that DIPF-
BSM has few errors affecting the execution of DIPFBSM during numerical implementations.

The curves and fluctuations in Figure 7 are due to the fact that our proposed Algorithm 1
converge faster at the beginning of the iterations and then tail off as iterations progress. This
scenario suggests that we consider the ”restarting version” of our proposed Algorithm 1 as part
of our future project.

The computational results show that Algorithm 1 (DIPFBSM) is competitive with the algo-
rithms in [7, 10, 37, 38] in the cases considered.

0 20 40 60 80 100

Iteration number

10
-1

10
0

10
1

10
2

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 (

lo
g

) DIPFBSM

FISTA

FISTA-CD

PGM

cGIGPM

0 20 40 60 80 100

Iteration number

10
-1

10
0

10
1

10
2

10
3

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 (

lo
g

) DIPFBSM

FISTA

FISTA-CD

PGM

cGIGPM

0 20 40 60 80 100

Iteration number

10
-1

10
0

10
1

10
2

10
3

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 (

lo
g

) DIPFBSM

FISTA

FISTA-CD

PGM

cGIGPM

FIGURE 4.7. Example 4.3: Graphs of objective function values (in log) against
number of iterations for Case I (left); Case II (middle) and Case III (right).

TABLE 2. Computational result for Example 4.3

DIPFBSM FISTA FISTA-CD PGM cGIGPM

Case I Obj. 0.3391 1.1347 0.3991 0.5705 0.5315
Time (s) 0.5453 0.9685 0.5581 0.8076 0.7951

Case II Obj. 0.6165 2.0955 0.6659 1.085 0.6670
Time (s) 1.6735 1.9163 1.9415 1.7714 1.7465

Case III Obj. 1.0941 3.7771 1.2754 1.9120 1.9688
Time (s) 5.1452 5.9780 5.374 5.4499 5.3389

5. CONCLUSION

This paper introduces a forward-backward splitting algorithm with two inertial parameters
(one non-negative and the other non-positive) extrapolation step and weak convergence results
obtained. Several inertial type forward-backward algorithms in the literature serve as special
cases of this algorithm. Numerical implementations arising from LASSO problems in com-
pressed sensing, application to image processing and SCAD penalty problems are given and
comparisons with popular algorithms in [7, 10, 37, 38] are also given. The numerical tests
demonstrate that our proposed algorithms are promising and competitive. Part of our future
considerations is to study the error estimates of our proposed algorithms.
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