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Abstract. Beamforming is one of the most important techniques to enhance the quality of signal in
array sensor signal processing, and the performance of a beamformer is usually related to the design
of array configuration and beamformer weight. Recently, it was realized that the sparsity of the filter
coefficients can reduce the cost of signal acquisition and communication, and as a consequence, the sparse
broadband beamformer design attracts more and more attentions. In this paper, we first propose a proximal
sparse beamformer design model which obtains the sparse and robust filter coefficients through solving a
composite optimization problem. The objective function of the model is the sum of a least squares term, a
proximal term, and an `1-regularization term. The least squares term reflects the data fidelity; the proximal
term, whose center is predetermined via a simple least squares, enhances the robustness; while the `1 term
ensures the sparsity of the solution. This model not only maintains the authenticity of the least squares
solution, but also ensures the sparsity of the filter coefficients. A significant feature of the model is that
we use ‘partial’ data to obtain the least squares solution and use another ‘partial’ data to construct the data
fidelity term, which can evidently decrease the computational cost. For solving the composite optimization
problem, we tailor several popular algorithms, such as the alternating direction method of multipliers,
the forward-backward splitting method, and the Douglas-Rachford splitting method. Numerical results
observably exhibit the improvements of the proposed approach over existing works in both effectiveness
and efficiencies.
Keywords. Alternating direction method of multipliers; Douglas-Rachford splitting method; Filter
coefficients; Foward-backward splitting method; Sparse beamformer.

1. INTRODUCTION

Sensor array beamforming is a powerful technique to extract the signal of interest (SOI) in the
desired direction while suppressing the interferences and noise in other directions. It is widely
used in radar, sonar, wireless communications, satellite navigation, radio astronomy, speech
enhancement, and other areas [1, 2]. The classic methods of beamformer design include the
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minimum variance distortionless response (MVDR) beamformer design, the linearly constrained
minimum variance (LCMV) beamformer design [3, 4], and the generalized sidelobe canceller
(GSC) [5, 6]. Generally, the performance of beamforming is greatly affected by both the filter
coefficients and the array configuration [7, 8, 9, 10]. Recently, the sparsity of array configuration
attracts more and more attentions, and various strategies have been developed to devise sparse
arrays for different tasks including direction finding, adaptive beamforming, and beampattern
synthesis [11, 12, 13, 14]. With such a sparse array configuration, the beamformer can achieve
increased array aperture and degrees of freedom while reducing the computational complexity
compared to conventional uniform arrays [15, 16].

On the other hand, sparsity also plays an important role in filter design. It was realized that
higher order sparse filter has the ability to improve the beamforming performance over lower
order filters, offering considerable savings in hardware and data storage [17, 18]. A series of
studies on the sparse filter design were investigated by numerous researchers in the past decades.
For instance, the heuristic successive thinning and the `1-norm approximation approaches for
sparse filter design in [19]; The branch-and-bound algorithm for quadratically-constrained sparse
filter design in [20]; The joint sparsity and order optimization problems for sparse finite-duration
impulse response (FIR) filter design in [21, 22, 23].

The mathematical model related to the sparse filter design is aimed essentially to minimize the
`0-norm of filter coefficients, which is hard to handle both from the theoretical and the numerical
points of view. One of the most common techniques to deal with such problems is the `p-norm
relaxation, which was proved to be equivalent to the original problem under certain conditions
[24, 25, 26]. In particular, the `1-norm minimization problem has attracted wide interest in the
field of optimization [27, 28, 29, 30]. The advantage of `1-norm sparsity term is that it is convex,
which is important from an optimization point of view; essentially, convexity, and non-convexity
are the watersheds in optimization [31]. Hence in our model, we propose to use the `1-norm to
enhance the sparsity of the solution.

Theoretically and intuitively, the beamformer design can be completed via solving a system of
linear equations whose coefficient is a tall matrix, i.e., its number of rows is much larger than
that of columns. However, due to the noise in data acquisition, the least-squares solution of the
linear system is usually far away from the desired one. Specially, the solution loses its sparsity.
At the same time, the system is usually ill-conditioned, making the numerical approach unstable.

In this paper, we propose a proximal sparse beamformer design model. To improve the
sparsity, we combine the `1 term with the data fidelity term. Moreover, we also introduce a
proximal term to enhance the stability of the model. Hence, the proposed model is a composite
optimization problem whose objective function is the sum of a data fidelity term (least squares
term), a proximal term whose center is the solution of a linear system from partial data and an
`1-regularization term. A significant feature of the model is that we use ‘partial’ data to obtain
the least squares solution and use another ‘partial’ data to construct the data fidelity term, which
can evidently decrease the computational cost. The idea is borrowed from cross validation in
modeling and other fields [32, 33], while here the main purpose is to reduce the computational
burden via utilizing the data structure. That is, since the dimension of data collected by the
signal is much larger than the number of parameters, the least squares solution of ‘partial’ data is
not too far away from that of the whole data set. Moreover, using ‘partial’ data can also avoid
over-fitting of the solution.
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The structure of the composite optimization problem is very suitable for the alternating
direction method of multipliers (ADMM). ADMM is an augmented Lagrangian based method,
which generates the iterations via minimizing one block variable while the other block variables
are fixed, i.e., we can understand the ADMM as a Gauss-Seidel implementation for solving linear
equality constrained optimization problems with separable objective functions approximately
with a single iteration [34]. Meanwhile, it can also be understood as the Douglas-Rachford
splitting method applying to the dual problem [35]. One of the main reasons that ADMM
performs reasonably well in dealing with the modern application problems arising from big
data and artificial intelligence is that the subproblems in ADMM is very easy to solve and
even possess closed-form solution. With the rapid development of ADMM, there have been
several survey papers [34, 36, 37, 38] and we refer the interested readers to these papers and the
references therein. In this paper, by introducing some auxiliary variables, we first reformulate
the model into a separable optimization problem with linear equality constraints, which falls
into the framework that is suitable for ADMM. The two subproblems are very simple. The first
subproblem is the soft-thresholding, which just cost O(n) flops, where n is the dimension of the
first block variable. The second subproblem is a least-squares problem with a positive definite
coefficient matrix, which is also low-cost, since the matrix possesses good structures.

ADMM belongs to the operator splitting algorithms. Similar algorithms include the Douglas-
Rachform splitting methods [39, 40, 41] and forward-backward splitting methods [42]. We
numerically compare the performance of these methods.

The rest of this paper is organized as follows. In Section 2, we formulate the mathematical
model for the beamformer design problem and convert it into a linear equation system. In Section
3, we propose the proximal optimization problem on the design of sparse beamformer, as well
as some algorithms. In Section 4, several numerical experiments are presented to verify the
performance of the proximal sparse beamformer design methods. Section 5 ends the paper by
giving some conclusions.

2. BEAMFORMER DESIGN PROBLEM

We use i to represent the imaginary unit, i.e., i =
√
−1. Frequency is denoted as f and

sampling frequency is denoted as fs. Consider an M-element microphone with K-tap FIR filter.
The filter coefficients are denoted as w = [wT

1 ,w
T
2 , · · · ,wT

M]T and w j = [w j(1),w j(2), · · · ,w j(K)]
represents the coefficient of the j-th filter. Denote by H j(rrr, f ) the transfer function from space
point rrr = {x,y,z} to the j-th microphone element. The beamformer response can be expressed as

G(rrr, f ) =
M

∑
j=1

Wj(w, f )H j(rrr, f ), (2.1)

where Wj(w, f ) = wT
j d( f ), j = 1,2, · · · ,M and d( f ) = [1,e

−2πi f
fs , · · · ,e

−2πi f (K−1)
fs ]. Let Gd(rrr, f )

denote the desired response. The beamforming target is to find a group of filter coefficients w,
such that the beamformer response meets the desired response, i.e.,

M

∑
j=1

Wj(w, f )H j(rrr, f )−Gd(rrr, f ) = 0, ∀ (rrr, f ) ∈Ω, (2.2)

where Ω is the space-frequency domain of interest.
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Since the space-frequency region Ω is continuous, (2.2) is semi-infinite. To solve it numerically,
the discretization methods and reduction based approaches are usually introduced to transform
it into the finite numerical problem approximately [43]. We approximate the space-frequency
domain Ω by ΩN , which is a multi-dimensional grid region with a uniform grid containing N
mesh points in each dimension. For each of (rrr, f ) ∈ΩN , we rearrange the beamformer response
(2.1) as

G(rrr, f ) =
M

∑
j=1

Wj(w, f )H j(rrr, f ) =
M

∑
j=1

(H j(rrr, f )d( f ))T w j = a(rrr, f )T w,

where

a(rrr, f ) = [H1(rrr, f )d( f )T ,H2(rrr, f )d( f )T , . . . ,HM(rrr, f )d( f )T ]T ∈ RMK.

By expanding the complex vectors

a(rrr, f ) = a1(rrr, f )+ ia2(rrr, f ),
Gd(rrr, f ) = Gd1(rrr, f )+ iGd2(rrr, f ),

where a1(rrr, f ), a2(rrr, f ), Gd1(rrr, f ) and Gd2(rrr, f ) are the real and imaginary parts of a(rrr, f ) and
Gd(rrr, f ), respectively, beamformer design problem (2.2) can be divided into{

a1(rrr, f )T w−Gd1(rrr, f ) = 0,
a2(rrr, f )T w−Gd2(rrr, f ) = 0,

for all (rrr, f ) ∈ΩN .

In matrix formulation, the above beamformer design problem will be written as a system of
linear equations

Aw−b = 0, (2.3)

where the composite matrix

A =



a1(rrr1, f1)
T

a2(rrr1, f1)
T

a1(rrr2, f2)
T

a2(rrr2, f2)
T

...
a1(rrrN , fN)

T

a2(rrrN , fN)
T


∈ R2N×MK,

and vector

b = [Gd1(rrr1, f1), Gd2(rrr1, f1), Gd1(rrr2, f2), Gd2(rrr2, f2), . . . , Gd1(rrrN , fN), Gd2(rrrN , fN)]
T ∈ R2N .

In the following, for notation simplicity, we let m = 2N and n = MK. Usually, m� n. Hence,
the matrix A in (2.3) is a tall matrix, and we assume that it has full column rank. Generally, (2.3)
does not have an exact solution one resorts to the least squares solution w∗, i.e.,

w∗ = (AT A)−1AT b,

which is the solution to the optimization problem

min
w∈Rn

1
2
‖Aw−b‖2. (2.4)
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The least squares solution is not sparse and this complicates the filter design. To obtain a sparse
solution, another term is introduced into the model, resulting to the composite optimization
problem

min
w∈Rn

1
2
‖Aw−b‖2 + γ‖w‖1, (2.5)

where ‖w‖1 =
n
∑

i=1
|wi|. The beamformer design with the sparse FIR filters can simplify the

arithmetic operations and speed up the time of output. [43] also proposed `2− `p(0 < p < 1)
minimization model

min
w∈Rn

1
2
‖Aw−b‖2 + γ‖w‖p, (2.6)

which was solved by the smoothing Barzilai-Borwein step gradient (SBBG) method. However,
this model is a nonconvex optimization problem. Compared with convex optimization algorithms,
nonconvex optimization algorithms lack convergence theoretical properties and robustness.

3. PROXIMAL SPARSE BEAMFORMER DESIGN

Though the solution of (2.5) is sparse, it may be not stable, due to the noise in getting the
elements data of A and b, and the ill-condition of the matrix A. Moreover, since m� n, some
rows are ‘redundant’. Hence, we propose to separate the data into two groups, i.e., we draw
some rows of A to form A1 ∈ Rm1×n and some rows to form A2 ∈ Rm2×n, where m1 ≥ n, m2 ≥ n,
and m1 +m2 ≥ m. The first group is used to ‘predict’ a proximal center which will be used later
to enhance the stability of the model, denoted as

w = (AT
1 A1)

−1AT
1 b, (3.1)

i.e., the solution of the ‘partial’ least squares

min
w∈Rn

1
2
‖A1w−b‖2.

Combining the proximal term to sparse model (2.5), we have the whole model

min
w∈Rn

F(w) =
1
2
‖A2w−b‖2 +

α

2
‖w−w‖2 + γ‖w‖1, (3.2)

where α > 0 and γ > 0 are parameters, balancing the three terms. Model (3.2) is a composite
optimization problem, whose objective function consists of three terms. The first one is a least
squares term with ‘partial’ data, which reflects the data fidelity. The second term is a proximal
term, which is used to enhance the stability of the model. The last term is the `1 term, which
is used to improve the sparsity of the solution. Note also that the objective function is strongly
convex optimization, and many algorithms can be used to solve it. In the following, we introduce
three splitting type algorithms which are favorable for large-scale problems.

The first algorithm is the alternating direction method of multiplier, known as ADMM, which
is efficient for solving the linearly constrained convex optimization problem with two blocks of
variables [36]. To make the model (3.2) suitable for using ADMM, we first reformulate it into

min
w,x∈Rn

f (w)+g(x)

s.t. x = w,
(3.3)
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where f (w) = 1
2‖A2w−b‖2 and g(x) = α

2 ‖x−w‖2+γ‖x‖1. The augmented Lagrangian function
of (3.3) is

Lβ (x,w,λ ) = γ‖x‖1 +
α

2 ‖x−w‖2−λ T (x−w)+
β

2
‖x−w‖2 +

1
2
‖A2w−b‖2,

and the iterative scheme of ADMM is
xk+1 = argmin

x∈Rn
Lβ (x,wk,λ k),

wk+1 = argmin
w∈Rn

Lβ (xk+1,w,λ k),

λ k+1 = λ k−β (xk+1−wk+1).

(3.4)

The x-subproblem in (3.4) is just the soft-thresholding operation S γ

α+β

, which is defined as

S γ

α+β

(x) =


x− γ

α +β
, x > γ

α+β
;

0, |x| ≤ γ

α+β
;

x+
γ

α +β
, x <− γ

α+β
.

The w-subproblem in (3.4) is the least squares

wk+1 = argmin
w∈Rn

1
2
‖A2w−b‖2 +

β

2
‖w− xk+1‖2 +wT

λ
k,

or equivalently,
wk+1 = (β I +AT

2 A2)
−1(−λ

k +βxk+1 +AT
2 b),

which is well-defined since the matrix β I +AT
2 A2 is positive definite. When the matrix A2 has

some properties, e.g., it is sparse or circulated, this problem can be settled down at low cost. In a
word, the explicit iterative scheme of ADMM for solving (3.2) is

xk+1 = S γ

α+β

(
β

α +β
wk +

1
α +β

λ
k +

α

α +β
w);

wk+1 = (β I +AT
2 A2)

−1(−λ
k +βxk+1 +AT

2 b);

λ
k+1 = λ

k−β (xk+1−wk+1),

(3.5)

and we describe the detailed steps in Algorithm 3.1.
The second splitting type method we introduced here, the forward-backward splitting algorithm

(FBSM) [40, 42], can also be applied for solving (3.2). Let

g(w) = γ‖w‖1,

and

f (w) =
1
2
‖A2w−b‖2 +

α

2
‖w−w‖2.

FBSM generates the iterative sequence via the recursion

wk+1 = (I + ck∂g)−1(I− ck∇ f )(wk),

where I is identity operator and ck is a constant. We describe the details of FBSM in Algorithm
3.2.
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Algorithm 3.1 Alternating Direction Method of Multipliers

1: Give matrix A ∈ Rm×n, vector b, and maximum iterations MaxIter. Given parameters
β ,γ,α ≥ 0, absolute error tolerance AbsTOL, and relative error tolerance RelTOL. Form A1
and A2 from A, and let (w0,λ 0) be any initial point and set k := 0.

2: Compute w = (AT
1 A1)

−1AT
1 b.

3: while k < MaxIter do
4: Compute

xk+1 = S γ

α+β

(
β

α +β
wk +

1
α +β

λ
k +

α

α +β
w),

where S is the soft thresholding operator.
5: Compute

wk+1 = (β I +AT
2 A2)

−1(−λ
k +βxk+1 +AT

2 b).
6: Compute

λ
k+1 = λ

k−β (xk+1−wk+1).

7: Compute pk+1 as the primal residual and dk+1 as the dual residual at iteration k+1

pk+1 = xk+1−wk+1,
dk+1 =−β (wk+1−wk).

8: Compute epsP as primal feasibility tolerance and epsD as dual feasibility tolerance

epsP =
√

m AbsTOL
+max{‖xk+1‖,‖wk+1‖,‖b‖} RelTOL,

epsD =
√

n AbsTOL+‖λ k+1‖ RelTOL.

9: if ‖pk+1‖< epsP and ‖dk+1‖< epsD then STOP and RETURN wk+1.
10: end if
11: Set k := k+1.
12: end while

Algorithm 3.2 Forward-backward Splitting Method

1: Give matrix A∈Rm×n, vector b, and maximum iterations MaxIter. Give parameters β ,γ,α ≥
0, and error tolerance TOL. Form A1 and A2 from A, and let w0 be any initial point and set
k := 0.

2: Compute w = (AT
1 A1)

−1AT
1 b

3: while k < MaxIter do
4: Compute

u = wk− ckAT
2 (A2wk−b)−αck(wk−w),

wk+1 = Sγck(u),

where S is a soft thresholding operator.
5: if ‖wk+1−wk‖< TOL then STOP and RETURN wk+1.
6: end if
7: Set k := k+1.
8: end while
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The Peaceman-Rachford splitting algorithm (PRSM) [40, 44] is also an effective algorithm
for the minimization of the sum of two functions and the iterative scheme is wk+1 = Pwk, where

P = (2(I + ck∇ f )−1− I)(2(I + ck∂g)−1− I).

Note that, without further assumptions, P is only guaranteed to be nonexpansive. So the iteration
of PRSM is not necessarily convergent. Although PRSM is usually more efficient, we introduce
the Douglas-Rachford splitting algorithm (DRSM) [39, 40] here as the third splitting type method.
DRSM generates the iterative sequence via wk+1 = Qwk, where

Q = (I + ck∇ f )−1 (2(I + ck∂g)−1− I)+
(
I− (I + ck∂g)−1) .

Algorithm 3.3 Douglas-Rachford Splitting Method

1: Give matrix A ∈ Rm×n, vector b, and maximum iterations MaxIter, and give parameters
β ,γ,α ≥ 0. Form A1 and A2 from A and let w0 be any initial point and set k := 0.

2: Compute w = (AT
1 A1)

−1AT
1 b.

3: while k < MaxIter do
4: Compute

uk = Sckγ

(
wk
)

where S is a soft thresholding operator.
5: if 0 ∈ ∇ f (uk)+∂g(uk) then STOP and RETURN uk.
6: end if
7: Compute

vk =
(
ckAT

2 A2 + ckαI + I
)−1

pk,

where
pk = ckAT

2 b+ ckαw+2uk−wk.

8: Compute
wk+1 = vk +wk−uk,

and set k := k+1.
9: end while

The convergence of Algorithm 3.2 and Algorithm 3.3 are summarized in Appendix B.
Note that all these splitting algorithms can make full use of the structure of the problem (3.2).

Algorithm 3.1, Algorithm 3.2 and Algorithm 3.3 are certainly the most well-known splitting
algorithms and the splitting procedures of these two methods are interesting [40].

4. NUMERICAL EXPERIMENTS

In this section, the microphone array system setting is similar to the setting in [43].

4.1. Microphone array system. The passband region is defined as

ΩP = {(rrr, f )|x = 1m, |y−4| ≤ 0.4m,z = 1.5m,0.5kHz≤ f ≤ 2.0kHz}.
We define the stopband regions as ΩS = Ω1∪Ω2∪Ω3, where

Ω1 = {(rrr, f )|x = 1m, |y−4| ≤ 0.4m,z = 1.5m,2.5kHz≤ f ≤ 4.0kHz},
Ω2 = {(rrr, f )|x = 1m,1.5m≤ |y−4| ≤ 3m,z = 1.5m,0.5kHz≤ f ≤ 2.0kHz},
Ω3 = {(rrr, f )|x = 1m,1.5m≤ |y−4| ≤ 3m,z = 1.5m,2.5kHz≤ f ≤ 4.0kHz}.
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In the passband region ΩP, we define the desired response function as

Gd(r, f ) = exp
{
−2πi f

(
‖r− r0‖

c
+

K−1
2 fs

)}
,

where r0 is the space point of the microphone and let fs = 8000Hz. We discrete ΩP and ΩS into
a grid of 30×30 frames, and we use a 120×120 grid to evaluate the beamforming performance.

4.2. The performance of algorithms for solving model (3.2). Model (3.2) is an unconstrained
optimization problem. Many algorithms for solving this model have been mentioned above. In
this subsection, some of these algorithms are applied to solve the proximal sparse beamformer
design model. We first use the full information of A in this subsection, that is to say, A1 = A2 = A.

We compare three different algorithms and give the detailed iterative scheme. They are
alternating direction method of multipliers, forward-backward splitting method, and Douglas-
Rachford splitting method. In Figure 1, we show the changes of log(‖xk+1−xk‖) and log(F(xk−
F∗)) with the iteration, and we can conclude that ADMM performs better numerically than
DRSM and FBSM on the number of iterations. Meanwhile, from Table 1, FBSM is the best in
terms of time. This is due to the simplicity of solving subproblems in FBSM. We also compare
these three methods to SBBG method mentioned before which is adopted for solving the sparse
beamformer design model (2.6). All these methods are used to solve the models with the optimal
parameters. Due to the nonconvexity of the model, the SBBG method is far inferior to the tailed
methods proposed in this paper. The performance of the SBBG method in detail can be found in
[43].
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FIGURE 1. The performance of three different algorithms for solving the model.
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TABLE 1. The CPU time spent by different methods.

Method ADMM FBSM DRSM SBBG

Time(s) 4.3730 1.9483 4.4862 17.293

4.3. Overall performance of proximal sparse beamformer design. In the following numeri-
cal experiments, we set the number of microphone elements M = 7 and the length of FIR filter
K = 20.

The overall performance of least squares beamformer design is shown in Figure 2. The
performance of sparse beamformer design in [43] and proximal sparse beamformer design are
plotted in Figure 3 and Figure 4, respectively. From the results shown in the above figures, we
can conclude that the performance of proximal sparse beamformer design is more close to the
performance of least squares beamformer design than the one of sparse beamformer design.
Also, the distribution of filter coefficients of proximal sparse beamformer design is more close to
that of least squares beamformer design.

We use the number of zeros of the coefficient, the passband gain, the passband ripple, and the
stopband ripple to evaluate the performance of the beamformer design. We say that the design
performs well numerically when the passband gain is large and the passband ripple and the
stopband ripple are small. Our proposed model not only maintains the effect which is close to
that of the least squares solution, but also ensures the sparsity. In the tables, ”N0” denotes the
number of zeros, ”PG” denotes the passband gain, ”PR” denotes the passband ripple, and ”SR”
denotes the stopband ripple. The results have been shown in Table 2. When γ = 1,α = 0, the
solution is the solution of sparse beamformer design. When γ = 0,α = 0, the solution is just the
least squares solution. The number of zeros of filter in proximal sparse beamformer design is
same as that in proximal sparse beamformer design. However, both the passband ripples and stop
ripples of proximal sparse beamformer design are close to the least squares beamformer design.

TABLE 2. Performance evaluation of enhanced signal with β = 1.

γ α N0 PG PR SR

1 0 45 0.9836 0.3013 -13.0039
0 0 0 1.0033 0.1155 -19.4824

1.781 0.01 46 0.9768 0.3085 -12.2133
1.091 0.001 48 0.9821 0.3014 -12.9140
0.144 0.001 45 1.0039 0.1776 -18.1781
0.147 0.001 45 1.0028 0.1683 -17.0112
0.1464 0.001 45 1.0030 0.1709 -17.1657

In Figure 5, we give the comparison results between sparse beamformer design and least
squares beamformer design when α = 0. The case when α = 0.001 has been shown in Figure
6. From the figures, we can conclude that the proximal sparse design has the best performance
when α = 0.001 and γ = 0.14 probably.
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FIGURE 2. Overall performance of the least squares beamformer design.
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FIGURE 3. Overall performance of the sparse beamformer design.

4.4. An improvement to the model. The proximal sparse beamformer design model concludes
two optimal problems. The solution of model (2.4) is just the prediction point of model (3.2), so
we do not need to obtain the exact solution of (2.4). Moreover, A ∈ Rm×n in (2.4) where m� n
and it has column full rank, in other words, A has a mass of linearly dependent rows. It will take
a lot of unnecessary memory and time cost if we use all information of A. If we take A1 = A,
the least squares model will be easy to overfit. A natural idea to improve the whole model is to
use the part information of A for preventing this. We obtain A1 by choosing some rows of A and
obtain the least squares solution as the prediction point. And then what we care about is how
many rows we pick and how to pick. In our experiment, A ∈ R1800×140 and we try a couple of
ways to pick the rows. The performance of different selection strategies has been shown below.
The performance of the four strategies has been shown below.
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FIGURE 4. Overall performance of the proximal sparse beamformer design.
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FIGURE 5. The performance comparison between sparse model and least squares model.
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FIGURE 6. The performance comparison between proximal sparse model and
least squares model when α = 0.001.

We first consider some simple cases in that we choose 900 rows of A. Let us take the first 900
rows, the last 900 rows, odd rows, and even rows, respectively. The performance of the above
four strategies has been demonstrated in Table 3. From Table 3, the strategy of selecting partial
columns in model (2.4) does reduce the solution time. And as the scale of the problem grows,
the improvement in time will be more obvious.

TABLE 3. Performance evaluation of enhanced signal with γ = 0.144 and α = 0.001.

rows N0 PG PR SR Time(s)

1800 45 1.0039 0.1776 -18.1781 1.948
first 900 26 1.0016 0.1775 -16.4650 1.763
last 900 45 1.0028 0.1689 -17.0608 1.788
odd 900 30 1.0049 0.1909 -18.5799 1.840
even 900 32 1.0042 0.1847 -18.4217 1.809
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From Table 3, the choice of the last 900 rows performs best among the four strategies. The
effect of picking the last 900 rows of A is similar to that using full rows and picking the last 900
rows takes less cost of memory and time in arithmetic operations.

Then we choose some rows of A randomly to obtain A1. We pick 500 rows and 1000 rows
respectively and Table 4 shows their performance.

TABLE 4. Performance evaluation of enhanced signal with γ = 0.144 and α = 0.001.

A1 N0 PG PR SR

500 rows 40 1.0034 0.1777 -17.7567
500 rows 35 1.0070 0.2116 -15.8923
500 rows 40 1.0038 0.1781 -17.9637
500 rows 39 1.0022 0.1761 -16.9803
500 rows 37 1.0026 0.1738 -17.1818

1000 rows 38 1.0022 0.1749 -17.0794
1000 rows 39 1.0059 0.2061 -17.4086
1000 rows 44 1.0039 0.1789 -17.6979
1000 rows 44 1.0039 0.1784 -17.5778
1000 rows 37 1.0045 0.1872 -18.5273

From Table 4, we can conclude that picking part rows of A is a viable strategy. It makes a
great performance similar to using the full rows and saves a lot of memory and computation time.
However, due to randomness, the effect of each experiment is also different. Overall, picking the
part rows of the full rank matrix A is a choice to improve the efficiency of solving the model.

5. CONCLUSION

In this paper, we first proposed the proximal sparse beamformer design model which consists
of two stages. We just used `1-regularization to characterize sparsity rather than the other
nonconvex models. We also added a proximal term to the sparse beamformer design model so
that the solution is sparse and robust. Compared to the existing work, our work greatly improved
the efficiencies and effectiveness. The numerical experiments indicated that the proximal sparse
beamformer design has a good performance in applications.
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APPENDIX A. ITERATIVE SCHEME

In the numerical experiments, we compare the performance of different algorithms. In this
section, we present the explicit iterative scheme of these algorithms in detail.
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In (3.5), the x-minimization subproblem is

xk+1 = argmin
x∈Rn

Lβ (x,wk,λ k)

= argmin
x∈Rn

{
γ‖x‖1 +

α

2
‖x−w‖2− (λ k)T (x−wk)+

β

2
‖x−wk‖2

}
= argmin

x∈Rn

{
‖x‖1 +

α +β

2γ
‖x− β

α +β
wk− 1

α +β
λ

k− α

α +β
w‖2

}
= S γ

α+β

(
β

α +β
wk +

1
α +β

λ
k +

α

α +β
w
)
.

The the w-minimization subproblem is

wk+1 = argmin
w∈Rn

Lβ (xk+1,w,λ k),

= argmin
w∈Rn

{
(λ k)T w+

β

2
‖xk+1−w‖2 +

1
2
‖A2w−b‖2

}
.

(5.1)

Form the optimality condition of (5.1), we have

λ
k +β (wk+1− xk+1)+AT

2 (Awk+1−b) = 0.

Clearly, the iterative scheme of w-minimization subproblem is

wk+1 = (β I +AT
2 A2)

−1(−λ
k +βxk+1 +AT

2 b).

In Algorithm 3.2 and Algorithm 3.3, we set

f (w) =
1
2
‖A2w−b‖2 +

α

2
‖w−w‖,

and g(w) = γ‖w‖1. Then

∇ f (w) = AT
2 (A2w−b)+α(w−w),

and (I + ck∂g)−1(w) = Sckγ(w), where S is the soft thresholding operator. The explicit form of
(I + ck∇ f )−1 is obtained by the following discuss

(I + ck∇ f )−1(w) = argmin
t∈Rn

{
ck f (t)+

1
2
‖t−w‖2

}
.

Form the above optimality condition and the definition of f , we obtain

t =
(
ckAT

2 A2 + ckαI + I
)−1 (ckAT

2 b+ ckαw+w
)
.

That is to say

(I + ck∇ f )−1(w) =
(
ckAT

2 A2 + ckαI + I
)−1 (ckAT

2 b+ ckαw+w
)
.

So the explicit iterative scheme of FBSM is

wk+1 = (I + ck∂g)−1(I− ck∇ f )(wk)
= (I + ck∂g)−1 (wk− ckAT

2 (A2wk−b)− ckα(wk−w)
)

= Sckγ

(
wk− ckAT

2 (A2wk−b)− ckα(wk−w)
)
.
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The explicit iterative scheme of DRSM is

wk+1 =
(
(I + ck∇ f )−1 (2(I + ck∂g)−1− I)+

(
I− (I + ck∂g)−1))(wk)

=
(
(I + ck∇ f )−1 (2(I + ck∂g)−1− I)

)
(wk)+wk− (I + ck∂g)−1 (wk)

= (I + ck∇ f )−1 (2Sckγ(wk)−wk)+wk−Sckγ(wk)

=
(
ckAT

2 A2 + ckαI + I
)−1 (ckAT

2 b+ ckαw+2Sckγ(wk)−wk)+wk−Sckγ(wk).

APPENDIX B. CONVERGENCE PROOF

In this section, we present the convergence proof of the algorithms adopted in this paper.
The convergence of Algorithm 3.1 is well understood. Here we cite a result from [36].

Theorem 5.1. Suppose that {wk} is the iterative sequence generated by Algorithm 3.1. Then
{wk} converges to some w∗ which is the solution of the proximal sparse model if the solution set
is not empty.

In fact, due to the structure of the objective function in (3.2), the sequence generated by the
algorithm converges in a linear rate [45].

Theorem 5.2. Let {wk} be the sequence generated by the ADMM scheme for (3.2). When the
iterative wk is close enough to the solution set, we can conclude that the algorithm has a local
linear convergence [45].

Lemma 5.1. [46] Let the operator T : Rn → Rn. If T is firmly nonexpansive, then, for all
x,y ∈ Rn,

‖T x−Ty‖2 +‖(I−T )x− (I−T )y‖2 ≤ ‖x− y‖2.

Theorem 5.3. Let S∗ be the solution set of the proximal sparse model, and assume that S∗ 6= /0.
Suppose that {wk} is the iterative sequence generated by Algorithm 3.2, and f : Rn→ Rn has
L-Lipschitz gradient. If ck = c and 0 < c < 2

L , then {wk} converges to some w∗ which is the
solution of the proximal sparse model.

Proof. The iterative scheme of FBSM is

wk+1 = (I + c∂g)−1(I− c∇ f )(wk).

For any w∗ ∈ S∗, we have w∗ = (I+c∂g)−1(I−∇ f )(w∗). The proximal operator (I+c∂g)−1 is
firmly nonexpansive. From the fact that J = (I + c∂g)−1 is firmly nonexpansive operator and
Lemma 5.1, we can obtain

‖wk+1−w∗‖2

= ‖J(I− c∇ f )wk− J(I− c∇ f )w∗‖2

≤ ‖(I− c∇ f )wk− (I− c∇ f )w∗‖2−‖(I− J)(I− c∇ f )wk− (I− J)(I− c∇ f )w∗‖2.

Because f has L-Lipschitz gradient, we can conclude that ∇ f is 1
L -co-coercive, i.e., for any

x,y ∈ Rn,

〈x− y,∇ f (x)−∇ f (y)〉 ≥ 1
L
‖∇ f (x)−∇ f (y)‖2.
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From this, we have

‖(I− c∇ f )wk− (I− c∇ f )w∗‖2

= ‖wk−w∗‖2−2c〈wk−w∗,∇ f (wk)−∇ f (w∗)〉+ c2‖∇ f (wk)−∇ f (w∗)‖2

≤ ‖wk−w∗‖2− c
(

2
L
− c
)
‖∇ f (wk)−∇ f (w∗)‖2.

From the above statement, we can obtain

‖wk+1−w∗‖2

≤ ‖wk−w∗‖2− c
(

2
L
− c
)
‖∇ f (wk)−∇ f (w∗)‖2−‖wk− c∇ f (wk)−wk+1 + c∇ f (w∗)‖2.

(5.2)
Thus {wk} is Fejér monotone with respect to S∗ [46]. For any w∗ ∈ S∗, lim

k→+∞
‖wk−w∗‖ exists,

and hence {wk} is bounded. From (5.2), we have

lim
k→+∞

∇ f (wk) = ∇ f (w∗),

and
lim

k→+∞

∥∥∥wk+1−wk + c∇ f (wk)− c∇ f (w∗)
∥∥∥= 0.

From the iterative scheme, we obtain wk−wk+1− c∇ f (wk) ∈ c∂g(wk+1). Suppose that the
bounded sequence {wk} has a convergent subsequence {wk j} which converges to w. From the
continuity of ∇ f , we have

∇ f (w) = ∇ f (w∗). (5.3)

From the monotonicity of ∂g, for any u ∈ ∂g(w), we obtain〈
1
c

(
wk j−1−wk j − c∇ f (wk j−1)

)
−u,wk j −w

〉
≥ 0.

Taking the limit of the above inequality as j→ ∞, we have

〈−∇ f (w∗)−u,w−w〉 ≥ 0. (5.4)

From the maximal monotonicity of ∂g and (5.4), we have (w,−∇ f (w∗)) ∈ gra ∂g, in other
words,

−∇ f (w∗) ∈ ∂g(w). (5.5)

Combining (5.3) and (5.5), we can conclude that 0∈∇ f (w)+∂g(w), so w∈ S∗ and lim
k→+∞

‖wk−

w‖ exists. Because the subsequence {wk j} converges to w, we can conclude that

lim
k→+∞

‖wk−w‖= 0.

Thus we complete the proof.

Next we show the convergence of DRSM. In fact, the iterative scheme of DRSM can be
written as zk+1 = 1

2(I +R1R2)zk, where R1 = 2(I + c∂g)−1− I, R2 = 2(I + c∇ f )−1− I, and
zk = (I + c∇ f )wk. Let T = 1

2(I +R1R2), where R1R2 is a nonexpansive operator. Thus T is
firmly nonexpansive.
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Theorem 5.4. Let S∗ be the solution set of the proximal sparse model, and assume that S∗ 6= /0.
Suppose that {wk} is the iterative sequence generated by Algorithm 3.3. Let zk = (I + c∇ f )wk.
Then {zk} converges to z∗ which belongs to the set of zeros of T . Furthermore, wk = (I +
c∇ f )−1zk converges to some w∗ which is the solution of the proximal sparse model.

Proof. The proof is similar to Theorem 5.3. Thus it is omitted.
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