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Abstract. Image segmentation is an essential step for many applications in the field of the image analysis.
One of the main challenges for this task is how to accurately locate complicated boundary and properly
segment a region of interest efficiently. To this end, this paper provides a new scheme by combining
the adaptive weight function and the high-order total variation term to improve the robustness of the
classical active contour model. In order to reduce the computational complexity, our model uses the heat
kernel convolution with adaptive weight to approximate the perimeter of the segmentation area. Due
to the nonsmoothness of the proposed model, we adopt the alternating direction method of multipliers
to solve it. Numerical implementations on several different types of images illustrate that our proposed
scheme demonstrates better segmentation performance and robustness than several existing state-of-the-
art segmentation models.
Keywords. Adaptive weight function; Active contour model; High order total variation; Heat kernel
convolution; Image segmentation.

1. INTRODUCTION

Image segmentation is one of the most important techniques for detecting objects and analyz-
ing images in the field of computer vision. In recent decades, it has been widely used in remote
sensing, medical image processing, target tracking, document image processing, and fingerprint
identification [1, 2, 3, 4, 5]. In general, the aim of the image segmentation is to divide the image
into several disjoint regions according to the characteristics of gray, color, spatial texture, and
geometric shape. In the same region, these features demonstrate consistency or similarity, but,
in the different regions, these features demonstrate the obvious differences. However, due to
the interference of image degradation information [6, 7, 8, 9], the image segmentation is still
a challenge in some practical applications. For solving various application scenarios, the seg-
mentation model can be divided into data-driven models [10, 11, 12, 13, 14] and model-driven
models [15, 16, 17, 18]. Data-driven models usually require a large amount of image data and
strong model-based supports [10, 11, 12, 13, 14]. However, many difficulties, such as insuf-
ficient data, background noise, local intensity variations, and complex segmentation targets,
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make the segmentation problem quite challenging. Especially, data-driven models are mostly
black boxes without rigorous mathematical justification and can be very difficult to interpret.
Model-driven models can overcome some problems, such as limited available data and imper-
fect models. Among the model-driven models, active contour models have been widely con-
cerned, which predefines an energy functional with the intensity and the gradient information
based on the intrinsic properties of images.

To the active contour models, the Chan-Vese (CV) model [19] has been successfully used in
the two-phase segmentation with the assumption that each image region is statistically homoge-
neous and then implemented by using the Level Set Method (LSM). However, its nonconvexity
leads the segmentation results completely depending on the original contour for the numeri-
cal implementation. To this end, Chan et al. [20] established a convex relaxation strategy and
proved its equivalence and theoretical consistency with the CV model. Since the convex relax-
ation form corresponds to a non-smooth optimization problem, it can be solved by some fast
operator splitting algorithms and it can also avoid the defect of the LSM in the distance function
requiring periodic reinitialization of the active contour. As an improvement of the convex re-
laxation strategy, Pock et al. [21] considered to calculate the partition problem of the minimum
perimeter based on the Potts model and then used the primal dual algorithm to solve it quickly.
In addition, based on the graph cut technology, Yuan et al. [22] proposed a continuous maxi-
mum flow and minimum cut model constrained by prior supervised information and applied it
to interactive image segmentation.

Above models were mainly applied to segment the piecewise constant image. In order to
segment the intensity inhomogeneity image, Li et al. [23] proposed a region-extensible fitting
model by introducing some local statistical information based on the CV model. This model
mainly used the Gaussian kernel on the fidelity term to describe the intensity inhomogeneity
and then overcome the limitation of the CV model but is unsuitable to the high noise image.
To this end, Wang et al. [24] used the mean filter to provide images with the higher contrast
and then proposed a local CV model (LCV). Furthermore, Zhang et al. [25] proposed to model
non-uniform targets as the Gaussian distributions with different mean values and variances and
used moving windows to map the original image to another domain. However, above models
still have numerical difficulties such as the high computational complexity and the tuning of
more parameters.

Recently, the feature function representing the curve evolution method in the segmentation
problem has been concerned. For example, the edge-weighted centoidal voronoi tessellation
(EWCVT) models [26, 27] were tried to add a boundary length regularization to the k-means
algorithm, which was then approximated by counting the dissimilar indices within local cir-
cles. Especially, Merriman, Bence, and Osher (MBO) [28] proposed to model and simulate
the motion by the mean curvature, and to characterize the characteristic function of the inner
region of the iterative diffusion curve through a threshold. The paper [29] further interpreted
the MBO model as the characteristic function of Lyapunov functional minimization motion, so
this model can be extended to the multiphase mean curvature motion problem with an arbi-
trary surface tension. In particular, the MBO model has been widely applied to region-based
active contour segmentation due to its unique simplicity and unconditional stability [30]. In the
convex relaxation model of the segmentation problem, the perimeter of the segmented region
can be approximated as a feature function by the heat kernel convolution, so it can be quickly
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solved by using an Iterative Convolutional Thresholding Method (ICTM) [16, 30], which is
experimentally shown to be simple, efficient, and applicable to a wide range of region based
segmentation problems.

Motivated by the active contour model and the ICTM, this paper proposes a new weighed ac-
tive contour models by combining the heat kernel convolution and the high-order total variation
regularization. In the established model, the curvature weight function is used to characterize
the structural features of the image and the perimeter of the segmentation curve is approximated
by the heat kernel convolution. At the same time, the higher-order total variation term describes
some information inside the segmented region. In addition, the proposed model is an optimiza-
tion problem containing separable operators, so we adopt the Alternating Direction Multiplier
Method (ADMM) to solve it efficiently. The effectiveness of the model and algorithm can be
verified by several selected natural and ultrasound image segmentation experiments. The exper-
iment shows that the proposed model can not only improve the accuracy of image segmentation,
but also improve the segmentation efficiency.

The rest of the paper is organized as follows. We review some classical active contour models
in Section 2. Then we propose a weighted type image segmentation model coupling thermal
kernel convolution and higher-order total variation regularization in Section 3. We introduces
the numerical algorithm based on the ADMM and simultaneously give the corresponding solu-
tion. In Section 4, some numerical comparisons are arranged to illustrate the efficiency of the
proposed model. Finally, we report our conclusion in Section 5, the last section.

2. RELATED WORKS

Let Ω⊂ R2 be a bounded open connected set, Γ be a compact curve in Ω, and f : Ω→ R be
a given image. The segmentation problem is to partition the image domain into several disjoint
subdomain. This section provides an overview of existing segmentation approaches that are
closely related to our proposed model.

2.1. CV model. Mumford-Shah Model [31] is the most worthy of a class of active contour
models, which can be simplified into the Chan-Vese (CV) model [19] as follows

min
Γ,c1,c2

λ

2

∫
Ω

( f − c1)
2dx+

λ

2

∫
Ω\Ωc

( f − c2)
2dx+L(Γ),

where c1,c2 ∈ R are the average values of the pixels inside and outside Γ for the two-phase
segmentation, L(Γ) is the length of the curve Γ, λ is the positive parameters, and Ωc is a
closed subset of the image f . The CV model is a representative model based on the regional
information. Its numerical implementation uses the LSM, which is convenient for handling
topological changes, dividing more complex objects, and realizing the expansion from low-
dimensional to high-dimensional. However, in order to maintain the nature of the distance
function, it is necessary to reconstruct the level set function every other period of time and then
causes higher time-consuming.

2.2. GMAC model. In order to avoid the disadvantage of periodically reinitializing the active
contour when using the LSM, Bresson et al. [32] proposed a Global Minimizer of Active
Contour (GMAC) by solving the following optimization problem

min
u∈[0,1]

λ

∫
Ω

(
( f − c1)

2− ( f − c2)
2)udx+

∫
Ω

g( f )|Ou|dx,
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where |∇u|=
√

u2
x1
+u2

x2
, c1, c2 and the edge detection function g( f ) can be obtained by

c1 := c1(u) =
∫

Ω
f udx∫

Ω
udx

, c2 := c2(u) =
∫

Ω
f (1−u)dx∫

Ω
(1−u)dx

and g( f ) =
1

1+ γ|O f |2
. (2.1)

Here γ is a positive parameter and |∇ f | =
√

f 2
x1
+ f 2

x2
. The GMAC model can determine the

global minimum of energy and is not sensitive to the selection of the initial contour.

2.3. ICTM model. In [33], Wang et al. proposed a novel Iterative Convolution-Thresholding
Method (ICTM) in which the length term is approximated by a functional of characteristic
functions in terms of the heat kernel convolution as

min
u∈{0,1}

λ

∫
Ω

(( f − c1)
2− ( f − c2)

2)udx+
√

π

τ

∫
Ω

uGτ ∗ (1−u)dx, (2.2)

where Gτ(x) = 1
4πτ

exp
(
−‖x‖

2

4τ

)
is a Gaussian kernel with the standard derivation τ , ∗ is the

convolution operator, c1 and c2 can be obtained from (2.1). In the ICTM, the interface between
two different segment domains is implicitly represented by their characteristic function. To
the model (2.2), the authors in [33] designed an iterative convolution thresholding method to
minimize the approximate energy. This method has the obvious advantages of simplicity, easy
implementation and strong robustness.

2.4. DTC model. Since the curvature regularity can provide strong priors on edge continuity,
it has been widely concerned in the field of the image segmentation. Recently, Zhong et al. [34]
proposed a discrete total curvature (DTC) by minimizing the normal curvatures along eight
different directions as

min
u

λ

∫
Ω

(( f − c1)
2− ( f − c2)

2)udx+
∫

Ω

ψ(κ)|∇u|dx,

where ψ(κ) is some appropriate functions of curvature, e.g.,

ψ(κ) =


1+α|κ|, Total Absolute Curvature,√

1+α|κ|2, Total Roto-translation Variation,
1+α|κ|2, Total Squared Curvature,

and α is a positive constant. The curvature of the level lines is set as κ ≈ ∑
8
`=1 |κ`|. Among

them, we use the following definitions as

κ` ≈


2d`

(p4` −ui, j)2 +h2
, `= 1,2,3,4,

2d`
(p�` −ui, j)2 +2h2 , `= 5,6,7,8,

Here p4 and p� are the intensity of the half point to the grid line and the center of every grid
region in nine neighbourhoods, h is the grid size, and d` is the projection distance.
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2.5. WBHV model. To describe the edge of the segmentation image, Yang et al. [35] recently
based on the GMAC proposed to couple the weighted bounded Hessian variation regularization
(WBHV) with the weighted total variation regularization as

min
u∈[0,1]

∫
Ω

α( f )|∇u|dx+
∫

Ω

β ( f )|∇2u|dx+λ

∫
Ω

( f − c1)
2u+( f − c2)

2(1−u)dx, (2.3)

where |∇2u| =
√

u2
x1x1

+u2
x1x2

+u2
x2x1

+u2
x2x2

, the weight functions α( f ) and β ( f ) are defined
by

α( f ) =

∣∣∣∣∣∣∇ 1√
1+ |∇ f |2

∣∣∣∣∣∣ and β ( f ) =
1√

1+ |∇ f |2
. (2.4)

In model (2.3), the first term characterizes the length of the segmented region and the second
term characterizes the smooth feature of the image feature function. Here, α( f ) is used as
the adaptive weight of first-order regularization to enhance the boundary at the edge. β ( f )
is the adaptive weight of second-order regularization, which automatically stops at the edge
and can smooth some unnecessary details. These two adaptive weights capture the boundary
information more fully, and save the trouble of manually adjusting the parameters.

3. THE PROPOSED SCHEME

To the image segmentation problem, the effectiveness depends on not only the accurate de-
scription of the segmentation region but also the numerical method. For the WBHV (2.3),
although there is a higher segmentation accuracy, it has higher computational complexity due
to the non-smooth terms. A type of way to reduce computing complexity is to replace the non-
smooth term by some approximation strategies. To this end, we combine the WBHV (2.3) with
the approximation strategy used in the ICTM (2.2) and then consider the following modified
model

min
u∈{0,1},c1,c2

√
π

τ

∫
Ω

α( f )uGτ ∗ (1−u)dx+
∫

Ω

β ( f )|∇2u|dx+λ

∫
Ω

( f − c1)
2u+( f − c2)

2(1−u)dx,

(3.1)

where c1 and c2 can be obtain by the equation (2.1), and α( f ) and β ( f ) are defined in (2.4).
Below, we discuss how to solve the u-subproblem.

Model (3.1) is a non-smooth due to the second term and also the binary optimization problem,
so we need to employ some operator splitting schemes to decouple the Hessian operator from
the Frobenius norm and also use the convex relaxed scheme to set u ∈ [0,1]. To this end, we
first introduce an auxiliary variable z and then equivalently transform problem (3.1) into the
following constrained optimization problem

min
z,u∈[0,1]

√
π

τ

∫
Ω

α( f )uGτ ∗ (1−u)dx+
∫

Ω

β ( f )|z|dx

+λ
∫

Ω
( f − c1)

2u+( f − c2)
2(1−u)dx,

s.t. z = ∇2u.

(3.2)
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Based on the augmented Lagrangian method, problem (3.2) can be written as the following
saddle point problem

min
z,u∈[0,1]

max
ηηη

L (u,z,ηηη),

where
L (u,z,ηηη)

=

√
π

τ

∫
Ω

α( f )uGτ ∗ (1−u)dx+
∫

Ω

β ( f ) |z|dx+λ

∫
Ω

( f − c1)
2u+( f − c2)

2(1−u)dx

+ 〈ηηη ,z−∇
2u〉+ r

2

∫
Ω

|z−∇
2u|2dx,

and the dual variable ηηη is called the Lagrangian multiplier, and r is the penalty parameter. Note
that it is usually hard to minimize the augmented Lagrangian function L (u,z,ηηη) with respect
to u and z simultaneously. However, if we minimize the augmented Lagrangian function with
respect to u and z alternatively, we obtain two subproblems in each iteration and both of them are
relatively easy to be solved by the alternating direction multiplier method (ADMM) as follows

uk+1 = argmin
u∈[0,1]

L
(

u,zk,ηηηk
)
, (3.3)

zk+1 = argmin
z

L
(

uk+1,z,ηηηk
)
, (3.4)

ηηη
k+1 = ηηη

k + r
(

zk+1−∇
2uk+1

)
. (3.5)

Now we mainly consider how to solve subproblems (3.3) and (3.4).
• To subproblem (3.3), it is a non-convex optimization problem due to the first term. To

deal with this drawback, we linearize the objective function L
(
u,zk,ηηηk) at the iteration

uk and then subproblem (3.3) can be approximately rewritten as

uk+1 = argmin
u∈[0,1]

∫
Ω

uφ

(
uk
)

dx, (3.6)

where

φ

(
uk
)
=α( f )

√
π

τ
Gτ ∗

(
1−2uk

)
+λ (( f − c1)

2− ( f − c2)
2)+ rdiv2

(
∇

2uk− zk− ηηηk

r

)
.

It is obvious that solution uk+1 satisfies that

uk+1 =

{
1, if φ

(
uk)≤ 0;

0, otherwise.
(3.7)

• To subproblem (3.4), it can be rewritten as

min
z

∫
Ω

β ( f )|z|dx+
r
2

∥∥∥∥z−
(

∇
2uk+1− ηηηk

r

)∥∥∥∥2

F
, (3.8)

which is the classic L1−L2 problem. So the closed form solution can be obtained by

zk+1 = max
{∥∥∥∥∇

2uk+1− ηηηk

r

∥∥∥∥
F
− β ( f )

r
,0
}

∇2uk+1− ηηηk

r∥∥∥∇2uk+1− ηηηk

r

∥∥∥
F

. (3.9)
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To sum up, the image segmentation algorithm based on the model (3.1) is described as fol-
lows.

Algorithm 1 Image Segmentation Algorithm Based on the Model (3.1)

1: Input: original image I, parameters λ , τ > 0, r, maximum iteration Kmax, and stopping
threshold ε;

2: Initialize: u0,z0 = ηηη0 = 0, set k = 0;
3: while (not converged and k ≤ Kmax) do
4: Compute c1(uk),c2(uk) according to (2.1);
5: Compute uk+1 with fixed zk,ηηηk according to (3.7);
6: Compute zk+1 with fixed uk+1,ηηηk according to (3.9);
7: Update ηηηk+1 according to (3.5);
8: Check the convergence condition:

∥∥uk+1−uk
∥∥

1 ≤ ε
∥∥uk
∥∥

1 ;
9: end while

4. NUMERICAL EXPERIMENTS

To validate the effectiveness and robustness of the proposed scheme compared with other
related models such as the CV [19], the GMAC [32], the ICTM [30], the WBHV [35], and the
DTC [34], we perform several testings on some natural and ultrasound images. To the models
and the corresponding numerical methods, there are several parameters to be tuned. To the
stopping parameters, we choose the max number of outer iteration Imax = 500 and ε = 10−3 for
the above-mentioned models. In particular, experiments show that good segmentation results
can be obtained when the maximum number of inner iterations Kmax is 1. To other parameters,
we carefully tune them to find the main parameters by the trial-and-error method in order to
obtain the satisfied segmentation image. For more convenience, we set these main parameters
in the models (CV; GMAC; ICTM; WBHV; DTC; OURS) to be the vector in terms of (λ ; γ ,
λ ; λ , τ; λ , r3; λ , α; λ ), where ’;’ is the separation mark. For the remaining parameters,
we set r = 0.2, τ = 0.001 for the gray images, r = 0.6, τ = 0.002 for the color images in
Algorithm 1, and r1 = 1, r2 = 2 in the WBHV. All the numerical experiments are performed
via MATLAB (R2020a) on windows 10 (64bit) laptop computer with an Intel Core(TM)i5
7200UCPU 2.50GHz processor.

Beside of the parameters, some indexes are needed to measure the accuracy of the segmen-
tation. Here we employ the following indexes such as segmentation accuracy (SA), F1-Score
(F1), κ-coefficient (κ), and Jaccard Similarity (JS) [35], which are defined by

SA =
TP+TN

TP+TN+FP+FN
, F1 =

2PR
P+R

, κ =
SA−M
1−M

, and JS =
|S1∩S2|
|S1∪S2|

,

where TP (True Positive) and TN (True Negative) represent the correctly segmented and un-
segmented regions, FP (False Positive) and FN (False Negative) represent the detected and
undetected false-regions respectively. Here S1 is the region by the Algorithm 1 and S2 is the
corresponding region of the ground truth. In addition, the parameters P, R and M used in F1
and κ are defined by

P =
TP

TP+FP
, R =

TP
TP+FN

and M =
(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

(TP+TN+FP+FN)2 .
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It is obvious if the values for these metrics are close to 1, the obtained segmentation results are
suitable considered acceptable.

4.1. Segmentation based on the image dataset. Here we randomly select six gray images
and seven color images from the Weizmann Institute of science images dataset to be the testing
images as shown in Figure 1. The segmentation results are generated by above segmentation
models shown in Figure 2 and 3. It is obvious to find that the CV and the DTC models have
obvious under segmentation phenomenon such as the dendritic crack in segmented image ’#1’.
The GMAC can not separate dendritic terminals from the background when segmenting ’#1’.
To the models of the CV, the GMAC, the ICTM and the DTC models, they also have wrong
boundaries and over segmentation phenomenon when segmenting ’#4’. In addition, the details
in lower right corner of the image ’#5’ can not be correctly segmented out by using the CV
model. In addition, we also consider these models to segment the color images and it is obvious
that we can obtain the similar conclusions as to segment the gray images from Figure 3.

(a) #1 (b) #2 (c) #3 (d) #4 (e) #5 (f) #6

(g) #a (h) #b (i) #c (j) #d (k) #e (l) #f (m) #g

FIGURE 1. Testing images from the Weizmann Institute of science images
dataset and initial contours are plotted as the red boxes.

To evaluate the accuracy of the segmentation results, the related quantitative indexes as JS,
SA, F1-score and κ are shown in Table 1 and Table 2. From these tables, we can observe
that our proposed model has higher quantitative indexes. This means that our proposed model
can segment the image more accurately. On the other hand, from the variance of Table 1 and
Table 2, our proposed model has smaller variance than other models and then implies better
robustness.

Besides contrast visual effect and quantitative indexes, we also compare the computation
time among above models in the form of histograms for six gray natural images. It can be seen
from Figure 4 that the WBHV model takes the longest CPU time and our proposed model takes
the shortest CPU time. To sum up, our proposed model uses the least CPU time to obtain better
image quality. Since the proposed method is a non-convex optimization problem, we do not
give a theoretical analysis of the convergence of Algorithm 1. However, in order to explore
whether the Algorithm 1 converges, we choose ’#3’ and ’#4’ in Figure 1 to be the testing
images. Specifically, we respectively define some errors as bias error (called L1), relative error

https://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/

https://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/
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TABLE 1. The JS, SA, F1 and κ values on six gray images of the CV [19],
GMAC [32], ICTM [30], WBHV [35], DTC [34], and OURS.

Criteria JS SA

Images CV GMAC ICTM WBHV DTC OURS CV GMAC ICTM WBHV DTC OURS
#1 0.8349 0.8409 0.8351 0.8391 0.7656 0.8441 0.9765 0.9780 0.9772 0.9778 0.9668 0.9784
#2 0.9898 0.9936 0.9935 0.9932 0.9778 0.9938 0.9971 0.9982 0.9981 0.9981 0.9936 0.9982
#3 0.7827 0.9647 0.9643 0.9646 0.9406 0.9678 0.9575 0.9931 0.9930 0.9931 0.9883 0.9937
#4 0.8969 0.9527 0.9511 0.9598 0.9399 0.9677 0.9875 0.9942 0.9940 0.9951 0.9824 0.9961
#5 0.9760 0.9896 0.9893 0.9897 0.9621 0.9896 0.9865 0.9942 0.9940 0.9943 0.9860 0.9942
#6 0.7837 0.7763 0.7803 0.7861 0.7499 0.7866 0.9880 0.9875 0.9878 0.9881 0.9927 0.9881
Mean 0.8773 0.9196 0.9189 0.9221 0.8893 0.9249 0.9822 0.9909 0.9907 0.9911 0.9750 0.9915
Variance 0.0085 0.0081 0.0080 0.0077 0.0106 0.0077 0.0002 0.0001 0.0001 0.0001 0.0005 0.0001
Criteria F1 κ

Images CV GMAC ICTM WBHV DTC OURS CV GMAC ICTM WBHV DTC OURS
#1 0.9100 0.9136 0.9101 0.9125 0.8673 0.9155 0.8965 0.9010 0.8971 0.8998 0.8485 0.9031
#2 0.9949 0.9968 0.9967 0.9966 0.9888 0.9969 0.9928 0.9955 0.9955 0.9952 0.9843 0.9956
#3 0.8781 0.9820 0.9818 0.9820 0.9684 0.9836 0.8528 0.9778 0.9775 0.9777 0.9622 0.9797
#4 0.9456 0.9758 0.9749 0.9795 0.9807 0.9836 0.9386 0.9725 0.9715 0.9767 0.9646 0.9813
#5 0.9879 0.9948 0.9946 0.9948 0.8571 0.9948 0.9726 0.9882 0.9879 0.9884 0.8498 0.9883
#6 0.8787 0.8740 0.8766 0.8803 0.9690 0.8806 0.8725 0.8676 0.8702 0.8741 0.9649 0.8744
Mean 0.9325 0.9562 0.9558 0.9576 0.9396 0.9592 0.9210 0.9504 0.9500 0.9520 0.9291 0.9537
Variance 0.0027 0.0026 0.0025 0.0024 0.0037 0.0024 0.0032 0.0028 0.0028 0.0027 0.0039 0.0027

TABLE 2. The JS, SA, F1 and κ values on seven color images of the CV [19],
GMAC [32], ICTM [30], WBHV [35], DTC [34], and OURS.

Criteria JS SA

Images CV GMAC ICTM WBHV DTC OURS CV GMAC ICTM WBHV DTC OURS
#a 0.8971 0.9002 0.9112 0.9112 0.7819 0.9149 0.9496 0.9510 0.9565 0.9564 0.9879 0.9580
#b 0.8705 0.8501 0.8595 0.8627 0.9194 0.8780 0.9956 0.9949 0.9952 0.9953 0.9965 0.9958
#c 0.9264 0.9180 0.9177 0.9204 0.8431 0.9306 0.9968 0.9965 0.9965 0.9966 0.9796 0.9970
#d 0.8474 0.7834 0.8358 0.8235 0.6092 0.8741 0.9797 0.9729 0.9793 0.9776 0.6207 0.9836
#e 0.8219 0.7837 0.7837 0.7840 0.7506 0.8510 0.9901 0.9880 0.9880 0.9880 0.9855 0.9917
#f 0.9897 0.9901 0.9900 0.9901 0.9897 0.9907 0.9943 0.9945 0.9944 0.9945 0.9942 0.9948
#g 0.7236 0.7480 0.7497 0.7504 0.6285 0.7512 0.9831 0.9853 0.9855 0.9855 0.7980 0.9852
Mean 0.8681 0.8534 0.8639 0.8632 0.7089 0.8844 0.9842 0.9833 0.9851 0.9848 0.9089 0.9866
Variance 0.0071 0.0077 0.0069 0.0070 0.0200 0.0056 0.0003 0.0003 0.0002 0.0002 0.0212 0.0002
Criteria F1 κ

Images CV GMAC ICTM WBHV DTC OURS CV GMAC ICTM WBHV DTC OURS
#a 0.9458 0.9475 0.9536 0.9535 0.8776 0.9555 0.8989 0.9017 0.9128 0.9125 0.8713 0.9159
#b 0.9307 0.9190 0.9244 0.9263 0.9580 0.9350 0.9285 0.9164 0.9220 0.9239 0.9562 0.9329
#c 0.9618 0.9573 0.9571 0.9586 0.9149 0.9640 0.9602 0.9554 0.9553 0.9568 0.9033 0.9625
#d 0.9174 0.8785 0.9106 0.9032 0.7571 0.9328 0.9058 0.8635 0.8989 0.8906 0.6045 0.9235
#e 0.9022 0.8787 0.8787 0.8789 0.8575 0.9195 0.8971 0.8725 0.8725 0.8727 0.8499 0.9151
#f 0.9948 0.9950 0.9950 0.9950 0.9948 0.9953 0.9884 0.9889 0.9887 0.9888 0.9983 0.9895
#g 0.8397 0.8559 0.8570 0.8574 0.7719 0.8579 0.8308 0.8481 0.8494 0.8498 0.9560 0.8501
Mean 0.9275 0.9188 0.9252 0.9247 0.8760 0.9371 0.9157 0.9066 0.9142 0.9136 0.8272 0.9271
Variance 0.0024 0.0026 0.0023 0.0023 0.0079 0.0018 0.0026 0.0026 0.0023 0.0023 0.0254 0.0020
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CV GMAC ICTM WBHV DTC OURS Ground truth

FIGURE 2. Segmentation comparison on gray images. Top six colums: seg-
mentation results of the CV [19], GMAC [32], ICTM [30], WBHV [35], DTC
[34] and OURS, respectively. The last column: ground truth. The experiment
parameters: (1; 0.125, 1; 0.003, 0.01; 14, 15; 0.8, 0.4; 16), (1; 1, 0.125; 0.003,
0.01; 15, 10; 0.8, 0.5; 25), (1; 0.13, 1; 0.005, 0.01; 10, 10; 2, 1; 7), (1; 0.125, 1;
0.006, 0.01; 2, 10; 1.6, 0.5; 5), (1; 0.13, 2; 0.006, 0.01; 25, 10; 1.6, 0.5; 45), (1;
0.125, 1; 0.007, 0.01; 25, 10; 2, 10; 400).

of Lagrange multiplier (calledL1), and the variable error (called RE) in the following

R1 =
∥∥∥zk−∇

2uk
∥∥∥

1
, L1 =

∥∥ηηηk−ηηηk−1
∥∥

1∥∥ηηηk−1
∥∥

1
and RE =

∥∥uk−uk−1
∥∥

1∥∥uk−1
∥∥

1
.

It is easy to observe the convergence of the error curves against the iteration and then these facts
illustrate the reasonability and the stability of our proposed numerical algorithm.

4.2. Segmentation based on the noisy images. Here we consider the impact of noise on the
segmentation result and the testing images are shown in the first row of Figure 6. To this end,
we add the white Gaussian noise with the deviation σ = 0.05,0.15 and the salt & pepper noise
with density of 5% and 15% to images ’#A’ and ’#B’, respectively. The initial contours of
the segmentation models are shown as the rectangular box in the second row. The last six
rows are the corresponding segmentation results generated by aforementioned models. The
results show that the GMAC, the WBHV and the DTC rarely mistake noise as boundary, but
in the CV and the ICTM, the noise near the boundary is mistakenly divided into boundaries.
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CV GMAC ICTM WBHV DTC OURS Ground truth

FIGURE 3. Segmentation comparison on seven color images. Top six columns:
segmentation results of the CV [19], GMAC [32], ICTM [30], WBHV [35], DTC
[34], and OURS, respectively. The last column: ground truth. The experiment
parameters: (1; 0.1, 1; 0.01, 0.01; 3, 10; 1, 1; 45), (2; 0.125, 1; 0.001, 0.01; 45,
1; 5, 0.01; 23), (1; 0.125, 1; 0.02, 0.01; 46, 10; 5, 1; 8), (1; 0.1, 1; 0.05, 0.02;
45, 1; 10, 0.01; 8), (2; 0.125, 2; 0.002, 0.01; 150, 1; 5, 0.5; 2), (1; 0.13, 1; 0.001,
0.01; 10, 1; 5, 0.5; 35), (1; 0.125, 1; 0.008, 0.01; 45, 1; 5, 0.5; 19).
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FIGURE 4. Compare the CPU times of different models (CV [19], GMAC [32],
ICTM [30], WBHV [35], DTC [34], and OURS) on six gray images.

While segmenting high-intensity noisy images, the GMAC, the WBHV and the DTC fail to
segment the upper left vertical line in ’#A’. At the same time, the right boundary of ’U-shaped’
target in ’#B’ is incomplete and fractured. In contrast to the segmentation results generated
by other compared models, our proposed model is more robust against the noise effect and the
segmentation boundary is relatively continuous.
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FIGURE 5. The plots of relative errors from the first column to the third column
as RE, L1, and R1 against the iteration by using Algorithm 1 to segment images
’#3’ and ’#4’.

Besides the visual results, the evaluation index values are arranged in Figure 7. It is obvious
that four indicators of our model in the two images are the highest, indicating that our model
outperforms other models for segmenting the noisy images.

4.3. Initial contour influence on ultrasonic images. In order to further demonstrate the effec-
tiveness of our proposed model, some ultrasonic images come from Department of Ultrasound
in Henan Provincial People’s Hospital are considered. These images have approved by the
Medical Ethics Committee of Henan Provincial People’s Hospital. The first column of Figure
9 is the original images and the corresponding initial contours. In order to verify the influence
of initial contours on the models, we consider three different initial contours. The segmenta-
tion results are shown in the last six columns of Figure 9. It is easy to observe that the CV
and the GMAC depend on the original contour more than other models. As a contrast, we also
find that the segmentation result of our proposed model is better than other models. Especially,
the WBHV has some wrong segmentation on the left side. In conclusion, our proposed model
is more robust to the selection of initial contour and the segmentation result is more accurate.
These observations still illustrate the effectiveness of our proposed model again.

4.4. Effect of the weighted functions α( f ) and β ( f ). It is well known that the convolution
operator used in the heat kernel convolution can blur the image edge. In order to explain the rea-
sonability of the weighted functions to overcome this drawback, we choose ’#3’ in Figure 1 as
the testing image, where this image includes some details such spire and edges. In this experi-
mentation, we respectively set α( f ) and β ( f ) to be different setting in the proposed model (3.1).
For example, if we set β ( f ) = 0, then the model is degraded into the weighted CV model [32].
In addition, if we set β ( f ) = 1 and β ( f ) = 1, the model is degraded into the classical MS model
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FIGURE 6. Segmentation comparison on two Synthetic images with difference
noise level. The first row: original images. Images with White Gaussian (Ga)
noise of σ = 0.05 and σ = 0.15 are shown in the (b) and (f) columns; Images
with Salt and Pepper noise of 5% and 15% are shown in the (d) and (h) columns.

[36]. To the segmentation images, we can observe some over-segmentation phenomenons in the
area marked by green box when α( f ) = 0 or β ( f ) = 0,1 and under-segmentation phenomenons
when α( f ) = 1 or α( f ) = β ( f ) = 1 in Figure 8. As a contrast, our proposed method can effi-
ciently segment these details.

5. CONCLUSION

In this work, we proposed an efficient numerical method to solve a weighted type segmenta-
tion model. To the proposed method, the weighted functions were used to describe the details of
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FIGURE 7. Statistical results (JS, SA, F1-Score, and κ) for images ’#A’ and
’#B’ with different noise. The first row: four evaluation indicators for different
models in ’#A’. The second row: four evaluation indicators for different models
in ’#B’.

α( f ) = 0 β ( f ) = 0 α( f ) = 1 β ( f ) = 1 α( f ) = β ( f ) = 1 our proposed ground truth

FIGURE 8. Spatially adaptive weights α( f ) and β ( f ) of the image ’#3’ in the
proposed model (3.1). Visual difference is marked by the blue box and the green
box.

the image edge. In order to reduce the difficulty of numerical method, we first use the heat ker-
nel convolution to approximatively replace the total variation term and then used the ADMM to
split this approximated problem into several easily solvable subproblems. We performed several
experiments with real and synthetic images for the validation of the proposed method. More-
over, we adapted the segmentation accuracy (SA), F1-Score (F1), κ-coefficient (κ), and Jaccard
Similarity (JS) for the quantitative validation of our method. Results demonstrate that the pro-
posed procedure has accomplished improved results that stood out from several state-of-the-art
segmentation models.
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Initial Contour CV GMAC ICTM WBHV DTC OURS

FIGURE 9. Segmentation results of the ultrasonic images under different initial
contours. The first column is the input images and the initial contours. The latter
six columns are the segmentation results for the CV [19], GMAC [32], ICTM
[30], WBHV [35], DTC [34], and OURS, respectively.
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