
J. Nonlinear Var. Anal. 7 (2023), No. 4, pp. 581-605
Available online at http://jnva.biemdas.com
https://doi.org/10.23952/jnva.7.2023.4.08

SEMI-IMPLICIT BACK PROPAGATION

REN LIU1, XIAOQUN ZHANG2,∗

1School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
2Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China

Abstract. Deep neural network (DNN) has been attracting a great attention in various applications.
Network training algorithms play essential roles for the effectiveness of DNN. Although stochastic gra-
dient descent (SGD) and other explicit gradient-based methods are the most popular algorithms, there
are still many challenges such as gradient vanishing and explosion occurring in training a complex and
deep neural networks. Motivated by the idea of error back propagation (BP) and proximal point methods
(PPM), we propose a semi-implicit back propagation method for neural network training. Similar to the
BP, the update on the neurons are propagated in a backward fashion and the parameters are optimized
with proximal mapping. The implicit update for both hidden neurons and parameters allows to choose
large step size in the training algorithm. Theoretically, we demonstrate the convergence of the proposed
method under some standard assumptions. The experiments on illustrative examples, and two real data
sets: MNIST and CIFAR-10, demonstrate that the proposed semi-implicit BP algorithm leads to bet-
ter performance in terms of both loss decreasing and training/test accuracy, with a detail comparison to
SGD/Adam and a similar algorithm proximal back propagation (ProxBP).
Keywords. Back propagation; Neural network; Proximal mapping; SGD.

1. INTRODUCTION

Along with the rapid development of computer hardware, deep neural network methods
achieved enormous success in diverse application fields, such as computer vision [1], speech
recognition [2, 3], and nature language processing [4]. The key ingredient of neural network
methods amounts to solve a highly non-convex optimization problem. The most basic and pop-
ular algorithm is stochastic gradient descent (SGD) [5] in the form of ”error” back propagation
(BP) [6], which generally leads to high efficiency for training deep neural networks. Since then
many variants of gradient based methods have been proposed, such as Adagrad[7], Nesterov
momentum [8, 9], RMSprop [10], Adam [11] and AMSGrad [12]. Recently many research are
dedicated to develop second-order algorithms, for example Newton method [13], quasi-Newton
method [14], L-BFGS [15], and natural gradient method [16, 17, 18, 19, 20].

It is well known that the convergence of explicit gradient descent type approaches relies on
sufficiently small step size. For example, for a loss function with Lipschitz continuous gradient,
the stepsize should be in the range of (0,2β) for 1/β being the Lipschitz constant, which is

∗Corresponding author.
E-mail addresses: liur0810@sjtu.edu.cn (R. Liu), xqzhang@sjtu.edu.cn (X. Zhang).
Received April 14, 2023; Accepted May 10, 2023.

c©2023 Journal of Nonlinear and Variational Analysis

581

582 R. LIU, X. ZHANG

in general extremely large for real datasets. Another difficulty in gradient descent approaches
is to propagate the ”error” deeply, which is commonly known as gradient vanishing due to
composition with nonlinear activation functions. Implicit updates are proposed to partially
overcome these problems. In [21], proximal back propagation, namely ProxBP, was proposed
to utilize the proximal method for the weight updating. Alternative approach is to reformulate
the training problem as a sequence of constrained optimization by introducing the constraints
on the weights and hidden neurons at each layer. Block coordinate descent (BCD) methods
[22, 23, 24, 25, 26, 27, 28] were also proposed and analyzed to solve this problem in con-
strained formulation. Without the multiconvexity and differentiability assumptions as in [29],
the convergence of BCD for solving the learning problem was established in [27] based on the
Kurdyka-Łojasiewicz (KŁ) inequality [30, 31]. LPOM[32] algorithm was proposed and used to
train neural networks by solving a block multi-convex problem. Along this line, the Alternating
direction method of multipliers (ADMM) [33, 34] were proposed with extra dual variables up-
dating. In addition to the above methods, layer-parallel training methods[35, 36, 37] consider
training residual networks as a optimal control problem. The SEDONA [38] algorithm divides a
neural network into multiple sub-networks and trains them in a greedy manner, which improves
the efficiency of neural network training.

Motivated by the work with implicit weight updates to overcome small step sizes and vanish-
ing gradient problems in SGD, we propose a semi-implicit scheme, which has similar form as
”error” back propagation through neurons, while the parameters can be updated through solv-
ing small size optimization problems at each layer. It can be shown that the sequence generated
by the scheme leads to a decreasing objective function and converges to a stationary point. In
contrast to explicit gradient descent methods, the proposed method allows to choose large step
sizes and leads to a better training performance per epoch. The performance is also stable with
respect to the choice of stepsizes. In some sense, our semi-implicit scheme is similar to BCD
methods as both are Gauss-Seidel type to propagate the error with its last updated parameters.
BCD methods essentially optimize the merit function including neural network loss and the
penalty term due to the constraints, while our scheme ensure the descent of the original neural
network loss. Compared to the implicit method ProxBP, the errors in the proposed scheme are
updated in a more implicit way, for which better training and test performances are achieved
based on the experiments on several standard datasets.

The organization of the paper is as follows: Section 2 present some necessary notations.
Section 3 present the background. In Section 4, we present the proposed semi-implicit back
propagation algorithm. The numerical experiments are provided in Section 5. Finally we con-
clude the paper in Section 6.

2. NOTATIONS

Given input-output data pairs (X ,Y) = {xi,yi}n
i=1, we consider a N-layer feed-forward fully

connected neural network for the simplification of notations. The network structure is demon-
strated in Figure 1. Here, the parameters from the i-th layer to the (i+1)-th layer are the weight
matrix Wi and bias bi, and σ is a non-linear activation function, such as sigmod or ReLU. We
denote the neuron vector at i-th layer before activation as Gi, and the neurons after activation as

SEMI-IMPLICIT BACK PROPAGATION 583

X W1,b1−→ G2
σ−→ F2 W2,b2−→ G3 · · · GN−1 σ−→ FN−1

WN−1−−−→
bN−1

FN

· · ·

· · ·

· · ·

FIGURE 1. N-layer Neural Network

Fi, i.e. F1 = X , and for i = 1, · · · ,N−1

Gi+1 =WiFi +bi;

Fi+1 = σ(Gi+1).
(2.1)

We note that, in general at the last layer, there is no non-linear activation function and FN = GN .
For ease of notation, we can use an activation function σ as identity at the last layer. It should
be noticed that non-linear activation function at the last layer can be directly adapted from the
algorithm. The generic training model aims to solve the following minimization problem:

min
Θ

J(Θ;X ,Y) := L(FN ,Y) (2.2)

where Θ denotes the collective parameter set {Wi,bi}N−1
i=1 and L is a cost function with 0 lower

bound.

3. BACKGROUND

We introduce the classical back propagation method and two implicit methods: Block co-
ordinate descent and Proximal back propagation (ProxBP). In order to simplify notations, we
leave out the bias term in this section.

3.1. Back propagation method. The widely used BP method [6] is based on gradient descent
algorithm:

Θ
k+1 = Θ

k−η
∂J(Θk;X ,Y)

∂Θ
,

where η > 0 is the stepsize. The main idea of the BP algorithm is to use an efficient error
propagation scheme on the hidden neurons for computing the partial derivatives of the network
parameters at each layer. According to equation (2.1) and (2.2), we denote ∂J

∂Fi
to be the partial

derivative of the loss function J with respect to the neurons Fi at i-th layer. The so-called ”error”
signal δN ≡ ∂J

∂FN
at the last level is propagated to the hidden neurons δi ≡ ∂J

∂Fi
using the chain

rule. In fact, for a square loss function, the gradient at the last layer δN = ∂L(FN ,Y)
∂FN

= FN−Y is
indeed corresponding to an error. Let � denote Hadamard product. The propagation from δi+1
to δi for i = N−1, · · · ,1 is then calculated as

δi :
∂J
∂Fi

=
∂Gi+1

∂Fi

∂Fi+1

∂Gi+1

∂J
∂Fi+1

=W T
i (∂σ(Gi+1)�δi+1), (3.1)

584 R. LIU, X. ZHANG

and the partial derivative to Wi can be computed as
∂J
∂Wi

:=
∂Gi+1

∂Wi

∂Fi+1

∂Gi+1

∂J
∂Fi+1

= (∂σ(Gi+1)�δi+1)FT
i . (3.2)

At k−th iteration, after a forward update of the neurons Gk
i ,F

k
i by (2.1) using the current pa-

rameter set {W k
i }

N−1
i=1 , we can compute the ”error” signal at each neurons sequentially from the

i+ 1 level to i level by (3.1) and the parameters W k+1
i is updated according to the gradient at

the point W k
i computed by (3.2).

3.2. Proximal back propagation. The algorithm ProxBP [21] developed from the classical
BP method also uses the chain rule to propagate the error (perturbation) back for updating the
weights and neurons. To introduce ProxBP, we leave out the bias term and start an iteration
from Θk = {W k

i }
N−1
i=1 . Firstly, we need to propagate the error back like BP method to calculate

the gradient ∂J
∂Gi+1

based on {W k
i }

N−1
i=1 . This gradient is denoted as ∂J

∂Gk
i+1

. Secondly, we update

the parameter set {W k
i }

N−1
i=1 as

W k+1
i = argmin

Wi

‖WiFk
i −Gk

i+1 +η
∂J

∂Gk
i+1
‖2 +

1
2λ
‖Wi−W k

i ‖2, for i = 1, · · · ,N−1,

where η and λ denote the stepsize. Finally, we need to forward propagate according to the pa-
rameter set {W k+1

i }N−1
i=1 . Different from BP, ProxBP update the parameter implicitly by solving

several quadratic programming problems.

3.3. Block coordinate descent. In the following, we present the splitting BCD method pro-
posed in [27]. The BCD method considers to solve the following penalized merit function JBCD

JBCD := L(FN ,Y)+
γ

2

N−1

∑
i=1
||Fi+1−σ(Wi−1Fi−1)||2.

Given {W k
i }

N−1
i=1 and {Fk

i }N
i=1, the updates can be written as

Fk+1
N = argmin

FN

L(FN ,Y)+
γ

2
||FN−σ(W k

N−1Fk
N−1)||2,

W k+1
i = argmin

Wi

γ

2
||σ(WiFk

i)−Fk+1
i+1 ||

2 +
1

2λi
||Wi−W k

i ||2,

Fk+1
i = argmin

Fi

γ

2
||Fk+1

i+1 −σ(W k+1
i Fi)||2 +

γ

2
||Fi−σ(W k

i−1Fk
i−1)||2 +

1
2λi
||Fi−Fk

i ||2,

for i = N−1, · · · ,2.
To simplify, the bias term is left out. The BCD method do not contain the classical forward
and backward propagation compared to BP and ProxBP. Correspondingly, the penalty function
is brought in BCD to solve the constraints between layers. When updating the parameter set
{W k

i }
N−1
i=1 , the BCD method takes a similar implicit approach like ProxBP. Theoretically, BCD

ensures the descent of the merit function JBCD but not the original loss function J.

4. SEMI-IMPLICIT BACK PROPAGATION METHOD

In this section, we present the proposed semi-implicit back propagation method and establish
the convergence theory.

SEMI-IMPLICIT BACK PROPAGATION 585

4.1. Semi-implicit back propagation. Compared to the BP method, ProxBP and BCD have
solved the gradient vanishing problem to a certain degree, as they both update the parameter
set in an implicit way. Inspired by ProxBP and BCD, we propose to update the parameter set
implicitly. At the iteration k, given the current estimate Θk : {W k

i ,b
k
i }

N−1
i=1 , we first update the

neuron Fk
i and Gk

i in a feedforward fashion as BP method by using (2.1) for i = 1, · · · ,N− 1.
For the backward stage, we start with updating neuron FN at the last layer using the gradient
descent:

δ
k
N =

∂L(Fk
N ,Y)

∂FN
, F

k+ 1
2

N = Fk
N−ηδ

k
N .

For i = N− 1, · · · ,1, given F
k+ 1

2
i+1 , the parameters Wi,bi are updated by solving the following

optimization problem sequentially
W k+1

i = argmin
Wi

‖σ(WiFk
i +bk

i)−F
k+ 1

2
i+1 ‖

2 +
1

2λi
‖Wi−W k

i ‖2,

bk+1
i = argmin

bi

‖σ(W k+1
i Fk

i +bi)−F
k+ 1

2
i+1 ‖

2 +
1

2λi
‖bi−bk

i ‖2,

(4.1)

where λi > 0 is a parameter that is corresponding to stepsize, and we consider the Frobenious
norm for matrix norm and distance. The two subproblems at each layer can be solved by a
nonlinear conjugate gradient method. This update of parameters is related to using an implicit
gradient based on so-called proximal mapping. Taking Wi as an example, the optimality in (4.1)

gives W k+1
i = W k

i − λi∇ f (W k+1
i), where f (Wi) = ‖σ(WiFk

i + bk
i)−F

k+ 1
2

i+1 ‖2. Compared to a
direct gradient descent step, this update is unconditionally stable for any stepsize λ . We note
that the proximal mapping was previously proposed for training neural network as ProxBP in
[21]. However, the update of the parameter set in (4.1) is different as ProxBP uses Gi+1 for
the data fitting at each layer. Using the neural Fi+1 for data fitting can avoid differentiating
non-smooth activation function σ temporarily.

After the update of W k+1
i and bk+1

i , we need to update the hidden neuron Fi. As in classical
BP, we first consider the gradient at Fk

i as

∂J
∂Fk

i
=

∂Fk
i+1

∂Fk
i

∂J
∂Fk

i+1
=

∂Gk
i+1

∂Fk
i

∂Fk
i+1

∂Gk
i+1

∂J
∂Fk

i+1
.

It can be seen that the partial derivative ∂Gk
i+1

∂Fk
i

:= W k
i . Different from BP and ProxBP, we use

the newly updated W k+1
i instead of W k

i to compute the error:

δ
k
i := (W k+1

i)T · (∂σ(Gk
i+1)�δ

k
i+1), F

k+ 1
2

i = Fk
i −ηδ

k
i . (4.2)

By this formula, the difference can be propagated from the level N to 1. At the last level
i = 1, we only need to update W k+1

1 and bk+1
1 as F1 = X . The parameters {W k+1

j }N−1
j=i+1 updated

previously are used when W k
i is updated to W k+1

i , which is similar to the coordinate descent
method and Gauss-seidel method. The overall semi-implicit back propagation (SIBP) method
is summarized in Algorithm 1.

586 R. LIU, X. ZHANG

Algorithm 1 Semi-implicit back propagation

Input: Current parameters Θk = {W k
i ,b

k
i }

// Forward pass
F1 = X
for i = 1 to N−1 do

Gk
i+1 =W k

i Fk
i +bk

i
Fk

i+1 = σ(Gk
i+1)

end for
δ k

N =
∂L(Fk

N ,Y)
∂FN

Update on Fk
N

δ k
N−→ F

k+ 1
2

N
for i = N−1 to 2 do

Implicit update on (W k
i ,b

k
i)

F
k+ 1

2
i+1−−−→ (W k+1

i ,bk+1
i) by (4.1)

Error propagation δ k
i+1

W k+1
i−−−→ δ k

i by (4.2)

Explicit update on Fk
i

δ k
i−→ F

k+ 1
2

i by (4.2)
end for

Implicit update on (W k
1 ,b

k
1)

F
k+ 1

2
2−−−→ (W k+1

1 ,bk+1
1)

Output: New parameters Θk+1 = {W k+1
i ,bk+1

i }

Remark 4.1. The algorithm can be easily adapted for solving training with regularization. For
example, when there is a separable regularization for each Wi and bi, i.e.

min
Θ

J(Θ;X ,Y) := L(FN ,Y)+ γr(Θ),

where γ > 0. Then we can add directly in (4.1) as

W k+1
i = argmin

Wi

‖σ(WiFk
i +bk

i)−F
k+ 1

2
i+1 ‖

2 +
1

2λi
‖Wi−W k

i ‖2 + γr(Wi)

bk+1
i = argmin

bi

‖σ(W k+1
i Fk

i +bi)−F
k+ 1

2
i+1 ‖

2 +
1

2λi
‖bi−bk

i ‖2 + γr(bi).

This problem can be easily solved in small size when r is a simple function, for example `1
regularization.

Remark 4.2. For training with large number of samples, the BP method is used in the form
of stochastic gradient descent (SGD) by using a small set of samples at each iteration. The
proposed SIBP method can be easily extended to mini-batch version by replacing (X ,Y) =
{xi,yi}n

i=1 by a subset {xi,yi}i∈Bk at k−th iteration where Bk denotes the random mini-batch
index set. Both the convergence and numerical experiments in mini-batch SIBP will be shown
in later sections.

4.2. Comparison to BP, ProxBP, and BCD. The algorithms BP, ProxBP, and SIBP all use the
chain rule to propagate the error back for updating the weights and neurons except the BCD
method. Different from BP and ProxBP, both BCD and SIBP update the neurons sequentially

SEMI-IMPLICIT BACK PROPAGATION 587

in Gauss-Seidel type. For updating the weights {Wi}N−1
i=1 , BCD, ProxBP and SIBP all need

to solve an implicit subproblem, while SIBP and BCD solve from the next-level’s updated

neurons after activation. The updates on the neuron variables Fk+1
i in BCD and F

k+ 1
2

i in SIBP
are conceptionally different, as the former aims to solve the two constraints resulted penalty
function, while the latter update in a backward propagation fashion as BP method. It can also
shown that SIBP ensure the descent of the original loss function in next section. Practically,
SIBP can be easily extended to mini-batch version, while the extension of BCD to stochastic
setting is unknown, which may limit its application to large scale problems. We summarize the
property of these four algorithms in Table 1.

BP ProxBP BCD SIBP
Propagate by chain rule X X × X

Implicit subproblem × X X X
Implicit subproblem(including activation) × × X X

Descent of neural network loss X X × X
Gauss-Seidel type update × × X X

TABLE 1. Comparison between BP, ProxBP, BCD and SIBP.

4.3. Convergence analysis. In the following, we drop the bias term b and the regularization.
We only consider the set of weights Θ =W = {Wi}N−1

i=1 for the simplicity of proof. To simplify,
we let the loss function J(Θ;X ,Y) = J(W). The following are some assumptions.

Assumption 4.1. The loss function J(W) ∈C2, coercive and bounded below.

Assumption 4.2. The activation function σ ∈C2(R) and σ ′ ≥ 0.

Remark 4.3. Assumption 4.2 is strong and many activation functions do not satisfy the second-
order smoothness, such as ReLU and leaky ReLU. Nevertheless, these kinds of activation func-
tion are usually smooth almost everywhere. Considering this fact, we can still use SIBP, a
variant of BP, to train a neural network with ReLU or other activation functions as a practical
algorithm.

Theorem 4.1 (Convergence of SIBP). Suppose that Assumptions 4.1 and 4.2 hold. For any
start point W 0, there exists η̄ > 0, which is dependent on {λi} and W 0. When 0 < η < η̄ , the
sequence J(W k) decreases and converges, and ∇J(W k) converges to 0, i.e.,

J(W k+1)≤ J(W k)≤ ·· · ≤ J(W 0),

lim
k→∞
||∇J(W k)||= 0.

And there exists a subsequence of {W k} that converges to a stationary point of the loss function
J.

Proof. Given that the loss function J is coercive, the sub-level set {W |J(W)≤ J(W 0)} ⊆ B(r0)
for B(r0) being a closed ball with radius r0. The radius r0 determines the upper bound of W 0,F0

i

588 R. LIU, X. ZHANG

and G0
i by the activation function and the loss function. Recall the solution at i-th layer is given

by

W 1
i = argmin

Wi

‖σ(WiF0
i)−F

1
2

i+1‖
2 +

1
2λi
‖Wi−W 0

i ‖2. (4.3)

By the optimality, we obtain

‖σ(W 1
i F0

i)−F
1
2

i+1‖
2 +

1
2λi
‖W 1

i −W 0
i ‖2 ≤ ‖σ(W 0

i F0
i)−F

1
2

i+1‖
2 = ‖F0

i+1−F
1
2

i+1‖
2.

Considering that F
1
2

i+1 = F0
i+1−ηδ 0

i+1, for η < η̄0, we have

||W 1
i −W 0

i ||2 ≤ 2λiη
2||δ 0

i+1||2

and

||W 1
i || ≤ ||W 0

i ||+η

√
2λi||δ 0

i+1||.

For 0≤ i < N, it can be demonstrated that ||δ 0
i+1|| ≤Ci+1(r0, η̄0) for some Ci+1(r0, η̄0)> 0 that

only depends on the initial bound r0 and η̄0. In fact, we first have ||δ 0
N−1|| ≤CN−1(r0, η̄0), and,

for η < η̄0,

‖δ 0
i+1‖= ||W 1

i+1
T
(∂σ(G0

i+2)�δ
0
i+2)||

≤(‖W 0
i+1‖+η

√
2λi+1Ci+2(r0, η̄0))(∂σ(G0

i+2)�δ
0
i+2)||

≤(r0 + η̄0
√

2λi+1Ci+2(r0, η̄0))M(r0)Ci+2(r0, η̄0)

:=Ci+1(r0, η̄0).

Thus ||W 1
i −W 0

i ||2 ≤ η2Ci(r0, η̄0). Therefore, there exists a closed ball B(r1) for r1 ≤ r0 +

η̄0 max1≤i≤N−1Ci(r0, η̄0) such that W 0 ∈ B(r0) and W 1 ∈ B(r1). By the smoothess of the func-
tion, it is easy to see ∇W J is Lipschitz continuous on B(r1). Let l be the corresponding Lipschitz
coefficient. We denote the partial derivative of J(W 0) with respect to Wi as ∇WiJ(W

0
i) for sim-

plification, which leads to

J(W 1)≤ J(W 0)+
N−1

∑
i=1
〈∇WiJ(W

0
i),W

1
i −W 0

i 〉+
l
2

N−1

∑
i=1
‖W 1

i −W 0
i ‖2. (4.4)

In the following, we prove that J(W 1) ≤ J(W 0). We first consider the Taylor expansion of
σ(W 1

i F0
i) at the point W 0

i F0
i .

σ(W 1
i F0

i) = σ(W 0
i F0

i)+∂σ(W 0
i F0

i)� (W 1
i F0

i −W 0
i F0

i)+O(||W 1
i F0

i −W 0
i F0

i ||2).

Combining with the optimality of (4.3), we have

W 1
i =W 0

i −λi∇Wi fi(W 1
i)

=W 0
i −λi∂σ(W 1

i F0
i)� (σ(W 1

i F0
i)−F0

i+1 +ηδ
0
i+1)F

0
i

T
(4.5)

=W 0
i −λiη∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T

−λi[∂σ(W 1
i F0

i)� (∂σ(W 0
i F0

i)� (W 1
i F0

i −W 0
i F0

i))]F
0
i

T

−λi∂σ(W 1
i F0

i)�O(||W 1
i F0

i −W 0
i F0

i ||2)F0
i

T
. (4.6)

SEMI-IMPLICIT BACK PROPAGATION 589

Reformulating (4.6) leads to

−λiη∂σ(W 1
i F0

i)�δ
0
i+1F0

i
T −λi∂σ(W 1

i F0
i)�O(||W 1

i F0
i −W 0

i F0
i ||2)F0

i
T

=W 1
i −W 0

i +λi[∂σ(W 1
i F0

i)� (∂σ(W 0
i F0

i)� (W 1
i F0

i −W 0
i F0

i))]F
0
i

T

=W 1
i −W 0

i +λi[(W 1
i −W 0

i)F
0
i �∂σ(W 0

i F0
i)�∂σ(W 1

i F0
i)]F

0
i

T

,(W 1
i −W 0

i)(I +λiA
0

i)

where A k
i is a semi-positive definite linear transform as σ ′ ≥ 0

A 0
i , [(·F0

i)�∂σ(W 0
i F0

i)�∂σ(W 1
i F0

i)]F
0
i

T
. (4.7)

The above formula can be rearranged as
1

λiη
(W 1

i −W 0
i)(I +λiA

0
i)

=−∂σ(W 1
i F0

i)�δ
0
i+1F0

i
T − 1

η
∂σ(W 1

i F0
i)�O(||W 1

i F0
i −W 0

i F0
i ||2)F0

i
T
. (4.8)

For the right hand side (RHS) of (4.8), we make a connection of the first term ∂σ(W 1
i F0

i)�
δ 0

i+1F0
i

T with ∇WiJ, and the second term can be controlled by reducing η as O(||W 1
i F0

i −
W 0

i F0
i ||2)∼O(η2). Combining with (4.8), we consider

〈∇WiJ(W
0
i),W

1
i −W 0

i 〉

=〈− 1
λiη

(W 1
i −W 0

i)(I +λiA
0

i)+∇WiJ(W
0
i)−∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T

− 1
η

∂σ(W 1
i F0

i)�O(||W 1
i F0

i −W 0
i F0

i ||2)F0
i

T
,W 1

i −W 0
i 〉. (4.9)

The RHS of (4.9) is split into three parts. In Appendix, we prove the following three inequalities
which is essential to ensure J(W 1)≤ J(W 0):

• Part I

〈− 1
λiη

(W 1
i −W 0

i)(I +λiA
0

i),W
1
i −W 0

i 〉 ≤ −
1

λiη
||W 1

i −W 0
i ||2. (4.10)

• Part II

〈∇WiJ(W
0
i)−∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T
,W 1

i −W 0
i 〉 ≤

N−1

∑
j=i

Ai, j(r0, η̄0)||W 1
j −W 0

j ||2. (4.11)

• Part III

〈− 1
η

∂σ(W 1
i F0

i)�O(||W 1
i F0

i −W 0
i F0

i ||2)F0
i

T
,W 1

i −W 0
i 〉 ≤ Bi(r0, η̄0)||W 1

i −W 0
i ||2. (4.12)

By substituting these inequalities into (4.9), we can update (4.4) as

J(W 1)≤ J(W 0)+
N−1

∑
i=1
〈∇WiJ(W

0
i),W

1
i −W 0

i 〉+
N−1

∑
i=1

l
2
‖W 1

i −W 0
i ‖2

≤ J(W 0)− (
1

max(λi)η
− γ(r0, η̄0))||W 1−W 0||2.

590 R. LIU, X. ZHANG

The parameter γ(r0, η̄0) is positive and related to the aggregation of constants Ai, j(r0, η̄0),

Bi(r0, η̄0), and l. Thus there exists η ≤ η̄1 = 1/(max(λi)γ(r0, η̄0)) such that J(W 1) ≤ J(W 0),
where η̄1 is only determined by r0 and η̄0. Thus we can obtain W 1 ∈ B(r0) as J(W 1)≤ J(W 0).
By repeating this procedure, we can conclude that: if Assumptions 4.1 and 4.2 hold, there
exists η̄0, η̄1 such that when η < η̄ = min(η̄0, η̄1) 0 < J(W k+1) ≤ J(W k) ≤ ·· · ≤ J(W 0) and
limk→∞ J(W k)− J(W k+1) = 0. Furthermore, we have

lim
k→∞
||W k+1

i −W k
i ||2 = 0, i = 1 · · ·N−1. (4.13)

Combined with equation (4.5), we obtain the following limit

W k+1
i =W k

i −λi∂σ(W k+1
i Fk

i)� (σ(W k+1
i Fk

i)−Fk
i+1 +ηδ

k
i+1)F

k
i

T

=⇒ lim
k→∞
||λi∂σ(W k+1

i Fk
i)� (ηδ

k
i+1)F

k
i

T ||= 0.

Using the inequality (A.2) in Appendix and changing the superscript, it yields

||∇WiJ(W
k
i)−∂σ(W k+1

i Fk
i)�δ

0
i+1F0

i
T ||2 ≤

N−1

∑
j=i

D̄ j(r0, η̄0)||W k+1
j −W k

j ||2.

Finally, we obtain limk→∞ ||∇WiJ(W
k
i)||= 0. By the boundedness of {W k} and equation (4.13),

we can conclude that there exist a subsequence of {W k} that converges to a stationary point of
the loss function J. �

In the following, we first introduce some new notations before presenting the convergence of
mini-batch SIBP. Define

J(W) :=
1
n

n

∑
t=1

J(W,xt ,yt) =
1
n

n

∑
t=1

Jt(W).

Denote Bk ⊆ {1, · · · ,n} as a random mini-batch index set at iteration k. Define

JB(W) :=
1
|B| ∑

t∈B
Jt(W),

where |B| denotes the number of elements in the mini-batch index set B. Denote B as the
collection of all mini-batch index sets, which means B ∈ B. Denote ηk as the stepsize of
gradient descent applied on the activated neurons, when W k is updated to W k+1.

Assumption 4.3. E[‖∇W J(W k)−∇W JBk(W
k)‖2] ≤ V 2 for some V > 0 and all k ∈ N, where

the expectation is taken over random choice of mini-batch in each step.

Theorem 4.2 (Convergence of mini-batch SIBP). Suppose that Assumptions 4.1, 4.2, and 4.3
hold. For any initial point W 0, choose ηk such that 0 < ηk+1 ≤ ηk ≤ η0 < η̃ , ∑

∞
k=0 ηk = ∞, and

∑
∞
k=0 η2

k < ∞, for some η̃ > 0. Then limk→∞E[‖W k+1−W k‖2] = 0 and liminfk→∞E[(‖W k+1−
W k‖/ηk)

2]≤ λ 2V 2.

Proof. From the proof of Theorem 4.1, if W 0 ∈ {W |J(W)≤ α}, then there exists a constant η̄

such that, when η < η̄ ,

〈∇W J(W 0),W 1−W 0〉+ l
2
‖W 1−W 0‖2 ≤−(1

max(λi)η
− γ(r0, η̄0))||W 1−W 0||2. (4.14)

SEMI-IMPLICIT BACK PROPAGATION 591

Considering the mini-batch SIBP, the boundedness of sequence {W k}∞
k=0 can be still estab-

lished. Define A = ∪B∈B{W |JB(W) ≤ JB(W 0)} and the coercivity of the loss function JB

leads to the boundess of A. For any mini-batch index set B ∈ B, there exists a set AB and a
constant αB satisfying the following condition:

W 0 ∈ A⊆ AB = {W |JB(W)≤ αB},∀B ∈ B.

As the choice of B0 is finite, if η0 is upper bounded by a constant η̄0, there exist two constant
r0 and r1 such that W 0 ∈ AB ⊆ B(r0) for all B ∈ B and W 1 ∈ B(r1). Let lB be the local
Lipschitz constant of ∇W JB(W) in the set B(r1) and l be the local Lipschitz constant of ∇W J(W)
in the set B(r1). Denote lmax = maxB∈B(lB, l). For each B ∈ B, if W 1 is updated by the
mini-batch index set B, by exploiting inequality (4.14), there exists a corresponding constant
η̄1(B) = min(η̄0,1/(max(λi)γB(r0, η̄0))), when η0 < η̄1(B), we have:

〈∇W JB(W 0),W 1−W 0〉+ lmax

2
‖W 1−W 0‖2

≤− (
1

max(λi)η0
− γB(r0, η̄0))||W 1−W 0||2. (4.15)

It should be noted that we use lmax instead of lB in inequality (4.15) and the corresponding loss
function is JB. Furthermore, one has

JB(W 1)≤ JB(W 0)+ 〈∇W JB(W 0),W 1−W 0〉+ lB
2
‖W 1−W 0‖2

≤ JB(W 0)+ 〈∇W JB(W 0),W 1−W 0〉+ lmax

2
‖W 1−W 0‖2

< JB(W 0).

Define η̃ = 1
2 minB∈B(η̄0, η̄1(B)) and let η0 < 2η̃ . For all B ∈ B, it holds

〈∇W JB(W 0),W 1−W 0〉+ lmax

2
‖W 1−W 0‖2

≤− (
1

max(λi)η0
− γB(r0, η̄0))||W 1−W 0||2

≤− (
1

max(λi)η0
−max

B∈B
γB(r0, η̄0))||W 1−W 0||2

<0.

By randomly choosing a mini-batch index set B0 to update W 0, if η0 < 2η̃ , one obtains

JB0(W
1)≤JB0(W

0)+ 〈∇W JB0(W
0),W 1−W 0〉+

lB0

2
‖W 1−W 0‖2

≤JB0(W
0)+ 〈∇W JB0(W

0),W 1−W 0〉+ lmax

2
‖W 1−W 0‖2

≤JB0(W
0)− (

1
max(λi)η0

− γB0(r0, η̄0))||W 1−W 0||2

≤JB0(W
0)− (

1
max(λi)η0

−max
B∈B

γB(r0, η̄0))||W 1−W 0||2

≤JB0(W
0).

592 R. LIU, X. ZHANG

Therefore W 1 ∈ {W |JB0(W)≤ JB0(W
0)} ⊆ A. Under the following condition, ηk < 2η̃ for all

k ≥ 0, we can repeat this procedure. Therefore, the sequence {W k}∞
k=0 is bounded and for all

k,W k ∈ A. In the following, we consider the stepsize sequence {ηk}∞
k=0 under the conditions as

below 0< ηk+1≤ ηk ≤ η0 < η̃ , ∑
∞
k=0 ηk =∞, and ∑

∞
k=0(ηk)

2 <∞. To simplify, let λ =max(λi)
and γ = maxB∈B γB(r0, η̄0). We have

η0 < η̃ ≤ 1
2

min
B∈B

(η̄1(B)) =
1

2λγ
.

Consider the local Lipschitz continuity of ∇W J(W) and establish the following inequality

J(W k+1)≤J(W k)+ 〈∇W J(W k),W k+1−W k〉+ l
2
‖W k+1−W k‖2

=J(W k)+ 〈∇W JBk(W
k),W k+1−W k〉+ l

2
‖W k+1−W k‖2

+ 〈∇W J(W k)−∇W JBk(W
k),W k+1−W k〉

≤J(W k)− (
1

ληk
− γ)‖W k+1−W k‖2 +

1
2ληk

‖W k+1−W k‖2

+
ληk

2
‖∇W J(W k)−∇W JBk(W

k)‖2.

Taking the expectation gives

Ek[J(W k+1)]≤ J(W k)− (
1

2ληk
− γ)Ek[‖W k+1−W k‖2]+

ληk

2
V 2

where Ek means taking the expectation on the random choice of Bk. Now taking the expectation
on random choice of all steps before, we have

E[J(W k+1)]≤ E[J(W k)]− (
1

2ληk
− γ)E[‖W k+1−W k‖2]+

ληk

2
V 2. (4.16)

Multiplying by ηk and using ηk < η̃ , one has

ηk+1E[J(W k+1)]≤ ηkE[J(W k+1)]

≤ ηkE[J(W k)]− (
1

2λ
− γη0)E[‖W k+1−W k‖2]+

λη2
k

2
V 2.

Taking sum over k yields
∞

∑
k=0

(
1

2λ
− γη0)E[‖W k+1−W k‖2]≤ η̃J[W 0]− lim

k→∞
ηkE[J(W k)]+

∞

∑
k=0

λη2
k

2
V 2

< ∞.

Therefore, limk→∞E[‖W k+1−W k‖2] = 0. Rearranging terms in inequality (4.16), we have

ηk[(
1

2λ
− γηk)E[(‖W k+1−W k‖/ηk)

2]− λ

2
V 2]≤ E[J(W k)]−E[J(W k+1)].

Summing over k leads to
∞

∑
k=0

ηk[(
1

2λ
− γηk)E[(‖W k+1−W k‖/ηk)

2]− λ

2
V 2]< ∞.

SEMI-IMPLICIT BACK PROPAGATION 593

The condition ∑
∞
k=0 ηk = ∞ yields

liminf
k→∞

(
1

2λ
− γηk)E[(‖W k+1−W k‖/ηk)

2]≤ λ

2
V 2.

Thus
liminf

k→∞
E[(‖W k+1−W k‖/ηk)

2] = λ
2V 2.

�

5. NUMERICAL EXPERIMENTS

In this section, we compare the performance of BP, ProxBP [21], BCD [27] and the proposed
SIBP using MNIST or CIFAT-10 datasets. As in the published code of BCD all the samples
of dataset have to be loaded at once, we compare with BCD only using small data set such
as MNIST. All the experiments are performed in Python with NVIDIA GeForce GTX 1080Ti
and the same network settings and initializations are used for a fair comparison. The softmax
cross-entropy for the loss function L and ReLU are used for the activation function, as usually
chosen in classification problems

L(x,class) =− log(
exp(x[class])
∑ j exp(x[j])

),

ReLU(x) = max(x,0).

For the linear Conjugate Gradient used in ProxBP and nonlinear Conjugate Gradient in SIBP,
the iterations number is set as 5. All the neural networks in the experiment exclude batch
normalization.

5.1. A gradient vanishing example. In the following, we first consider the following synthe-
sized optimization problem from [39]:

argmin
w1,w2,··· ,wL∈R

F(w) = (wLwL−1 · · ·w1−1)2.

The gradient of the weight wi is given as

∇wiF = 2w1w2 · · ·wi−1wi+1 · · ·wL(wLwL−1 · · ·w1−1).

The product of wi leads to gradient vanishing and gradient explosion. For example, the gradient
∇wiF is extremely large for all w j = 2 while it is extremely small for w j = 0.5 for a large L.
To illustrate the gradient vanishing/explosion problem, Figure 2 shows the gradient of f (w) =
(w7−1)2 for all wi = w. It can be seen that gradient vanishing occurs when w ∈ [−0.8,0.8] and
gradient explosion occurs when w is outside of [−0.8,1.2].

In the simulation, we randomly generate 10 points {xi,yi}i=1···10 and consider:

argmin
w1,w2,··· ,w7∈R

F(w) =
10

∑
i=1

(w7w6 · · ·w1xi− yi)
2.

For both SIBP and SGD, the variable w j is initialized as normal distribution N(0.15,0.01).
The function loss and the difference |wk+1−wk| are compared to identify whether gradient
vanishing occurs. Figure 3 shows that SIBP can escape from the region where gradient van-
ishing occurs faster than SGD. The curve of the sequential difference of the first component

594 R. LIU, X. ZHANG

FIGURE 2. Gradient vanishing occurs when w∈ [−0.8,0.8]. Gradient explosion
occurs when w is outside of [−0.8,1.2].

(a) Stochastic gradient

(b) Full batch gradient

FIGURE 3. Left: the loss function. Right: |wk+1
1 −wk

1|.

|wk+1
1 −wk

1| shows that wk
1 of SGD moves more slowly compared to SIBP. When using stochas-

tic gradient, the loss function decreases rapidly after 10 steps using SIBP, while it shows an
obvious drop only after 1000 steps using SGD. A similar performance can be observed using
full batch gradient.

5.2. MNIST Classification.

Shallow Network. In this part, we present an experiment using fully connected neural network
on MNIST dataset. The training set contains 60000 samples and the rest 10000 samples are
included in the test set. For this dataset, a shallow fully connected neural network of size

SEMI-IMPLICIT BACK PROPAGATION 595

784× 500× 10 with ReLU activation function can usually reach 100% training accuracy by
a few epochs. The training process are performed 5 times, and Table 2 shows the average
training and test accuracy achieved by SGD, SIBP and ProxBP with different learning rates lr
(for SGD) and λ ,η for SIBP and ProxBP. We note that for both ProxBP and SIBP, λ refers to
the proximal parameter and η refers to the gradient step size. It implies that after 50 epoch, the
performance of SIBP method is stable with respect to different step size choices, while SGD
fails for some choices of learning rate lr. For ProxBP, we present the results with η = 0.1 as
the best performance is achieved with this set of parameters. The highest test accuracy scores
are marked in bold in each column, and we can see that SIBP achieves the highest test accuracy
compared to SGD and ProxBP.

MNIST Training/Test accuracy

SGD
lr = 100 lr = 10 lr = 1 lr = 0.1 lr = 0.01
−/− −/− 1.0/0.9826 0.9842/0.9757 0.9295/0.9301

ProxBP, η = 0.1
λ = 100 λ = 10 λ = 1 λ = 0.1 λ = 0.01
1/0.9727 1/0.9716 1/0.9719 1/0.9732 1/0.9723

SIBP, η = 10
λ = 100 λ = 10 λ = 1 λ = 0.1 λ = 0.01
1/0.9827 1/0.9817 1/0.9822 1/0.9822 1/0.9827

SIBP, η = 1
λ = 100 λ = 10 λ = 1 λ = 0.1 λ = 0.01
1/0.9830 1/ 0.9822 1/0.9828 1/0.9814 1/0.9817

SIBP, η = 0.1
λ = 100 λ = 10 λ = 1 λ = 0.1 λ = 0.01
0.9899/0.9727 0.9891/0.9783 0.9899/0.9765 0.9886/0.9776 0.9857/0.9759

TABLE 2. SIBP is stable with different choice of parameter.

Deep Network. Gradient-based methods are usually hard to backpropagate the disturbation in
a deep neural network due to gradient vanishing or explosion. In this part of experiment, we at-
tempt to show the performance of SIBP in neural networks with a deep structure compared with
ProxBP, BCD and SGD. For the MNIST dataset, we train a 784× 60010× 10 fully connected
neural network. This neural network has 10 hidden layers and each layer contains 600 neurons.
We also use ReLU activation function between each layer to increase the non-linearity.
Case 1 The parameters were initialized with N(0,0.01). In Figure 4, SGD and ProxBP can
barely optimize this deep network while BCD and SIBP show an advantage. At the same time,
SIBP achieve more than 80% training accuracy with less epochs than BCD.
Case 2 The parameters were initialized with N(0,0.025). In Figure 5, it can be seen that
SGD still fails to train the neural networks as the previous example, while SIBP takes the effect
quicker compared to ProxBP and BCD.
Case 3 We further set the weight initialized by N(0,0.03), for SGD successes to train this
neural network. Figure 6 demonstrates that SIBP arrives a good training accuracy in a much
earlier stage compared to SGD, BCD and ProxBP.

At last, we compare the norm of gradient || ∂J
∂W1
|| in SIBP and SGD. Figure 7 shows that the

norm of the gradient from SIBP decreases and becomes stable more quickly.

5.3. CIFAR-10 Classification. In this part, we show the performance on CIFAR-10 dataset
using a full connected network and a Convolutional neural network (CNN). Since BCD can

596 R. LIU, X. ZHANG

FIGURE 4. Both SGD and ProxBP suffer from gradient vanishing issue.

FIGURE 5. SGD fail, SIBP, BCD and ProxBP work.

FIGURE 6. SIBP arrives at 100% accuracy much quicker than BCD, SGD and ProxBP.

not be applied in mini-batch form, here only SIBP, ProxBP and SGD(Adam) are drawn into
comparisons. In Figure 8, the performance of the three methods per epoch for CIFAR-10 is
shown with a neural network of size 3072× 2000× 500× 10 with ReLU activation functions.
The step size is set as η = 0.1 for both SIBP and ProxBP, while a smaller one for Adam to
achieve a better performance. It can be seen that the trainning loss and trainning accuracy of
SIBP decrease and increase faster respectively. The improvement on the test accuracy also
demonstrates that the proposed SIBP method generalizes well in a comparison to the other two
methods.

SEMI-IMPLICIT BACK PROPAGATION 597

(a) Initialized by N(0,0.025) (b) Initialized by N(0,0.03)

FIGURE 7. The norm of gradient || ∂J
∂W1
|| from SIBP and SGD show that SIBP

escapes from the region where gradient vanishing occurs faster than SGD.

FIGURE 8. SIBP performs better than ProxBP and Adam both in training and
test accuracy.

To illustrate the performance of SIBP on convolutional neural networks, we also train a LeNet
on CIFAR-10 dataset. The architecture of CNN is:

Conv[16∗32∗32]→ ReLU→ Pool[16∗16∗16]→ Conv[20∗16∗16]→ ReLU→
Pool[20∗8∗8]→ Conv[20∗8∗8]→ ReLU→ Pool[20∗4∗4]→ FC+Softmax[10∗1∗1]

The size of each convolution kernel is 5 ∗ 5 and the factor of max pooling is 2. The result
is shown in Figure 9. SIBP is slightly better than Adam in generalization. After 50 epochs,
the test accuracy of SIBP reaches 70.55% while Adam’s is around 69.6%. The curve SIBP-1

598 R. LIU, X. ZHANG

shows better generalization with stepsize η = 0.5 and the curve SIBP-2 shows slightly faster
convergence with stepsize η = 1.

(a) Training Accuracy (b) Training Loss

(c) Test Accuracy (d) Test Loss

FIGURE 9. SIBP is slightly better than Adam in generalization.

Remark 5.1. To be noticed, for convolutional neural networks, the SIBP algorithm is mainly
used to optimize the weights of the convolutional layers connected with activation functions.
For pooling layers, we still use standard gradient descent for optimization.

5.4. Training with small size samples. In the training of neural network with small size sam-
ples, the landscape of the global minimum may be widespread [40]. Thus one may get a global
minimum with 100% training accuracy or 0 training loss, while the testing performance can
be very different. The comparison of the four methods in this setting is performed on MNIST
and FashionMNIST dataset. First, a 784×500×10 neural network containing ReLU activation
functions is trained with 10000 training samples from MNIST. Figure 10 shows that SIBP reach
100% training accuracy with less epochs. For the test accuracy, SIBP reaches 96.7% after 20
epochs, which is still slightly higher than other methods. For the second experiment, a similar
neural network with ReLU activation functions is trained on FashionMNIST dataset. A data set
of 2000 training samples is used and the network size is 784× 1000× 10. In Figure 11, SIBP
achieves 82.25% accuracy on the test set which is slightly higher than other methods.

5.5. Pruning Neural Networks by `1 penalty. Neural network pruning is a method to sim-
plify the connections and less the storage of trained networks, which leads to a fast test com-
putation. By adding regularization term in the update of SIBP, we can control the sparsity of

SEMI-IMPLICIT BACK PROPAGATION 599

FIGURE 10. SIBP reach 100% training accuracy with less epochs on MNIST dataset.

FIGURE 11. SIBP is slightly better in test accuracy on FashionMNIST dataset.

weight by adding a `1 term

W k+1
i = argmin

Wi

‖σ(WiFk
i +bk

i)−F
k+ 1

2
i+1 ‖

2 +
1

2λi
‖Wi−W k

i ‖2 + γ‖Wi‖1

bk+1
i = argmin

bi

‖σ(W k+1
i Fk

i +bi)−F
k+ 1

2
i+1 ‖

2 +
1

2λi
‖bi−bk

i ‖2 + γ‖bi‖1.

The norm || · ||1 denotes the `1 norm of vector. To prune neural network, we train a LeNet-5 on
MNIST dataset using `1 norm which is shown in Figure 12. With `1 regularization, SIBP can
reach 98.5% training accuracy with 70% elements being zeros.

5.6. Nonlinear CG steps. In this section we show the effect of different nonlinear CG steps
in SIBP method given a fixed computation time. Though more steps in nonlinear CG will
lead to a more precise solution of sub problems, few steps cost less time and may lead to a
faster convergence. We train a 3072×4000×1000×4000×10 fully connected neural network
with different steps in nonlinear CG. Figure 13 demonstrate that 5 iterations achieves higher
performance in training accuracy in terms of computation time.

6. CONCLUSIONS

We proposed a novel optimization scheme in order to overcome the difficulties of small step-
size and vanishing gradient in training neural networks. The computation of new scheme is in

600 R. LIU, X. ZHANG

FIGURE 12. SIBP with `1 regularization is able to prune neural network as well
as SGD.

FIGURE 13. Too many redundant steps in nonlinear CG can be ineffective.

the spirit of error back propagation, with an implicit update on the parameters set and semi-
implicit updates on the hidden neurons. The convergence result is established for the pro-
posed algorithm under some standard assumptions. The experiments on an synthesize example,
MNIST and CIFAR-10 demonstrate that the proposed SIBP has better performance per epoch
compared to SGD and ProxBP. It is demonstrated in the experiment that larger step sizes can be
adopted without losing stability and performance.

APPENDIX A. INEQUALITY PROOF

Part 1: For η > 0, inequality (4.10) holds, i.e.,

〈− 1
λiη

(W 1
i −W 0

i)(I +λiA
0

i),W
1
i −W 0

i 〉 ≤ −
1

λiη
||W 1

i −W 0
i ||2

where A 0
i is the linear transformation defined in (4.7).

Proof. Considering the s-th row vector w0
s ,w

1
s ,(W

0
i A 0

i)s of W 0
i ,W

1
i and W 0

i A 0
i , we have

〈(W 0
i A 0

i)s,w0
s 〉= (W 0

i A 0
i)sw0

s
T
= [w0

s F0
i �∂σ(w0

s F0
i)�∂σ(w1

s F0
i)]F

0
i

T
w0

s
T ≥ 0. (A.1)

SEMI-IMPLICIT BACK PROPAGATION 601

Aggregating inequality (A.1), we obtain

〈W 0
i A 0

i ,W
0
i 〉= ∑

s
〈(W 0

i A 0
i)s,w0

s 〉 ≥ 0.

Thus linear transformation A 0
i is symmetrical semi-positive. Hence, λmin(I+λiA 0

i)≥ 1. Thus
it is easy to see that

〈− 1
λiη

(W 1
i −W 0

i)(I +λiA
0

i),W
1
i −W 0

i 〉 ≤ −
1

λiη
||W 1

i −W 0
i ||2.

�

Part 2: If η ≤ η̄0, then the following inequality holds, i.e.,

||∇WiJ(W
0
i)−∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T ||2 ≤

N−1

∑
j=i

D̄ j(r0, η̄0)||W 1
j −W 0

j ||2. (A.2)

Therefore inequality (4.11) holds.

〈∇WiJ(W
0
i)−∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T
,W 1

i −W 0
i 〉 ≤

N−1

∑
j=i

Ai, j(r0, η̄0)||W 1
j −W 0

j ||2.

All constants are determined by r0, η̄0, {λi}, activation function σ , and the loss function J.

Proof. By the local Lipschitz continuity of ∂σ in the bounded set B(r1), we have

||∂σ(W 1
i F0

i)||2||F0
i

T ||2 ≤ D(r0, η̄0)

and

||∂σ(W 1
i F0

i)−∂σ(W 0
i F0

i)||2 ≤ D̃(r0, η̄0)||W 0
i −W 1

i ||2.

Firstly, we prove the following inequality

|| ∂J
∂F0

i
−δ

0
i ||2 = ||W 0

i
T
(∂σ(W 0

i F0
i)�

∂J
∂F0

i+1
)−W 1

i
T
(∂σ(W 0

i F0
i)�δ

0
i+1)||2

≤2||(W 1
i −W 0

i)
T (∂σ(W 0

i F0
i)�

∂J
∂F0

i+1
)||2 +2||W 1

i
T
(∂σ(W 0

i F0
i)� (

∂J
∂F0

i+1
−δ

0
i+1))||2

:=Di(r0, η̄0)||W 1
i −W 0

i ||2 +D0
i+1(r0, η̄0)||

∂J
∂F0

i+1
−δ

0
i+1||2

≤Di(r0, η̄0)||W 1
i −W 0

i ||2 +Di+1(r0, η̄0)||W 1
i+1−W 0

i+1||+D0
i+2(r0, η̄0)||

∂J
∂F0

i+2
−δ

0
i+2||2

≤
N−1

∑
j=i

Di(r0, η̄0)||W 1
j −W 0

j ||2 +D0
N(r0, η̄0)||

∂J
∂F0

N
−δ

0
N ||2

:=
N−1

∑
j=i

Di(r0, η̄0)||W 1
j −W 0

j ||2.

602 R. LIU, X. ZHANG

Secondly, we can obtain that

||∇WiJ(W
0
i)−∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T ||2

≤2||(∂σ(W 0
i F0

i)−∂σ(W 1
i F0

i))�
∂J

∂F0
i+1

F0
i

T ||2 +2||∂σ(W 1
i F0

i)� (
∂J

∂F0
i+1
−δ

0
i+1)F

0
i

T ||2

≤2D̃(r0, η̄0)||
∂J

∂F0
i+1
||2||F0

i
T ||2||W 0

i −W 1
i ||2 +2D(r0, η̄0)∗

N−1

∑
j=i+1

D j(r0, η̄0)||W 1
j −W 0

j ||2

:=
N−1

∑
j=i

D̄ j(r0, η̄0)||W 1
j −W 0

j ||2.

Finally, we have

〈∇WiJ(W
0
i)−∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T
,W 1

i −W 0
i 〉

≤1
2
||∇WiJ(W

0
i)−∂σ(W 1

i F0
i)�δ

0
i+1F0

i
T ||2 + 1

2
||W 1

i −W 0
i ||2

≤
N−1

∑
j=i

1
2

D̄ j(r0, η̄0)||W 1
j −W 0

j ||2 +
1
2
||W 1

i −W 0
i ||2

:=
N−1

∑
j=i

Ai, j(r0, η̄0)||W 1
j −W 0

j ||2.

�

Part 3: If η ≤ η̄0, then the following inequality holds, i.e.,

1
2η2 ||∂σ(W 1

i F0
i)�O(||W 1

i F0
i −W 0

i F0
i ||2)F0

i
T ||2 ≤ Ei(r0, η̄0)||W 1

i −W 0
i ||2.

Therefore inequality (4.12) holds

〈− 1
η

∂σ(W 1
i F0

i)�O(||W 1
i F0

i −W 0
i F0

i ||2)F0
i

T
,W 1

i −W 0
i 〉 ≤ Bi(r0, η̄0)||W 1

i −W 0
i ||2.

All constants are determined by r0, η̄0, {λi}, activation function σ , and loss function J.

Proof. Recall that O(||W 1
i F0

i −W 0
i F0

i ||2) is the second order remainder term of σ(W 1
i F0

i)−
σ(W 0

i F0
i) using Taylor expansion.

σ(W 1
i F0

i)−σ(W 0
i F0

i) = ∂σ(W 0
i F0

i)� (W 1
i F0

i −W 0
i F0

i)+O(||W 1
i F0

i −W 0
i F0

i ||2).

Given W 0,W 1 ∈ B(r1), one has

||O(||W 1
i F0

i −W 0
i F0

i ||2)|| ≤ Ẽi(r0, η̄0)||W 1
i F0

i −W 0
i F0

i ||2.

SEMI-IMPLICIT BACK PROPAGATION 603

It follows that
1

2η2 ||∂σ(W 1
i F0

i)�O(||W 1
i F0

i −W 0
i F0

i ||2)F0
i

T ||2

≤ 1
2η2 Ẽi(r0, η̄0)

2||W 1
i F0

i −W 0
i F0

i ||4||∂σ(W 1
i F0

i)||2||F0
i ||2

≤ 1
2η2 Ẽi(r0, η̄0)

2 ∗2λiη
2Ci(r0, η̄0)||W 1

i F0
i −W 0

i F0
i ||2||∂σ(W 1

i F0
i)||2||F0

i ||4

:=Ei(r0, η̄0)||W 1
i −W 0

i ||2.

Furthermore,

〈− 1
η

∂σ(W 1
i F0

i)�O(||W 1
i F0

i −W 0
i F0

i ||2)F0
i

T
,W 1

i −W 0
i 〉

≤ 1
2η2 ||∂σ(W 1

i F0
i)�O(||W 1

i F0
i −W 0

i F0
i ||2)F0

i
T ||2 + 1

2
||W 1

i −W 0
i ||2

≤Ei(r0, η̄0)||W 1
i −W 0

i ||2 +
1
2
||W 1

i −W 0
i ||2

:=Bi(r0, η̄0)||W 1
i −W 0

i ||2.

As above, constant Bi is determined by r0, η̄0, {λi}, the activation function σ , and the loss
function J. �

REFERENCES

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks,
vol. 60, pp. 84–90, AcM New York, NY, USA, 2017.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, et al., Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups, IEEE Signal Processing magazine, 29 (2012), 82-97.

[3] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl, G. Saon, H. Soltau, T. Beran, A. Y. Aravkin,
B. Ramabhadran, Improvements to deep convolutional neural networks for lvcsr, in: IEEE Workshop on
Automatic Speech Recognition and Understanding, pp. 315–320, IEEE, 2013.

[4] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing
(almost) from scratch, J. Mach. Learn. Res. 12 (2-11), 2493-2537.

[5] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Statist. 22 (1951), 400–407.
[6] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors, Nature,

323 (1986), 533-536.
[7] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization,

J. Machn. Learn. Res. 12 (2011), 7.
[8] Y. E. Nesterov, A method of solving a convex programming problem with convergence rate o (1/kˆ 2), in:

Doklady Akademii Nauk, vol. 269, pp. 543–547, Russian Academy of Sciences, 1983.
[9] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep

learning, in: International Conference on Machine Learning, pp. 1139–1147, PMLR, 2013.
[10] T. Tieleman, G. Hinton, Divide the gradient by a running average of its recent magnitude. coursera: Neural

networks for machine learning, Technical Report, 2017.
[11] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.
[12] S. J. Reddi, S. Kale, S. Kumar, On the convergence of adam and beyond, arXiv preprint arXiv:1904.09237,

2019.
[13] G. Montavon, G. Orr, K.-R. Müller, Neural networks: tricks of the trade, vol. 7700, Springer, 2012.
[14] J. Martens, Deep learning via hessian-free optimization., in: ICML, vol. 27, pp. 735–742, 2010.

604 R. LIU, X. ZHANG

[15] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, A. Y. Ng, On optimization methods for deep learning,
in: Proceedings of the 28th International Conference on International Conference on Machine Learning,
pp. 265–272, 2011.

[16] S.-I. Amari, H. Park, K. Fukumizu, Adaptive method of realizing natural gradient learning for multilayer
perceptrons, Neural Computation, 12 (2000), 1399–1409.

[17] J. Martens, New insights and perspectives on the natural gradient method, J. Mach. Learn. Res. 21 (2020),1–
76.

[18] M. Yang, D. Xu, Z. Wen, M. Chen, P. Xu, Sketch-based empirical natural gradient methods for deep learning,
J. Sci. Comput. 92 (2022), 94.

[19] J. Hu, R. Ao, A. M.-C. So, M. Yang, Z. Wen, Riemannian natural gradient methods, arXiv preprint
arXiv:2207.07287, 2022.

[20] M. Yang, D. Xu, Q. Cui, Z. Wen, P. Xu, Ng+, A multi-step matrix-product natural gradient method for deep
learning, arXiv preprint arXiv:2106.07454, 2021.

[21] T. Frerix, T. Möllenhoff, M. Moeller, D. Cremers, Proximal backpropagation, arXiv preprint
arXiv:1706.04638, 2017.

[22] A. Askari, G. Negiar, R. Sambharya, L. E. Ghaoui, Lifted neural networks, arXiv preprint arXiv:1805.01532,
2018.

[23] M. Carreira-Perpinan, W. Wang, Distributed optimization of deeply nested systems, in: Artificial Intelligence
and Statistics, pp. 10–19, PMLR, 2014.

[24] F. Gu, A. Askari, L. El Ghaoui, Fenchel lifted networks: A lagrange relaxation of neural network training,
in: International Conference on Artificial Intelligence and Statistics, pp. 3362–3371, PMLR, 2020.

[25] T. T.-K. Lau, J. Zeng, B. Wu, Y. Yao, A proximal block coordinate descent algorithm for deep neural network
training, in: International Conference on Learning Representations (ICLR), Workshop Track, 2018.

[26] Z. Zhang, M. Brand, Convergent block coordinate descent for training tikhonov regularized deep neural
networks, vol. 30, 2017.

[27] J. Zeng, T. T.-K. Lau, S. Lin, Y. Yao, Global convergence of block coordinate descent in deep learning, in:
International conference on machine learning, pp. 7313–7323, PMLR, 2019.

[28] Y. Xie, Z. Li, H. Zhao, Gradient-free neural network training based on deep dictionary learning with the log
regularizer, in: Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing,
China, October 29–November 1, 2021, Proceedings, Part IV 4, pp. 561–574, Springer, 2021.

[29] Y. Xu, W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications
to nonnegative tensor factorization and completion, SIAM J. Imaging Sci. 6 (2013), 1758–1789.

[30] K. Kurdyka, On gradients of functions definable in o-minimal structures, in Annales de l’institut Fourier, 48
(1998), 769–783.

[31] S. Łojasiewicz, Sur la géométrie semi-et sous-analytique, Annales de l’Institut Fourier 43 (1993), 1575–1595.
[32] J. Li, M. Xiao, C. Fang, Y. Dai, C. Xu, Z. Lin, Training neural networks by lifted proximal operator machines,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (2020), 3334–3348.
[33] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, T. Goldstein, Training neural networks without gradients:

A scalable admm approach, in International Conference on Machine Learning, pp. 2722–2731, PMLR, 2016.
[34] Z. Zhang, Y. Chen, V. Saligrama, Efficient training of very deep neural networks for supervised hashing, in:

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1487–1495, 2016.
[35] Q. Sun, H. Dong, Z. Chen, W. Dian, J. Sun, Y. Sun, Z. Li, B. Dong, Layer-parallel training of residual

networks with auxiliary variables, in: The Symbiosis of Deep Learning and Differential Equations, 2021.
[36] S. Gunther, L. Ruthotto, J. B. Schroder, E. C. Cyr, N. R. Gauger, Layer-parallel training of deep residual

neural networks, SIAM J. Math. Data Sci. 2 (2020), 1–23.
[37] A. Kirby, S. Samsi, M. Jones, A. Reuther, J. Kepner, V. Gadepally, Layer-parallel training with gpu concur-

rency of deep residual neural networks via nonlinear multigrid, in: 2020 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, IEEE, 2020.

[38] M. Pyeon, J. Moon, T. Hahn, G. Kim, Sedona: Search for decoupled neural networks toward greedy block-
wise learning, in: International Conference on Learning Representations, 2021.

[39] R. Sun, Optimization for deep learning: theory and algorithms, arXiv preprint arXiv:1912.08957, 2019.

SEMI-IMPLICIT BACK PROPAGATION 605

[40] L. Wu, C. Ma, W. E, et al., How sgd selects the global minima in over-parameterized learning: A dynamical
stability perspective, 32nd Conference on Neural Information Processing Systems, NeurIPS, Montreal, 2018.

	1. Introduction
	2. Notations
	3. Background
	3.1. Back propagation method
	3.2. Proximal back propagation
	3.3. Block coordinate descent

	4. Semi-implicit Back Propagation Method
	4.1. Semi-implicit back propagation
	4.2. Comparison to BP, ProxBP, and BCD
	4.3. Convergence analysis

	5. Numerical Experiments
	5.1. A gradient vanishing example
	5.2. MNIST Classification
	5.3. CIFAR-10 Classification
	5.4. Training with small size samples
	5.5. Pruning Neural Networks by 1 penalty
	5.6. Nonlinear CG steps

	6. Conclusions
	Appendix A. Inequality proof
	References

