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DROP-DIP: A SINGLE-IMAGE DENOISING METHOD BASED ON DEEP IMAGE
PRIOR
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Department of Mathematics, College of Sciences, National University of Defense Technology, China

Abstract. Over the past few years, deep learning methods have emerged as powerful image denoising
tools. Among them, unsupervised deep learning without external training data is more practical and
challenging. Reducing noisy overfitting is challenging due to single-image unsupervised learning is
prone to overfitting. In this paper, we propose a method named drop-DIP combing Deep Image Prior
(DIP) with drop-out for the first time to solve the above problems. In our method, we construct new
network training pairs by performing drop-out training on the Bernoulli sampling of the input and output,
and then construct a regularization term by using the corrected bias of the output and the generated
prior. Finally, update the parameters through the Alternating Direction Method of Multipliers (ADMM)
algorithm. Experiments demonstrate that drop-DIP can alleviate the overfitting difficulty in DIP, facilitate
the early stopping of the network, and is applicable to different noise models. Furthermore, our method
has good performance on Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) metrics validated by two different datasets.
Keywords. ADMM; Deep image prior; Drop-out; Image denoising; Unsurpervised learning.

1. INTRODUCTION

Image denoising is a fundamental problem in computer vision. There are many common
noise types from the physics-based noise simulation model, including Gaussian noise, Poisson
noise, Pulse noise, and so on [1]. A general noise model can be expressed in the form of

y = x+δ , (1.1)

where y is the observed image, x is the original clean image, and δ is the noise term. For
example, when δ is multiplicative noise, there is δ = (δx− I) ·x.

Traditional denoising algorithms are usually modeled for noise types, and the corresponding
noise types are single [2]. In recent years, with the development of deep learning, there have
been many methods using convolutional neural networks (CNN) for denoising. Deep learning
can adapt to multiple noise types. For example, Dn-CNN [3] uses CNN to learn the noise part
in the image. Subsequent work builds a supervised learning mechanism that uses noisy-clean
training pairs constructed from many images to train the network [4, 5, 6]. However, there
are two main difficulties with supervised learning. First, CNNs are not good at generalizing
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to images that are quite different from the training dataset. Second, collecting a large training
dataset is often challenging in reality.

In order to solve the difficulties, researchers have developed a series of unsupervised learning
methods, which only need to use a single noisy image to achieve denoising. In the following
work, we assume that CNN is denoted by fθ with parameters θ . According to different inputs,
unsupervised learning methods can be divided into two categories. The first category uses
images as inputs to denoise in the image domain [7, 8, 9, 10, 11, 12]. Such as Noise2Noise
[13], which takes two independent noisy observations y1,y2 with the same ground-truth x as
training pairs (in some works y1,y2 are the samplings of a single image y), and then train the
network by minimizing the loss L ( fθ (y1)− y2). The final denoised image is fθ∗(y). The
second category uses parameters in the generation domain as input[14, 15, 16], such as DIP
[17]. The network input is a randomly generated tensor or a fixed z such as image coordinates.
At this time, the loss function L ( fθ (z)−y) is minimized based on a single noisy image y. It is
equivalent to using the network to obtain a generated image similar to y. The generated image
fθ∗(z) with early stopping is taken as the denoised image because fitting a single image with a
network is prone to overfitting.

In this paper, we try to sample both the input and output of the DIP network to obtain
(g1(z),g2(y)) data pairs, where g1,g2 are specific sampling methods given below. The oper-
ation of sampling a single image is called Image drop-out. This paper proposes an improved
denoising method called drop-DIP, combining DIP with Image drop-out. The method sets train-
ing data pairs (g1(z),g2(y)) by sampling a single image and uses an explicit regularization to
correct for training biases between the network output and the DIP generation prior. Finally, the
network is iteratively updated using the ADMM algorithm [18].

The main contributions of this paper are as follows:

(1) The training data pairs are obtained by applying the random mask to a single image,
and the regularization term that represents the difference of the ground truth value under
different sampling is derived from alleviating the overfitting of the network. This work
combining DIP with image-level drop-out is innovative.

(2) g1(z) and g2(y) constitute new training pairs for the network. This image drop-out sam-
pling scheme is a similar but different method to Self2Self [9] and Neighbor2Neighbor
[12].

(3) By improving the training strategy and updating the network by the ADMM algorithm
iteratively, our method can alleviate the characteristics of rapid overfitting of DIP [17]
and facilitate early termination. Moreover, drop-DIP theoretically explains the associ-
ated fitting error. Compared with now existing unsupervised denoising algorithms, this
method has better denoising performance. At the same time, it performs better under
different noise types than state-of-arts unsupervised learning methods and has specific
potential value in practical application scenarios.

2. RELATED WORK

Many traditional image denoising methods exist, including spatial or frequency domain de-
noising, sparse image approximation, and so on [19]. Some of them, such as non-local means
[20] and BM3D [21], make full use of the non-local self-similarity of the image. In order to fit
different noise types, people developed deep learning for denoising. Jain et al. first used CNN
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for image denoising [22]. Zhang et al. estimated residuals of noisy inputs and corresponding
clean images by Dn-CNN [3]. Their Dn-CNN achieves higher metrics on standard benchmarks.
Inspired by the success of Dn-CNN, Gu et al. proposed the fast denoising network (FDnet) to
seek a better trade-off between denoising performance and speed [23]. Supervised learning is
to train CNNs using noisy-clean image groups constructed from many datasets. When consid-
ering single image denoising, we need to use unsupervised learning. Next we introduce two
categories of related works about unsupervised learning.

2.1. Image drop-out. The first category we call Image drop-out. The difficulty of unsuper-
vised learning is obtaining training data, and we can collect training pairs on the image domain
through Image drop-out. Noise2Noise [13] uses independent and identically distributed noise
observations with the same ground truth to construct training pairs, but obtaining noisy images
in practical applications is challenging. Therefore, researchers developed data augmentation
methods such as Self2Self [9] and Neighbor2Neighbor [12]. Moreover, these methods obtain
training pairs (g1(y),g2(y)) from a single image through different sampling methods (denoted
by g1,g2, which will be given below).

Self2Self(S2S) selects the Bernoulli sampling of a single image as the training set, and the
corresponding complementary sampling as the test set to minimize the loss function:

LS2S(θ) = Eg1,g2 ‖ fθ (g1(y))−g2(y)‖2
g2

≈ Eg1,g2 ‖ fθ (g1(x+δ ))−x‖2
g2
.

(2.1)

The input-target training pair is (g1(y),g2(y)), where g1(y) = g1� y is the partial mask of the
single noisy image y,

g1[i, j] =

{
1, with probability p,
0, with probability 1− p.

(2.2)

And g2(y) = (1−g1)�y is the complementary sample corresponding to g1, and ‖ ·‖2
g2
= ‖(1−

g1)�·‖2
2.

Neighbor2Neighbor(N2N) samples the adjacent pixels of a single image to form training
pairs (g1(y),g2(y)). Then train the network by minimizing the loss function:

LN2N(θ) = Eg1,g2 ‖ fθ (g1(y))−g2(y)‖2
2

+λEg1,g2 ‖ fθ (g1(y))−g2(y)−g1 ( fθ (y))+g2 ( fθ (y))‖2
2 .

(2.3)

The first term is implicit fidelity term, and the second regularization term is to correct the train-
ing bias of different samples. This operation for sub-sampling a single image is called Im-
age drop-out, which essentially takes advantage of the insensitivity of the neural network to
high-frequency information to reduce the noise representation of the network output. Then the
network output is close to the ground truth of the image during the parameter update process.
Image drop-out provides a way to build training pairs from a single image. However, Neigh-
bor2Neighbor utilizes external datasets in nearest neighbor sampling. Finding a new way to
construct training pairs is essential. Next, we provide a new method to construct by random
sampling using DIP generation prior.
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2.2. Generative prior based on DIP. The second category we call generative prior. Unlike
the methods in Section 2.1, the network fθ becomes a function from generating parameters to
generating images in DIP. Generative priors, also known as implicit fidelity terms, refer to the
generated images in the process of fitting the image with the neural network. Unsupervised
learning methods that train networks on generative domains construct training pairs (z,y) from
random tensors z. DIP [17] proposed the concept of generative prior, which uses a d-layer
generator network to represent the parameterized function fθ (z) : Rk→ Rn that maps the code
vector z ∈ Rk to the image y ∈ Rn, k < n in the following way:

fθ (z) = ReLU(Wd(c) . . .ReLU(W2(c)ReLU(W1(c)z)) . . .) , (2.4)

where ReLU(z) = max(z,0) applies entrywise, Wi ∈ Rni×ni−1 are the operators performing a
convolution with the kernel c in the i-th layer, ni is the number of neurons in the i-th layer,
k = n0, n = nd . Next, train the weights Wi of the network by minimizing the loss function

θ
∗ = argmin

θ

Limp ( fθ (z),y) , x̂ = fθ∗(z), (2.5)

where Limp is the distance between the generated prior fθ (z) to y. It is implicit because the
generative prior of denoised image is captured by the network fθ .

In addition to Ulyanov’s DIP [17], there are currently several ways to exploit generative prior.
Heckel et al. proposed Deep Decoder (DD) [15], which chooses to use the decoder to build an
under-parameterized network based on the DIP work, thereby limiting the network’s ability to
express noise in the image and then realizing the denoising goal. Sitzman et al. [14] proposed
that SIREN constructed implicit neural representations to establish a function mapping from
coordinates to pixel values. The activation function selected a variant of the trigonometric sin
function. Compared with the commonly used ReLU function, it has a better-detailed expression
ability and preserves the output high-order gradient information. Fan et al. proposed DMF
[16], a matrix factorization model based on a deep neural network structure. The input is a
low-dimensional unknown latent variable, and the output is a partially observed variable. This
method has significant advantages in matrix completion and image inpainting. Figure 1 shows
the PSNR variation curve during the iterative process of several generating prior methods.

FIGURE 1. Comparison of some recent proposed denoising methods by gener-
ative priors, where ’original’ is the PSNR of y.
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In Figure 1, we demonstrate how several methods mentioned earlier implicitly represent im-
ages. All methods can achieve denoising goals and improve image quality with the increase of
iteration steps, among which the DIP method is the best. Based on this fact, we choose DIP as
the generation before achieving a better denoising effect.

3. PROPOSED METHOD

We utilize random sampling of DIP generated parameters to construct training data. Ulyanov
[17] pointed out that DIP network fθ∗(z) is stable respect to a small perturbation of input z.
Jo et al. [24] proposed that Stochastic temporal ensembling (STE) can be used to improve the
fitting performance of DIP by adding a disturbance to the input of the network [25]. In fact,
experimental results demonstrate that, for a trained DIP fθ∗(z), fθ∗(g(z)) is less different from
fθ∗(z), where g is a random mask, p = 0.9. And the PSNR of fθ∗(g(z)) is 0.15db higher than
fθ∗(z) in experiment. So we can build pairs of data by random sampling.

We replace the single (z,y) with (g1(z),g2(y)) pairs, where g1,g2 are different Bernoulli
samples to achieve multiple sets of random masks. Next, we combine the DIP generation prior
with the loss function (2.3) in Neighbor2Neighbor, and obtain the network loss function with
respect to the parameter θ as:

L (θ)=Eg1,g2 ‖ fθ (g1(z))−g2(y)‖2
g2︸ ︷︷ ︸

Limp(θ)

+λ Eg1,g2 ‖g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))‖2
2︸ ︷︷ ︸

Lreg(θ)

.

(3.1)
where ‖ · ‖2

g2
= ‖g2� ·‖2

2. The first item is an implicit fidelity term, the second item is an
explicit regularization, and fθ (z) is the generation network of DIP after freezing the network
parameters. Let us denote by N (·) an image normalization operation. We will normalize the
final denoised estimate. We have

N (Eg1,g2g2( fθ (g1(z)))) = N (p2Eg1 fθ (g1(z)))≈N (p2x) = x,

so we can use Eg1,g2g2( fθ (g1(z))) as the final denoising estimate.

3.1. Implicit fidelity term and Explicit regularization term. Below we introduce the role
of the two terms in (3.1) during training. First, compute Limp(θ). Even though the loss for
each training pair is only measured on those pixels sampled by g2, Eg2 measures the difference
across all image pixels since the random pixel mask g2 is randomly selected using a Bernoulli
process.

Training with the pairs (g1(z),g2(y)) is closely related to training with (g1(z),x). Further-
more, the following proposition is established.

Proposition 3.1. Assume y = x+δ with noise δ . The implicit fidelity term Limp(θ) satisfies

Limp(θ) = Eg1,g2 ‖ fθ (g1(z))−g2(y)‖2
g2

= Eg1,g2 ‖ fθ (g1(z))−x‖2
g2
+Eg1,g2 ‖δ‖

2
g2
−2tr(µT r),

(3.2)

where µ = Eg1,g2(g2�δ ) and r = Eg1,g2(g2� ( fθ (g1(z))−x)).

Proof. See Appendix A . �
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Assume that the mean of noise δ is zero, and the expectation of the loss function with respect
to δ is the same as

Eδ Limp = Eg1,g2 ‖ fθ (g1(z))−x‖2
g2
+Eg1,g2 ‖Var(δ )‖2

g2
+Eg1,g2 ‖Eδ δ‖2

g2
−2tr(Eδ (µ)

T r),

where the last two terms are 0, and the second term is a fixed value when the noise distribution
is determined. So minimize Limp(θ) will enforce fθ (g1(z))≈ x.

Similar to Neighbor2Neighbor [12], Lreg(θ) is to correct the deviation between the DIP
generation prior and the network output. Define ε = fθ (g1(z))− fθ (z). Lreg(θ) can be reduced
to

Lreg(θ) =Eg1,g2 ‖g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))‖2
2

= Eg1,g2

∥∥( fθ (g1(z))−y)g2− ε
∥∥2

2 .
(3.3)

If ε = 0, the deviation between the network output fθ (g1(z)) and DIP generation fθ (z) is zero,
and the algorithm is a special case of DIP. However, if ε 6= 0 and fθ (g1(z)) = x+ ε1, then
fθ (g1(z))−y = ε1−δ . At this time, (3.3) is equal to

Eg1,g2 ‖g2(ε1−δ )− ε‖2
2

= Eg1,g2 ‖g2(ε1)− ε‖2
2 +Eg1,g2 ‖δ‖

2
g2
−2tr(µTEg1,g2(g2(ε1)− ε)).

(3.4)

The expectation of the loss function (3.4) with respect to noise is the same as

Eδ Lreg = EδEg1,g2 ‖g2(ε1−δ )− ε‖2
2

= Eg1,g2 ‖g2(ε1)− ε‖2
2 +Eg1,g2 ‖Var(δ )‖2

g2
+Eg1,g2 ‖Eδ δ‖2

g2
−2tr(Eδ (µ)

TEg1,g2(g2(ε1)− ε)),

where the last two terms are 0, and the second term is a fixed value when the noise distribution
is determined. Likewise, due to the normalization operation, we have

N (Eg1,g2g2(ε1)) = N (p2ε1) = ε1.

So minimizing (3.4) will enforce ε ≈ ε1, and fθ (g1(z))→ x,ε1→ 0 when we minimize implicit
fidelity term (3.2). Then ε → 0. In summary, minimizing Lreg(θ) can ensure that fθ (g1(z))→
fθ (z) during network training.

3.2. The fitting error of drop-DIP. We gave the drop-DIP training settings and loss function
in the previous sections. In this section, we give the fitting error of drop-DIP and then verify
the theoretical basis of neural network denoising and prove that the drop-DIP denoising effect
is better than DIP.

Consider image denoising problem (1.1). To explore the network’s fitting error, we approx-
imate the CNN’s nonlinear training process as a linear process [26]. It is assumed that the
network parameter θ changes relatively little concerning the initialization parameter θ0 during
training. Then the parameter update process can be approximated by a linearization process. In
the theoretical analysis, we consider the simplest gradient descent method to solve the following
regularization problems

min
θ

Eg1,g2 ‖ fθ (g1(z))−g2(y)‖2
g2
+λ ‖g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))‖2

2 . (3.5)

To simplify the analysis, we only focus on the training process by one training pair. The up-
per bound of the error is obtained by any single sampling, and the error corresponding to the
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sampling expectation should still be less than this upper bound. Consider

‖ fθ (g1(z))−g2(y)‖2
g2
= ‖ fθ (g1(z))−y‖2

g2
≤ ‖ fθ (g1(z))−y‖2

2 ,

we can find an upper bound on the error on the right-hand side of the inequality. So (3.5) can
be simplified to

min
θ
‖ fθ (g1(z))−y‖2

2 +λ ‖g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))‖2
2 . (3.6)

Assume that the network parameters of the kth step in the training process are θk, and the
Jacobian matrix of the network is J (θk), where [J (θk)]i, j =

∂ fi(θk)
∂θk j

. It can be obtained that
the Taylor expansion of fθk(g1(z)) in θ0 is fθk(g1(z)) ≈ fθ0(g1(z)) +J (θ0)(θk − θ0). Let
J := J (θ0). For fθ (z), we also have fθk(z) ≈ fθ0(z) + J(θk − θ0). It is because freezing
the network parameters can use J (θk) to represent the Jacobian matrix of fθ (z). Due to the
randomness of Bernoulli sampling, we perform theoretical analysis on an arbitrary sampling.
Further, (3.5) can be transformed into the following linear approximation problem

min
θ

Llin(θ) =
∥∥ fθ0(g1(z))− y+J(θ −θ0)

∥∥2
2

+λ
∥∥g2( fθ0(g1(z)))−g2(y)− ( fθ0(g1(z))− fθ0(z))+g2(J)(θ −θ0)

∥∥2
2 ,

(3.7)

At this point, we have transformed the drop-DIP loss function into an approximately linear
problem. Next, we simplify the neural network so that we can use the gradient descent method
to analyze the change of θ in the iterative process and give the fitting error of the network for x
during the k step iteration.

According to Heckel’s Theorem 2 [26], we can obtain an upper bound of the error between
fθ (g1(z)) and x. Consider a simplified two-layer network fθ (g1(z)) = ReLU(Ug1(z)θ)v with
an activation function ReLU and upsampling layer U and one convolution operator θ , where
z∈Rn×nis the fixed input, θ ∈Rn×kis the convolution opertor, U is the unsampling opertor, v∈
Rk×1 = [1, . . . ,1,−1, . . . ,−1]/

√
k. Then perform singular value decomposition on the Jacobi

matrix J, J = WΣWT , whereW = [w1, . . . ,wn],Σ = diag{σ1, . . . ,σn} with σ1 ≥ σ2 ≥ . . . ≥
σn, σ ∈ (0,1) decays sharply near the p singular value. Assume that the ratio σp/σp+1 is
sufficiently large. Then minimize (3.7) using gradient descent θk+1 = θk−η∇Llin (θk), where
η is a fixed learning rate. The fitting error of drop-DIP at the k-th iteration is obtained as
follows.

Theorem 3.1. Assume we have the same setting as Heckel’s Theorem 2 [26]. The fitting error
between fθ (g1(z)) and x is upper bounded by∥∥ fθk(g1(z))−x

∥∥
2 ≤ ‖

(
1−ησ

2
p
)k

ḡ2(x)+
(
1−η(λ +1)σ2

p
)k

g2(x)‖2︸ ︷︷ ︸
error in fitting signal

+

(
n

∑
i=1

((
1−ησ

2
i
)k−1

)2
〈wi, ḡ2(δ )〉2 +

n

∑
i=1

((
1−η(λ +1)σ2

i
)k−1

)2
〈wi,g2(δ )〉2

)1/2

︸ ︷︷ ︸
noise fitting

+ξ‖y‖2
(3.8)

with high probability, where ḡ2 = 1−g2,ξ ∈ (0,σp/σ1].
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Proof. See Appendix B. �

(3.8) describes the training process of the simplified drop-DIP model by gradient descent
update. In particular, it explains why drop-DIP adapts to noise-free signal x much faster than
noise δ , so we can achieve image denoising through CNN training. The first term in (3.8) is
the fitting error with respect to the signal x, the second term is the fitting of the noise δ , and the
third term is the fixed value of the observed signal y. When x is located in the space spanned by
the eigenvectors corresponding to the top p largest singular values, after a few iterations, most
of x is fitted (

(
1−ησ2

p
)k and

(
1−η(λ +1)σ2

p
)k is small). And most of the noise has not been

fitted since
(
(
1−ησ

2
i
)k−1)2 ≈ 0,

and

(
(

1−η(λ +1)σ2
i )

k−1
)2
≈ 0

for i = p+ 1, . . . ,n. Therefore, we obtain a theoretical validation of the drop-DIP network for
denoising.

Next Let us compare (3.8) with the original DIP fitting error.The loss function in the original
DIP is ‖ fθ (z)−y‖2

2. The fitting error of DIP is

∥∥ fθk(z)−x
∥∥

2 ≤
(
1−ησ

2
p
)k ‖x‖2︸ ︷︷ ︸

error in fitting signal

+

√
n

∑
i=1

((
1−ησ2

i
)k−1

)2
〈wi,δ 〉2︸ ︷︷ ︸

noise fitting

+ξ‖y‖2. (3.9)

Comparing (3.8) with (3.9), we see that the two bounds are equal when λ = 0 because ḡ2+g2 =
1. For the error in fitting signal, we have

‖
(
1−ησ

2
p
)k

ḡ2(x)+
(
1−η(λ +1)σ2

p
)k

g2(x)‖2 ≤
(
1−ησ

2
p
)k ‖x‖2.

For the noise fitting, we have(
n

∑
i=1

((
1−ησ

2
i
)k−1

)2
〈wi, ḡ2(δ )〉2 +

n

∑
i=1

((
1−ησ

2
i
)k−1

)2
〈wi,g2(δ )〉2

)1/2

≤

√
n

∑
i=1

((
1−ησ2

i
)k−1

)2
〈wi,δ 〉2.

We can find that when λ > 0,∥∥ fθk(g1(z))−x
∥∥

2 ≤
∥∥ fθk(z)−x

∥∥
2 .

Therefore, our drop-DIP method after adding the regularization term can reduce the fitting errors
of DIP. The result in Experiment 4.3 also proves that as the number of iterations increases, the
fitting error of drop-DIP is less than that of DIP.

However, (3.8) demonstrates that the fitting error will not disappear during training but will
increase through fitting noise, so the network training process needs early stopping. In this
paper, we set the network to stop early for the number of training steps when the distance
between the output and the generated prior is less than a threshold ε . That is, stopping training
at step k, we have Eg1,g2‖ fθk(z)− fθk(g1(z))‖g2 < ε .
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3.3. Unsupervised training with ADMM. We can find the optimal of (3.1) through ADMM
algorithm [18], which is widely used in image restoration. (3.1) can be rewritten as:

argmin
θ ,t

1
2
Eg1,g2 ‖ fθ (g1(z))−g2(y)‖2

g2
+

1
2
‖t‖2

2

s.t. Eg1,g2 ‖g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))− t‖2 = 0.
(3.10)

The augmented Lagrangian function for (3.10) is:

L (θ , t,u) = Eg1,g2

1
2
‖ fθ (g1(z))−g2(y)‖2

g2
+

1
2
‖t‖2

2

+
λ

2
‖g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))− t‖2

+< u,g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))− t >,

(3.11)

where λ > 0 is a scalar, and u is the Lagrangian parameter related to the constraint. We fix
two variables in the Lagrangian function, update the other variable, and then find its optimal
one. Upon suitable initialization of the variables involved, the kth iteration of ADMM reads as
follows:

θk+1 = argmin
θ

Eg1,g2

1
2
‖ fθ (g1(z))−g2(y)‖2

g2

+
λ

2

∥∥∥g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))− tk +
uk

λ

∥∥∥2

2
,

(3.12)

tk+1 = argmin
t

Eg1,g2

1
2
‖t‖2

2

+
λ

2

∥∥∥t−
(

g2( fθk+1(g1(z)))−g2(y)− ( fθk+1(g1(z))− fθk+1(z))+
uk

λ

)∥∥∥2

2
,

(3.13)
and

uk+1 = uk +λEg1,g2g2( fθk+1(g1(z)))−g2(y)− ( fθk+1(g1(z))− fθk+1(z))− tk+1. (3.14)

(3.12) can be solved by the gradient-based method. In particular, we use the Radam iterative
scheme [27] with an adaptive learning rate. The solution of (3.13) can be expressed explicitly.
The second problem (3.13) is differentiable so that we can derive the corresponding minimum
value from the formula (3.13) with respect to t. The third problem (3.14) can be directly sub-
stituted into known values. As a result, the unsupervised training strategy of our proposed
drop-DIP algorithm is summarized in Algorithm 1.
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Algorithm 1 Drop-DIP
Input: a single noisy image y; the network parameter θ0; with probabilityp1, p2 for Bernoulli

sampling g1,g2; the network input z; hyper-parameter λ ,ε,K,M,N.
Output: denoised image Eg1,g2g2( fθ (g1(z)))

for k = 0 to K do
for i = 1 to N and j = 1 to M do

Bernoulli sample the input g1i(z) and images g2 j(y)
for the network fθk , derive the denoised image fθk(g1i(z))

end for i, j
update θk via (3.12)by Radam optimizer
update tk according to (3.13)
update uk according to (3.14)
if Eg1,g2‖ fθk(z)− fθk(g1(z))‖g2 < ε , then

break
output Eg1,g2g2( fθ (g1(z))) = 1

N
1
M ∑

N
i=1 ∑

M
j=1 g2 j( fθ (g1i(z)))

end if
end for k

4. EXPERIMENTS

In this section, we present the results of some numerical experiments to verify the perfor-
mance of the proposed drop-DIP method compared to the traditional denoising method BM3D
[21] and the unsupervised learning denoising methods DIP [17], Self2Self [9] and DIP-SURE
[24] methods. Various noise models of (1.1) are considered, such as Gaussian noise, Pulse noise
(salt and pepper noise), and Poisson noise. The network structure we selected in the experiment
is shown in Figure 2, which is a formal improvement based on the U-Net network structure.
In practical experiments, for the sampling probability p, too small p (close to 0) will drop out
lots of image information so that the network cannot fit the image correctly, and too large p
(close to 1) will make drop-DIP approach DIP. p1 and p2 from g1,g2 are usually set to 0.8 and
0.9 respectively to avoid losing too much image information. In the following subsections, we
conduct image denoising experiments both on gray image dataset Set12 and color image dataset
CSet9 [25]. Set12 and CSet9 are classic datasets in image denoising.

In the subsequent network training process, we choose the Radam optimizer for parameter
update, and the learning rate is 1e− 3. To evaluate the performance of image denoising, we
choose PSNR, SSIM, and LPIPS. PSNR values are high for over-smoothed images, but image
details are lacking. On this basis, the LPIPS [28] indicator can pay attention to image details
closer to human intuition. The author directly calculates this indicator based on the relevant
procedures of AlexNet’s public pre-trained weights.

4.1. The influence of λ . The drop-DIP algorithm can be divided into two parts. One part uses
the network as demonstrated in Figure 2 to update the parameters of (3.12), and the other part
uses the ADMM algorithm to iteratively update (3.13) and (3.14). We perform five ADMM [18]
iterations for each epoch during the training and freezing the network parameters. The algo-
rithm is to minimize the loss function of (3.12), so it is essential to choose a suitable Lagrange
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FIGURE 2. The network architecture used in drop-DIP.

multiplier λ . λ is used to control the strength of the regularization term. Figure 3 shows the
performance of drop-DIP under different λ values on the Set12.

0 1 2 3 4 5
lambda

20

22

24

26

28

30

PS
NR

PSNR
SSIM
LPIPS

0.60

0.65

0.70

0.75

0.80

0.85
SS

IM

0.05

0.10

0.15

0.20

0.25

0.30

0.35

LP
IP

S

FIGURE 3. The effect of lagrange multiplier λ on drop-DIP

When λ = 0, the regularization term is not included in the network training. At this time,
the network is trained directly, and the network is easy to fit to obtain the Bernoulli sampling
part of the image. Therefore, it is necessary to set a regularization term to improve the training
effect of the network after sampling. It can be seen from the figure that when λ = 2, PSNR is
better than other values, SSIM and LPIPS tend to be stable when λ > 2, so we choose λ = 2
for the network training in the following experiments.
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4.2. The early-stopping of training process. It is found in Section 3.2 that as the parameters
update iteratively, the noise fitting will cause error, so early stopping is needed to reduce the
error. The conventional DIP method is implemented by setting the maximum number of itera-
tion steps, which is difficult to achieve in practical applications. DIP-SURE uses the zero-cross
stopping method, and the added SURE regularization term will obtain a negative value when
the network fits the noise part of the image, so the network training can be stopped when the
regularization term is less than zero. In drop-DIP, we can stop training by observing the de-
viation of fθ (g1(z)) from fθ (z). Figure 4 demonstrates the changes in various metrics during
training.
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FIGURE 4. lossg, PSNR and LPIPS in drop-DIP network training

Observing the difference between the network output fθ (z) and fθ (g1(z)), we define the
variable lossg =Eg1,g2 ‖ fθ (z)−g2( fθ (g1(z)))‖2

2. At the beginning of the network fitting image,
this variable is at a large value. As the network iterates, as shown in Figure 4, we found that
this value decreases quickly and the increases slowly after the network fits the noisy part. Near
the epoch corresponding to the minimum value of lossg (the red vertical line in Figure 4), the
corresponding PSNR and LPIPS of lossg during the network training process. Therefore, we
can stop training by judging whether lossg reaches a minimum value or stabilizes at a small
value.

4.3. The training process of DIP-based methods. Below we compare the denoising methods
for the specific example of the Camara image in Set12. The methods chosen for comparison
are DIP [17], DIP-SURE [24], and our drop-DIP. Figure 5 is the changes of PSNR, SSIM, and
LPIPS three indicators under different epochs of each method with Gaussian noise, Pulse noise,
and Poisson noise.
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(A) PSNR in training with Gauss-
ian noise

(B) SSIM in training with Gauss-
ian noise

(C) LPIPS in training with Gauss-
ian noise

(D) PSNR in training with Pulse
noise

(E) SSIM in training with Pulse
noise

(F) LPIPS in training with Pulse
noise

(G) PSNR in training with Pois-
son noise

(H) SSIM in training with Pois-
son noise

(I) LPIPS in training with Pois-
son noise

FIGURE 5. Compare PSNR, SSIM, LPIPS metrics in the training process of
different DIP-based methods

Observing Figure 5, we can find that, under various noise types, the DIP and DIP-SURE
performance decreases rapidly with the number of iteration steps. Nevertheless, drop-DIP per-
formance is very stable under Gaussian and Poisson noise, and decreases slowly under Pulse
noise, but it is still significantly better than the other two methods. For several image denois-
ing goals with different noises, our drop-DIP algorithm seems to be the most robust, and its
corresponding PSNR, SSIM, and LPIPS score curves do not have apparent oscillations, and it
is more stable than other methods. At the same time, the optimal value corresponding to the
training process is very close to other algorithms. The experiment also verifies that in Section
3.2, the fitting error of drop-DIP is smaller than the theory of the DIP method. In summary, a
relatively stable solution can be obtained using the drop-DIP method to denoise a single noisy
image.
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4.4. The denoising results of various single image denoising methods. To verify the effec-
tiveness of drop-DIP, we compared it with the current methods. Table 1 demonstrates the com-
parison results with other single image denoising methods on the grayscale dataset Set12 and
the color dataset Cset9. The comparison methods include BM3D [21], Self2Self(S2S) [9], DIP
[17], and DIP-SURE [24]. Except for BM3D, the rest of the methods are based on CNN and
complete denoising through unsupervised learning. There are three types of noise: Gaussian
noise, Pulse noise, and Poisson noise. Two damage levels are set for each noise. For example,
the low-level Gaussian noise is σ = 15, and the high-level Gaussian noise is σ = 50.

TABLE 1. The comparison of single-image denoising algorithms. (↑) denotes
that higher is better and (↓) denotes the lower is better. Best performance is in
bold and the second best is underlined.

Dataset Noise type
PSNR(↑)

BM3D DIP DIP-SURE S2S drop-DIP

Set12

low-level Gaussian 31.7 30.79 30.19 30.24 31.11
high-level Gaussian 25.52 23.12 23.98 23.52 24.40

low-level Pulse 21.12 25.82 25.72 26.54 27.18
high-level Pulse 15.68 22.00 22.65 22.71 23.29

low-level Poisson 30.62 28.97 28.92 28.41 29.88
high-level Poisson 26.77 24.89 25.20 25.48 26.23

Cset9

low-level Gaussian 33.9 34.42 34.21 34.48 34.40
high-level Gaussian 27.94 28.02 28.48 28.59 28.66

low-level Pulse 20.89 27.35 29.61 27.75 30.13
high-level Pulse 17.59 23.30 24.68 22.78 24.76

low-level Poisson 32.26 32.33 32.70 32.88 32.79
high-level Poisson 28.17 28.27 28.44 28.9 28.73

Dataset Noise type
SSIM(↑)

BM3D DIP DIP-SURE S2S drop-DIP

Set12

low-level Gaussian 0.89 0.83 0.85 0.76 0.87
high-level Gaussian 0.74 0.61 0.68 0.60 0.69

low-level Pulse 0.57 0.76 0.76 0.78 0.79
high-level Pulse 0.26 0.58 0.65 0.60 0.66

low-level Poisson 0.86 0.79 0.82 0.82 0.84
high-level Poisson 0.68 0.69 0.72 0.66 0.75

Cset9

low-level Gaussian 0.90 0.90 0.91 0.91 0.91
high-level Gaussian 0.82 0.80 0.83 0.79 0.84

low-level Pulse 0.53 0.76 0.84 0.76 0.85
high-level Pulse 0.25 0.67 0.76 0.58 0.77

low-level Poisson 0.87 0.87 0.88 0.87 0.89
high-level Poisson 0.82 0.80 0.84 0.79 0.84

Dataset Noise type
LPIPS(↓)

BM3D DIP DIP-SURE S2S drop-DIP

Set12

low-level Gaussian 0.07 0.06 0.11 0.11 0.05
high-level Gaussian 0.13 0.24 0.24 0.33 0.18

low-level Pulse 0.43 0.19 0.21 0.20 0.16
high-level Pulse 0.72 0.34 0.27 0.38 0.22

low-level Poisson 0.07 0.13 0.13 0.13 0.07
high-level Poisson 0.16 0.20 0.23 0.24 0.16

Cset9

low-level Gaussian 0.09 0.05 0.08 0.05 0.07
high-level Gaussian 0.17 0.19 0.16 0.17 0.13

low-level Pulse 0.57 0.32 0.19 0.29 0.15
high-level Pulse 0.68 0.35 0.26 0.45 0.20

low-level Poisson 0.12 0.12 0.10 0.09 0.09
high-level Poisson 0.17 0.20 0.17 0.18 0.14
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21.24/0.55/0.60
(A) Pulse-noisy

21.35/0.53/0.59
(B) BM3D

27.95/0.74/0.25
(C) DIP

28.85/0.75/0.25
(D) S2S

30.06/0.79/0.15
(E) DIP-SURE

30.47/0.80/0.11
(F) drop-DIP

FIGURE 6. Example comparison of single image denoising. The metrics below
the picture are PSNR/SSIM/LPIPS

As seen from Table 1, for Pulse noise, our drop-DIP method can achieve the best perfor-
mance on PSNR, SSIM, and LPIPS. For Poisson noise, although drop-DIP can only achieve the
second-best effect on the PSNR score, it performs better on the LPIPS score. Because Self2Self
takes the average of multiple network outputs to obtain the target image. This operation will sig-
nificantly reduce the variance and improve the PSNR score, but it will lose the high-frequency
details in the image, so the performance of the LPIPS score will deteriorate. Comparing the
noise reduction effect of the grayscale image in Set12 with that of the color image in Cset9,
image denoising is better in Cset9. It can be found that the more data contained in a single
noisy image, the more various indicators of CNN are improved. Experiments show that the
effect of neural network fitting image is affected by the information of the image itself. The
more information, the better the fitting effect.

For impulse noise, Figure 6 shows the comparison of denoising effects of several methods.
In Figure 6, it can be seen that for Pulse noise, the traditional BM3D method cannot effectively
denoise the noise. The DIP method can achieve denoising but over-smoothing. DIP-SURE and
our drop-DIP can remove the noise while retaining the details of the image.

4.5. The comparison of real image denoising with unsupervised methods. Unsupervised
denoising methods have broad application prospects in real image denoising tasks. Zheng et
al. [29] used neural network training to map real images to the hypothesis space where Gauss-
ian noise was established, and then used traditional denoising methods, such as NN+BM3D.
We compare the NN+BM3D method, the traditional DIP method, and our improved drop-DIP
method on the real image dataset CC (Nam et al. [30]). The denoising results are listed in Table
2.
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TABLE 2. The comparison of real image denoising with unsupervised meth-
ods. (↑) denotes that higher is better and (↓) denotes the lower is better. Best
performance is in bold and the second best is underlined.

Method NN+BM3D DIP drop-DIP
PSNR(↑) 36.88 36.79 37.81
SSIM(↑) 0.95 0.94 0.95
LPIPS(↓) 0.04 0.08 0.04

29.87/0.78/0.11
(A) Real

33.22/0.91/0.07
(B) NN-BM3D

33.02/0.90/0.11
(C) DIP

33.78/0.91/0.06
(D) drop-DIP

FIGURE 7. Example comparison of real image denoising. The metrics below
the picture are PSNR/SSIM/LPIPS

Comparing with NN+BM3D and DIP, the PSNR, SSIM, and LPIPS of drop-DIP in the dataset
CC are all better than other methods. Drop-DIP, an unsupervised denoising method, also per-
forms superior for real image denoising. Figure 7 demonstrates a real image denoising result of
the three methods. Furthermore, drop-DIP can preserve more image details than NN-BM3D.

5. CONCLUSIONS

We extended the DIP denoising by using the image drop-out technique to perform data aug-
mentation by randomly sampling the input and output of the network. At the same time, for
the training of the constrained network, the display regularization term is set for the network
sampling, and the ADMM algorithm is used to realize the training of the network. The early-
stopping criterion for training is set for the difference in the network output under different
inputs. The denoising performance of the DIP method is improved without requiring man-
ual early stopping. Our experimental verification shows that the performance of the drop-DIP
method on PSNR, SSIM, and LPIPS indicators is significantly improved under the grayscale,
color and real-world image datasets.
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APPENDIX A. PROOF OF PROPOSITION 3.1

Proposition A.1. Assume y = x+δ with noise δ . The implicit fidelity term Limp(θ) satisfies

Limp(θ) = Eg1,g2 ‖ fθ (g1(z))−g2(y)‖2
g2

= Eg1,g2 ‖ fθ (g1(z))−x‖2
g2
+Eg1,g2 ‖δ‖

2
g2
−2tr(µT r),

(A.1)

where µ = Eg1,g2(g2�δ ),r = Eg1,g2(g2� ( fθ (g1(z))−x)).

Proof. Rewrite the implicit fidelity term as follows

Eg1,g2 ‖ fθ (g1(z))−g2(y)‖2
g2
= Eg1,g2 ‖ fθ (g1(z))−y‖2

g2

= Eg1,g2 ‖ fθ (g1(z))−x‖2
g2
+Eg1,g2‖δ‖

2
g2
−2tr

(
Eg1,g2(δ )

T
g2
( fθ (g1(z))−x)g2

)
,

(A.2)

where (·)g2 = (g2�·). Correlate the expectation about δ with the second term in (A.2). For the
last item in (A.2), we have

−2tr
(
Eg1,g2(δ )

T
g2
( fθ (g1(z))−x)g2

)
=−2tr(Eg1,g2(δ )

T
g2
Eg1,g2( fθ (g1(z))−x)g2)−2tr(COV(µ,r))

=−2tr(µT r).

(A.3)

We believe that equation (A.3) holds when the noise term and r are independent of each other.
Combining (A.2) and (A.3) yields

Eg1,g2 ‖ fθ (g1(z))−x‖2
g2
+Eg1,g2 ‖δ‖

2
g2
−2tr(µT r), (A.4)

where µ = Eg1,g2(g2�δ ), and r = Eg1,g2(g2� ( fθ (g1(z))−x)). �

APPENDIX B. PROOF OF THEOREM 3.1

We first restate our Theorem 3.1 in Theorem 2 in Heckel and Soltanolkotabi [26] and Theo-
rem A.2 in Wang [31].

Theorem B.1. Let x∈Rn be a signal in the span of the first p trigonometric basis functions, and
consider a noisy observation y= x+δ , where the noise δ ∼N

(
µ,σ2 · I

)
is Gaussian noise. To

denoise this signal, we fit a two-layer generator network fθ (g1(z)) = ReLU(Ug1(z)θ)v, where
v = [1, . . . ,1,−1, . . . ,−1]/

√
k, and z ∼iid N (0,1), and U is an upsampling operator that im-

plements circular convolution with a given kernel u. Denote σ
.
= ‖u‖2 | Fh(u~ u/‖u‖2

2
)
|1/2,

where h(t)=
(
1− cos−1(t)/π

)
t and~ denotes the circular convolution. Fix any ξ ∈ (0,σp/σ1],

and suppose k ≥ Cun/ε8, where Cu > 0 is a constant only depending on u. Consider gra-
dient descent with step size η ≤ ‖Fu‖−2

∞ (Fu is the Fourier transform of u) starting from
θ0 ∼iid N

(
0,ω2), entries, ω ∝

‖y‖2√
n . Then, for all iterates k obeying t ≤ 100

ησ2
p
, the mse of
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our fθk(g1(z)) and the real signal x obeys∥∥ fθk(g1(z))−x
∥∥

2 ≤ ‖
(
1−ησ

2
p
)k

ḡ2(x)+
(
1−η(λ +1)σ2

p
)k

g2(x)‖2︸ ︷︷ ︸
error in fitting signal

+

(
n

∑
i=1

((
1−ησ

2
i
)k−1

)2
〈wi, ḡ2(δ )〉2 +

n

∑
i=1

((
1−η(λ +1)σ2

i
)k−1

)2
〈wi,g2(δ )〉2

)1/2

︸ ︷︷ ︸
noise fitting

+ξ‖y‖2
(B.1)

with high probability at least 1− exp
(
−k2)−n−2, where ḡ2 = 1−g2,ξ ∈ (0,σp/σ1].

Proof. First, for the nonlinear least squares problem on convolutional networks of the form:

L (θ) = ‖ fθ (g1(z))−y‖2
2 +λ ‖g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))‖2

2 . (B.2)

Here, the network fθ can be regarded as a nonlinear model with respect to the parameters θ .
To solve this problem, we run gradient descent with a fixed step size η , starting from an initial
point θ0, updated by

θk+1 = θk−η∇L (θk) , (B.3)

where ∇L (θ) =J T (θ)(g2(( fθ (g1(z))−y)))

+g2(J (θ))T (g2( fθ (g1(z)))−g2(y)− ( fθ (g1(z))− fθ (z))).

Here J (θ) is the Jacobian associated with the nonlinear map f with entries given by[J (θ)]i, j =
∂ fi(θ)

∂θ j
, and ḡ2 = 1−g2. Since the network parameters are frozen when calculating fθ (z), its cor-

responding Jacobian matrix is 0. In order to study the properties of the gradient descent iterates,
we relate the non-linear least squares problem to a linearized one in a ball around the initializa-
tion θ0. The associated linearized least-squares problem is defined as

Llin(θ) =
∥∥ fθ0(g1(z))−y+J(θ −θ0)

∥∥2
2

+λ
∥∥g2( fθ0(g1(z)))−g2(y)− ( fθ0(g1(z))− fθ0(z))+g2(J)(θ −θ0)

∥∥2
2 .

(B.4)

Here, J is called the reference Jacobian, a fixed matrix independent of θ that approximates the
Jacobian map J (θ0) at initialization. Starting from the same initial point θ0. In order to better
measure the deviation of the network estimate from the observed value y, we change the g2
norm of the first term to the L2 norm.

To simplify the notation, we write ŷ = y− fθ (z), ŷg1 = y− fθ (g1(z)),J = J (θ0), and a =
θ −θ0. So the least-squares objective in (B.4) is equal to

Llin(θ) =
∥∥ŷg1−Ja

∥∥2
2 +λ

∥∥ḡ2(ŷg1)−g2(J)a+ ŷ
∥∥2

2 , (B.5)

and the gradient update is

ak = ak−1−ηJT (Jak−1− ŷg1)−ηλg2(J)T (g2(J)ck−1− ḡ2(ŷg1)− ŷ), (B.6)

where a0 = 0. And the residual of gradient descent at iteration k is

rlin(k) = ŷg1−Jak (B.7)
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= ŷg1−J(ak−1−ηJT (Jak−1− ŷg1)−ηλg2(J)T (g2(J)ak−1− ḡ2(ŷg1)− ŷ)) (B.8)

≈ (I−ηJJT )(ŷg1−Jak−1)−ηλJJT g2(ŷg1−Jak−1) (B.9)

= (I−ηJJT −ηλJJT )g2(ŷg1−Jak−1)+(I−ηJJT )ḡ2(ŷg1−Jak−1) (B.10)

= (I−ηJJT −ηλJJT )2g2(ŷg1−Jak−2)+(I−ηJJT )2ḡ2(ŷg1−Jak−2)(using g� ḡ = 0)
(B.11)

= . . .

= (I−ηJJT −ηλJJT )kg2(ŷg1−Ja0)+(I−ηJJT )kḡ2(ŷg1−Ja0)(using a0 = 0)
(B.12)

= (I−ηJJT −ηλJJT )kg2(ŷg1)+(I−ηJJT )kḡ2(ŷg1) (B.13)

= (I−ηWΣ
2WT −ηλWΣ

2WT )kg2(ŷg1)+(I−ηWΣ
2WT )kḡ2(ŷg1). (B.14)

Assume the SVD of J as J = WΣVT . Expanding ŷg1 in terms of the singular vectors wi (i.e., the
columns of W), as ŷg1 =∑i wi

〈
wi, ŷg1

〉
, and noting that (I−ηWΣ2WT )k =∑i(1−ησ2

i )
kwiwT

i .
Then

rlin(k) = ∑
i
(1−ησ

2
i −ηλσ

2
i )

kwi
〈
wi,g2(ŷg1)

〉
+(1−ησ

2
i )

kwi
〈
wi, ḡ2(ŷg1)

〉
. (B.15)

Similar to linear residuals, we define nonlinear residuals.

nonlinear residual: r(k) := y− fθk(g1(z)) (r(0) = ŷg1), (B.16)

linear residual: rlin(k) := (I−ηJJT −ηλJJT )k(g2� r(0))+(I−ηJJT )k(ḡ2� r(0)).
(B.17)

The following is an analogy to the proof of Theorem 2 in Heckel and Soltanolkotabi [26].∥∥ fθk(g1(z))−x
∥∥

2 =
∥∥ fθk(g1(z))+δ −y

∥∥
2 (B.18)

= ‖r(k)−δ‖2 (B.19)

= ‖rlin(k)−δ + r(k)− rlin(k)‖2 (B.20)

≤ ‖rlin(k)−δ‖2 +‖r(k)− rlin(k)‖2 (B.21)

≤ ‖rlin(k)−δ‖2 +ξ‖r(0)‖2 (B.22)

=
∥∥∥W(I−ηΣ

2−ηλΣ
2)kWT (g2� r(0))+W(I−ηΣ

2)kWT (ḡ2� r(0))−δ

∥∥∥
2
+ξ‖r(0)‖2

(B.23)

=
∥∥∥W(T0)

kWT (g2� (x+δ − fθ0(g1(z))))+W(T1)
kWT (ḡ2� (x+δ − fθ0(g1(z))))−δ

∥∥∥
2

+ξ‖r(0)‖2 (B.24)

≤
∥∥∥(T0)

kWT (g2�x)+(T1)
kWT (ḡ2�x)

∥∥∥
2
+
∥∥∥((T0)

k− I)WT (g2�δ )+((T1)
k− I)WT (ḡ2�δ )

∥∥∥
2

+‖ fθ0(g1(z))‖2 +
1
2

ξ‖y‖2 (B.25)

≤ ‖
(
1−ησ

2
p
)k

ḡ2(x)+
(
1−η(λ +1)σ2

p
)k

g2(x)‖2
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+

(
n

∑
i=1

((
1−ησ

2
i
)k−1

)2
〈wi, ḡ2(δ )〉2 +

n

∑
i=1

((
1−η(λ +1)σ2

i
)k−1

)2
〈wi,g2(δ )〉2

)1/2

+ξ‖y‖2. (B.26)

Here, (B.21) is from the triangular inequality, (B.22) is from the Theorem 4 in Heckel[26]. This
means that linear residual is very close to nonlinear residual, (B.24) is from T0 = I−ηΣ2−
ηλΣ2,T1 = I−ηΣ2, and r(0) = y− fθ0(g1(z)) = x+ δ − fθ0(g1(z)), and (B.25, B.26) from
the fact that x ∈ span{w1, . . . ,wp} and ‖W(T0)

kWT‖ ≤ 1, ‖r(0)‖2 ≤ 1
2‖y‖2,‖ fθ0(g1(z))‖2 ≤

1
2‖y‖2. This proves bound (B.1). �
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