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Abstract. This paper discusses the k-sparse complex signal recovery from quadratic measurements
via the `p-minimization model, where 0 < p ≤ 1. We establish the `p restricted isometry property over
simultaneously low-rank and sparse matrices, which is a weaker restricted isometry property to guarantee
the successful recovery in the `p case. The main result is to demonstrate that `p-minimization can recover
complex k-sparse signals from m& k+ pk log(n/k) complex Gaussian quadratic measurements with high
probability. The resulting sufficient condition is met by fewer measurements for smaller p and reaches
m & k when p turns to zero. Furthermore, an iteratively-reweighted algorithm is proposed. Numerical
experiments also demonstrate that `p minimization with 0 < p < 1 performs better than `1 minimization.

Keywords. Nonconvex optimization; Restricted isometry property; Sampling complexity; Sparse phase
retrieval.

1. INTRODUCTION

Phase retrieval aims at the reconstruction of some signal from the squared modulus of its
linear transform. More concretely, suppose that we observe the signal xxx ∈ Fn (F ∈ {R,C})
from the model

yyy = |AAAxxx|2 + εεε, (1.1)
where AAA ∈ Fm×n is some known measurement matrix and εεε ∈ Rm is some noise term, and our
goal is to reconstruct the unknown signal xxx based on yyy and AAA. Such kind of task arises in many
real applications, such as X-ray crystallography, astronomy, optics, and coherent diffraction
imaging when the sensors and detectors can only record the intensity of light wave [1, 2, 3].
Since

|AAAxxx|2 = |AAA(cxxx)|2

for any |c|= 1, the recovery of xxx is equivalent as the recovery of the set x̃xx, where

x̃xx := {cxxx | |c|= 1, c ∈ F}.
In noiseless case, i.e., εεε = 0, it demonstrates that m ≥ 2n−1 (resp. m ≥ 4n−4) generic mea-
surements are sufficient to exactly recover xxx ∈ Fn up to a unimodular constant when F = R
(resp. F= C) [4, 5].
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Recently, solving the phase retrieval problem received extensive attention in recent decades.
A remarkable result of Candès and Li for random Gaussian measurements is that we can recover
xxx by some semidefinite programming framework called PhaseLift [6, 7]. It applies the ”lifting”
technique, that is, lifting the signal xxx into rank-one matrix XXX = xxxxxx∗ and then the quadratic
measurements can be linearized as below:

y j = |〈aaa j,xxx〉|2 + ε j = aaa∗jXXXaaa j + ε j,

where the measurement vectors aaa j ( j = 1, . . . ,m) are the column elements of AAA∗. Based on the
convex relaxation model:

min
ZZZ∈Fn×n

m

∑
j=1

∣∣aaa∗jZZZaaa j− y j
∣∣ , s.t. XXX � 0,

they proved that the solution is exact up to some global phase when m & n [6]. For some
nonconvex iterative methods for phase retrieval, we refer to [8, 9, 10, 11].

In this paper, we focus on the model (1.1) in the case that m� n. Although (1.1) does not
yield injective measurements, it can also become well-posed when the unknown signal xxx is
k-sparse. It was demonstrated that m ≥ 4k− 2 for F = C (resp. m ≥ 2k for F = R) generic
measurements can obtain the solution uniquely modulo phase [12].

The injectivity of the measurements does not imply that efficient recovery is possible. In-
spired by the success of the `1 minimization model in compressed sensing, it is natural to take
the sparsity assumption and try to efficiently recover signals from fewer than n intensity mea-
surements. The following `1 minimization model in the noiseless case is considered:

(`1 minimization) min
zzz∈Fn
‖zzz‖1 s.t. |AAAzzz|2 = |AAAxxx|2. (1.2)

Based on the `1 minimization model, one can recover xxx when m & k log(n/k) and AAA ∈ Fm×n

is random real or complex Gaussian matrix [13, 14]. Although the constrained model in (1.2)
is non-convex, many efficient algorithms were developed to solve it [9, 15]. Beyond the `1
minimization model, other nonconvex algorithms were also proposed to solve sparse phase
retrieval problem, such as Sparse Truncated Amplitude Flow (SPARTA) [16], Compressive
Phase Retrieval with Alternating Minimization (CoPRAM) [17], and Sparse phase retrieval via
PhaseLiftOff [18].

A natural question is: whether the sampling complexity can be improved further. In this
paper, we aim to find the number of measurements in the `p (0 < p ≤ 1) minimization model,
that is,

(`p minimization) min
zzz∈Cn
‖zzz‖p

p s.t. |AAAzzz|2 = |AAAxxx|2. (1.3)

The main result of this paper is that, for the case of random complex Gaussian measurements,
the number of measurements in (1.3) can be improved to

m&C1(p)k+ pC2(p)k log(n/k),

where C1 and C2 are determined explicitly and bounded by p. Therefore, when p turns to zero,
the dependence of the sufficient number of measurements m on the signal dimension n vanishes,
and the order of measurements becomes O(k), which meets the injectivity order in [12].
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2. NOTATIONS

Denote Hn×n as the n× n Hermitian matrices set. For matrix XXX ∈ Cn1×n2 , we use XXXS,T to
denote the submatrix of XXX with the rows indexed in S and the columns indexed in T . We use
XXX j,: and XXX :,l to denote the j-th row and the l-th column of XXX , respectively. Take ‖XXX‖0,2 as the
number of non-zero columns in XXX . Set

‖XXX‖1 := ∑
j,l

√
R(X j,l)2 + I(X j,l)2,

‖XXX‖F :=
√

∑
j,l
(R(X j,l)2 + I(X j,l)2),

and
‖XXX‖p

p := ∑
j,l
(R(XXX j,l)

2 + I(XXX j,l)
2)p/2,(0 < p≤ 1),

where R(X j,l) and I(X j,l) are the real and image parts of X j,l , respectively. For any XXX ,YYY ∈
Cn1×n2 , set 〈XXX ,YYY 〉 := Tr(XXX∗YYY ).

We use A& B to denote A≥ cB, where c is some positive absolute constant. The notation .
can be defined similarly. Without specific notation, we use C,c, and their superscript (subscript)
forms to denote universal constants and their values may vary with different contexts.

3. MAIN RESULTS

In standard compressed sensing, it was proved that when `1-minimization is replaced by
`p-minimization, that is,

min
zzz
‖zzz‖p

p s.t. AAAzzz = AAAxxx, (3.1)

fewer measurements are required for exact reconstruction [19]. Suppose that the measurement
matrix AAA satisfies the restricted p-isometry property, i.e., for all xxx such that ‖xxx‖0 ≤ k,

(1−δk)‖xxx‖p
2 ≤ ‖AAAxxx‖p

p ≤ (1+δk)‖xxx‖p
2 ,

the unique minimizer of (3.1) is exactly xxx provided that

δak +bδ(a+1)k < b−1

with a = db2/(2−p)ke/k and ‖xxx‖0 ≤ k.
However, such kind of restricted isometry property can not be directly extended to phase

retrieval problem. In the sparse phase retrieval problem, we consider a different notion of
restricted isometry property, based on the fact that the quadratic measurements can be lifted
in matrix space and xxxxxx∗ is simultaneously low-rank and sparse. We describe the following
restricted p-isometry property over low-rank and sparse matrices:

Definition 3.1. The map A : Hn×n→ Rm satisfies the restricted p-isometry property (abbrevi-
ated as `p-RIP) of order (r,k) if there exist positive constants C and C such that

C‖XXX‖p
F ≤ ‖A (XXX)‖p

p ≤C‖XXX‖p
F

holds for all XXX ∈Hn×n with rank(XXX)≤ r and ‖XXX‖0,2 ≤ k.
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When referring to the phase retrieval problem, A (·) can be defined as

A (XXX) = (aaa∗1XXXaaa1, . . . ,aaa∗mXXXaaam).

Then the `p minimization in the noiseless case becomes:

min
zzz∈Cn
‖zzz‖p

p s.t. A (zzzzzz∗) = A (xxxxxx∗). (3.2)

The following theorem illustrates the sufficient condition for exact recovery of `p minimiza-
tion under the `p-RIP.

Theorem 3.1. Assume that A (·) satisfies the `p-RIP of order (2,2ak), that is,

C‖XXX‖p
F ≤ ‖A (XXX)‖p

p ≤C‖XXX‖p
F

for any XXX ∈Hn×n with rank(XXX)≤ 2 and ‖XXX‖0,2 ≤ 2ak. If

C >C
(

1
a2−p +

4
a1−p/2

)
for some large enough a > 1, then the solution xxx# to the model (3.2) satisfies

xxx#(xxx#)∗ = xxxxxx∗.

Henceforth, we discuss the `p-RIP for complex Gaussian measurements. The following the-
orem demonstrates the sharp bounds on the `p expectation E|aaa∗i XXXaaai|p, that is, the upper bound
and lower bound can be achieved for proper choices of XXX . It can be taken out for research
separately for interested readers.

Theorem 3.2. Assume that XXX ∈ Hn×n with rank(XXX) ≤ 2 and ‖XXX‖F = 1. Consider aaai (i =
1, . . . ,m) independently drawn from complex Gaussian random vectors, i.e., aaai ∼N (000, 1

2 III)+
N (000, 1

2 III)i. Let Xi = |aaa>i XXXaaai|p with 0 < p≤ 1 and µ = EX1. Then

1
p+1

2−p/2
Γ(p+2)≤ E|aaa∗XXXaaa|p ≤ 2−p/2

Γ(p+2), (3.3)

and

P

(∣∣∣∣∣ m

∑
i=1

(Xi−µ)

∣∣∣∣∣≥ t

)
≤ 2exp

(
− t2

cmτ2

)
, with τ ≤ p+ p1/2−p, (3.4)

where c is some positive absolute constant.

Remark 3.1. For any 0 < p ≤ 1, we have 2−p/2Γ(p+2) ≤ 2 and 1
p+12−p/2Γ(p+2) ≥ 2−3/2.

Then 2−3/2 ≤ E|aaa∗XXXaaa|p ≤ 2, for any XXX ∈Hn×n with rank(XXX)≤ 2 and ‖XXX‖F = 1.
Furthermore, when p turn to 0, we can achieve that

2−p/2
Γ(p+2)→ 1 and

1
p+1

2−p/2
Γ(p+2)→ 1,

which leads to more flexible choices of C and C in the `p-RIP described in Definition 3.1.

Now the concentration inequality of ‖A (XXX)‖p
p for low-rank and sparse matrix XXX can be

demonstrated below.
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Theorem 3.3. Set X := {XXX ∈Hn×n | ‖XXX‖F = 1, rank(XXX)≤ 2, ‖XXX‖0,2 ≤ L} and take ε,η > 0.
Consider aaai (i = 1, . . . ,m) independently drawn from complex Gaussian random vectors, i.e.,
aaai ∼N (000, 1

2 III)+N (000, 1
2 III)i. Then, for any XXX ∈X ,

m
(

2−3/2(1−4η)− (1+η)
4ε p

1−2ε p

)
≤

m

∑
i=1
|aaa>i XXXaaai|p ≤ 2m

(
1+

η +2ε p

1−2ε p

)
,

with probability at least

1−2

(
9
√

2en
εL

)5L

exp
(
− mη2

2cp1−2p

)
,

where c is some positive absolute constant.

Based on Theorem 3.3 and Theorem 3.1, we find that `p minimization can recover the un-
known k-sparse signal from fewer measurements with a small value of p than that was needed
in the aforementioned results [13, 14].

Theorem 3.4. Consider aaai (i = 1, . . . ,m) independently drawn from complex Gaussian random
vectors, i.e., aaai ∼N (000, 1

2 III)+N (000, 1
2 III)i. When

m& k+ pk log(n/k),

the solution xxx# to model (3.2) satisfies

xxx#(xxx#)∗ = xxxxxx∗,

with probability exceeding 1−1/
(n

s

)
.

4. NUMERICAL EXPERIMENTS

Many numerical experiments were made to demonstrate the empirical success of the `1 min-
imization model. For example, Moravec, Romberg, and Baraniuk proposed an iterative projec-
tion algorithm to solve (1.2) [20]. The ADM algorithm was introduced in [15]. However, the
proposed ADM algorithms cannot be guaranteed to converge. In this paper, we focus on the
numerical behavior of

min
ZZZ�0
‖ZZZ‖p

p s.t. trace(ZZZ)≤ trace(xxxxxx∗), aaa∗jZZZaaa j = y j, j = 1, . . . ,m, (4.1)

when 0 < p≤ 1. When p = 1, the SDP solver is applied in the small-scale case. In large-scale
cases, it can use a fast matrix-factorization-based algorithm to solve the semidefinite program-
ming [21]. Based on the factorization method, the scaled gradient method is used to give fast
and robust convergence in matrix recovery problem [22].

In order to solve (4.1), we apply an iteratively-reweighted method. We begin with the mini-
mization of (1.2) when p = 1 as ZZZ(1). Let ZZZ(n+1) be the solution of

min
ZZZ�0

∑
l,k

ω
(n)
l,k |Zl,k| s.t. trace(ZZZ)≤ trace(xxxxxx∗), aaa∗jZZZaaa j = y j, j = 1, . . . ,m, (4.2)

in the noiseless case. Here the weights are given by

w(n)
l,k =

(∣∣∣ZZZ(n)
l,k

∣∣∣+ εn

)p−1
.
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The iteration is continued until convergence, and the whole process is repeated with εn =
1

10n as
the sequence {εn} decreasing too fast does not improve the efficiency of the computations [23].
By similar statements in [23, Proposition 4.1], the sequence {ZZZ(n)} generated by (4.2) admits a
convergent subsequence.

Denoting the algorithm output as XXX#, we estimate the signal xxx# by extracting the largest
rank-1 component of XXX#. That is, when the eigenvalue decomposition of XXX# is taken as XXX# =

∑
n
k=1 λkuuukuuu∗k with λ1 ≥ . . .≥ λn, set xxx# =

√
λ1uuu1. Besides, we use the relative error as

Relative Error :=
d(xxx#,xxx)
‖xxx‖2

,

where d(xxx#,xxx) = min|c|=1 ‖cxxx#− xxx‖2. We consider an algorithm to have successfully recon-
structed a target signal xxx if the relative error is smaller than 10−3.

In numerical experiments, we focus on the iterative-reweighted algorithm in (4.2) and con-
struct two kinds of measurements: (i) the real Gaussian model: the sampling vectors aaa j are real
Gaussian random vectors, i.e., aaa j ∼N (0, IIIn×n); (ii) the complex Gaussian model: the sampling
vectors aaa j are complex Gaussian random vectors, i.e., aaa j ∼N (0, 1

2 IIIn×n)+N (0, 1
2 IIIn×n)i. The

signal dimension n = 50. For each fixed sparsity level k, the support of xxx is drawn from the
uniform distribution over the set of {1, . . . ,n}. The non-zero entries of the real (resp. complex)
k-sparse signal xxx are drawn from Gaussian distribution N (0,1) (resp. N (0,1)+N (0,1)i).
For convenience, we normalize xxx into ‖xxx‖2 = 1.

First of all, we investigate the convergence performance when p varies in {0.1,0.5,0.7}. The
measurement number is m= 30 in the real Gaussian model and m= 60 in the complex Gaussian
model. Figure 4.1 depicts the relative error versus the iteration number for the real Gaussian
model and complex Gaussian model. The algorithm converges after a relatively small number
of iterations. We find that the algorithm converges much faster when p decreases.
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FIGURE 4.1. Comparison of the convergence result under different measure-
ments: (a) the real Gaussian model; (b) the complex Gaussian model.

Furthermore, we test the empirical success rate against the measurement number m and the
sparsity level k. We evaluate the algorithm under different choices of p by 20 trials. The plots
of successful recovery probability against the sampling number m (resp. the sparsity level k) are
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demonstrated in Figure 4.2 (resp. Figure 4.3). The numerical results demonstrate that reducing
the value of p below 1 clearly reduces the number of measurements needed for perfect recovery,
and improves the success rate when the sparsity level k increases.
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FIGURE 4.2. Comparison of the empirical success rate for fixed k = 5 under
different measurements: (a) the real Gaussian model; (b) the complex Gaussian
model.
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FIGURE 4.3. Comparison of the empirical success rate for fixed m = 50 under
different measurements: (a) the real Gaussian model; (b) the complex Gaussian
model.

Besides, we demonstrate the performance of the algorithm under additive noise. The white
Gaussian noise is followed by MATLAB function awgn(A (xxxxxx∗),snr). Here m = 70, k = 5 and
20 trials are conducted. The SNR level varies from 30dB to 60dB. The signal-to-noise ratio of
reconstruction in dB is taken as −20log10(Relative Error). The average relative reconstruction
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error against SNR is shown in Figure 4.4. The desirable linear scaling between the noise level
and the relative reconstruction error can be observed. Meanwhile, it provides better relative
error when p decreases.
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FIGURE 4.4. SNR of the signal recovery versus the noise level when k = 5 and
m = 70: (a) the real Gaussian model; (b) the complex Gaussian model.

5. PROOFS

5.1. Proof of Theorem 3.1.

Proof. Denote xxx# as the solution to (3.2). Since exp(iθ)xxx# is also a solution to (3.2) for any
θ ∈ R, we can assume that

〈xxx#,xxx〉 ∈ R and 〈xxx#,xxx〉 ≥ 0.

Set XXX = xxxxxx∗ and HHH = xxx#(xxx#)∗− xxxxxx∗. Denote T0 = supp(xxx). Set T1 as the index set which
contains the indices of the largest ak elements of xxx#

T c
0

in magnitude, and T2 contains the indices

of the next ak largest elements, and so on. For simplicity, set T01 := T0∪T1 and HHH = HHHT01,T01 .
Assume that

‖HHHT c
01,T

c
01
‖p

F ≤ ∑
i≥2, j≥2

‖xxx#
Ti
(xxx#

Tj
)∗‖p

F ≤
1

a2−p‖HHH‖
p
F , (5.1)

and

∑
j≥2
‖HHHTi,Tj‖

p
F = ∑

j≥2
‖xxx#

Ti
(xxx#

Tj
)∗‖p

F ≤
1

a1−p/2‖HHH‖
p
F , (5.2)

for any i ∈ {0,1}. Then we can directly apply the RIP bounds of A (·), which arrives at

‖A (HHH)‖p
p = ‖A (HHH−HHH)‖p

p ≤C

(
2 ∑

j≥2,i=0,1
‖xxx#

Ti
(xxx#

Tj
)∗‖p

F + ∑
i≥2, j≥2

‖xxx#
Ti

xxx#
Tj
‖p

F

)

≤C
(

1
a2−p‖HHH‖

p
F +

4
a1−p/2‖HHH‖

p
F

)
=C

(
1

a2−p +
4

a1−p/2

)
‖HHH‖p

F ,
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and
‖A (HHH)‖p

p ≥C‖HHH‖p
F .

If

C >C
(

1
a2−p +

4
a1−p/2

)
,

we immediately obtain HHH = 000. It leads to

‖HHHT c
01,T

c
01
‖p

F = 0 and ∑
j≥2
‖HHHTj,Ti‖

p
F = ∑

j≥2
‖xxx#

Ti
(xxx#

Tj
)∗‖p

F = 0,

for i ∈ {0,1}. Therefore,

‖HHH‖p
F = ‖xxx#(xxx#)∗− xxxxxx∗‖p

F ≤ ‖HHHT c
01,T

c
01
‖p

F +2 ∑
j≥2, i=0,1

‖HHHTj,Ti‖
p
F +‖HHH‖p

F = 0,

and the conclusion holds:
xxx#(xxx#)∗ = xxxxxx∗.

The only thing left is to derive (5.1) and (5.2).
On one hand, we can obtain inequality (5.1) by the following statement:

‖HHHT c
01,T

c
01
‖p

F ≤ ∑
i≥2, j≥2

‖xxx#
Ti
(xxx#

Tj
)∗‖p

F

(a)
≤ ∑

i≥2, j≥2
‖xxx#

Ti
‖p

2‖xxx
#
Tj
‖p

2

(b)
≤ 1

(ak)2−p

(
∑
i≥1
‖xxx#

Ti
‖p

p

)2

=
1

(ak)2−p‖xxx
#
T c

0
‖2p

p =
1

(ak)2−p‖HHHT c
0 ,T

c
0
‖p

p

(c)
≤ 1

(ak)2−p‖HHHT0,T0‖
p
p ≤

1
a2−p‖HHHT0,T0‖

p
F ≤

1
a2−p‖HHH‖

p
F .

Here (a) follows from ‖xxx#
Ti
(xxx#

Tj
)∗‖F ≤‖xxx#

Ti
‖2‖xxx#

Tj
‖2. Inequality (b) is based on ‖xxx#

Tj
‖p

2 ≤
‖xxx#

Tj−1
‖p

p

(ak)1−p/2

for any j ≥ 2. (c) is according to ‖xxx#‖p ≤ ‖xxx‖p and

‖HHHT c
0 ,T

c
0
‖p

p ≤ ‖HHH−HHHT0,T0‖
p
p = ‖xxx#(xxx#)∗− xxx#

T0
(xxx#

T0
)∗‖p

p = ‖xxx#(xxx#)∗‖p
p−‖xxx#

T0
(xxx#

T0
)∗‖p

p

≤ ‖xxxxxx∗‖p
p−‖xxx#

T0
(xxx#

T0
)∗‖p

p ≤ ‖xxxxxx∗− xxx#
T0
(xxx#

T0
)∗‖p

p = ‖HHHT0,T0‖
p
p.

On the other hand, inequality (5.2) can be obtained as below. For any i ∈ {0,1}, we have

∑
j≥2
‖HHHTi,Tj‖

p
F = ∑

j≥2
‖HHHTj,Ti‖

p
F = ∑

j≥2
‖xxx#

Ti
(xxx#

Tj
)∗‖p

F ≤ ‖xxx
#
Ti
‖p

2 ∑
j≥2
‖xxxTj‖

p
2

≤ ‖xxx#
Ti
‖p

2 ·
1

(ak)1−p/2‖xxx
#
T c

0
‖p

p

(d)
≤ ‖xxx#

T01
‖p

2 ·
k1−p/2

(ak)1−p/2‖xxx
#
T01
− xxx‖p

2

(e)
≤ 1

a1−p/2‖HHH‖
p
F .

Here (d) follows from

‖xxx#
T c

0
‖p

p ≤ ‖xxx‖p
p−‖xxx#

T0
‖p

p ≤ ‖xxx− xxx#
T0
‖p

p ≤ k1−p/2‖xxx− xxx#
T0
‖p

2 ≤ k1−p/2‖xxx− xxx#
T01
‖p

2 .

(e) is based on Lemma 3.2 in [14], that is,

‖xxx− xxx#
T01
‖2 ·

1√
2
‖xxx#

T01
‖2 ≤ ‖xxxxxx∗− xxx#

T01
(xxx#

T01
)∗‖F ,
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when 〈xxx,xxx#
T01
〉 ≥ 0. �

5.2. Proof of Theorem 3.2.

5.2.1. Auxiliary Results. First of all, we establish some technical tools.

Lemma 5.1. Assume that λ is some positive integer and 0 < q≤ 1. Take some µ > 0. Then∫
µ1/q

0
(xq−µ)λ dx≤ µ

λ+1/qqdτλedτλe!,

for any fixed τ with 0 < τ ≤ 1.

Proof. Taking u with µu = xq, we have∫
µ1/q

0
(xq−µ)λ dx =

∫ 1

0

(
(µu−µ)λ · µ

1/q

q
·u1/q−1

)
du =

µλ+1/q

q
B(λ +1,1/q)

=
µλ+1/q

q
· Γ(λ +1)Γ(1/q)

Γ(λ +1+1/q)
= µ

λ+1/q ·
λ

∏
j=1

j
j+1/q

= µ
λ+1/q ·

λ

∏
j=1

jq
jq+1

≤ µ
λ+1/q

dτλe

∏
j=1

jq = µ
λ+1/qqdτλedτλe!.

�

Lemma 5.2. Assume that λ ,µ > 0. Then∫ +∞

µ

(x−µ)λ exp(−x2/2)dx≤ 2
λ−1

2 Γ

(
λ +1

2

)
.

Proof. By direct calculation, we have∫ +∞

µ

(x−µ)λ exp(−x2/2)dx =
∫

∞

0
xλ exp(−(x+µ)2/2)dx≤

∫
∞

0
xλ exp(−x2/2)dx

=
∫

∞

0
(2t)

λ−1
2 exp(−t)dt = 2

λ−1
2 Γ

(
λ +1

2

)
by taking t = x2/2. �

5.2.2. Proof of (3.3) in Theorem 3.2.

Proof. By the definition of XXX , the eigenvalue decomposition of XXX becomes XXX =UUUΣΣΣUUU∗, where

ΣΣΣ =

[
α 0
0 β

]
∈ R2×2 with α2 +β 2 = 1 and UUU ∈ Cn×2 satisfies UUU∗UUU = III. Under the rotation

invariance property of Gaussian random vector, we have

E|aaa>XXXaaa|p = E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p ·2−p, (5.3)

where z1,z2,z3, and z4 are independently drawn from N (0,1).
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Now we focus on the upper and lower bounds of E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p. Without loss
of generality, we assume α ≥ |β |. Taking z1 = ρ1 cosθ , z2 = ρ1 sinθ , z3 = ρ2 cosφ , and z4 =
ρ2 sinφ , we have

E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p

=
1

(2π)2

∫
· · ·
∫
R4
|α(z2

1 + z2
2)+β (z2

3 + z2
4)|p exp

(
−

z2
1 + z2

2 + z2
3 + z2

4
2

)
dz1dz2dz3dz4

=
1

(2π)2

∫ 2π

0
dθ

∫ 2π

0
dφ

∫ +∞

0

∫ +∞

0
ρ1ρ2|αρ

2
1 +βρ

2
2 |p exp

(
−

ρ2
1 +ρ2

2
2

)
dρ1dρ2

=
∫ +∞

0

∫ +∞

0
ρ1ρ2|αρ

2
1 +βρ

2
2 |p exp

(
−

ρ2
1 +ρ2

2
2

)
dρ1dρ2. (5.4)

Denote ρ1 = ρ cosϕ and ρ2 = ρ sinϕ . One sees that (5.4) becomes

E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p

=
∫ +∞

0

∫ +∞

0
ρ1ρ2|αρ

2
1 +βρ

2
2 |p exp

(
−

ρ2
1 +ρ2

2
2

)
dρ1dρ2.

=
∫ +∞

0
ρ

2p+3 exp(−ρ
2/2)dρ ·

∫
π/2

0
cosϕ sinϕ|α cos2

ϕ +β sin2
ϕ|pdϕ

=
∫ +∞

0

1
2

ρ
2p+3 exp(−ρ

2/2)dρ ·
∫ 1

0
|α +(β −α)t|pdt,

where the last equality above is based on t = sin2ϕ . Thus E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p can be
considered as

E|α(z2
1+z2

2)+β (z2
3+z2

4)|p =Eρ,t(ρ
2p · |α+(β−α)t|p)=Eρ(ρ

2p)Et(|α+(β−α)t|p), (5.5)

where t is taken as some random variable drawn from U [0,1], and the density function p(ρ) of
ρ satisfies

p(ρ) =
1
2

ρ
3 exp(−ρ

2/2), 0≤ ρ < ∞.

By direct calculation, we have

E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p

= Eρ(ρ
2p)Et(|α +(β −α)t|p) = 2p

Γ(p+2)
∫ 1

0
|α +(β −α)t|pdt

=


2pΓ(p+2) · (1/2)p/2 α = β =

√
2

2 ;
2pΓ(p+2) · 1

p+1 ·
1

α−β
· (α p+1−β p+1) α 6= β and β ≥ 0;

2pΓ(p+2) · 1
p+1 ·

1
α−β
· (α p+1 +(−β )p+1) β < 0.

and E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p reaches the upper and lower bounds on the case of β =
√

2
2 and

β =−
√

2
2 , respectively. Therefore, we can obtain

1
p+1

2p/2
Γ(p+2)≤ E|α(z2

1 + z2
2)+β (z2

3 + z2
4)|p ≤ 2p/2

Γ(p+2),
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which leads to
1

p+1
2−p/2

Γ(p+2)≤ E|aaa>XXXaaa|p = E|α(z2
1 + z2

2)+β (z2
3 + z2

4)|p ·2−p ≤ 2−p/2
Γ(p+2).

�

5.2.3. Proof of (3.4) in Theorem 3.2. The following theorem plays a fundamental role in the
proof of (3.4).

Theorem 5.1. [24, Theorem 1.5] Let X1, . . . ,XM be independent copies of some random variable
X. Denote µ = EX and

τ = supk≥1(3.1)
1
4

[
2kk!
(2k)!

E(X−µ)2k
] 1

2k

.

Then

P

(∣∣∣ M

∑
i=1

(Xi−µ)
∣∣∣≥ t

)
≤ 2exp

(
− t2

2Mτ2

)
.

Proof of (3.4) in Theorem 3.2. According to (5.3), when 1/2≤ p≤ 1, we have

‖|aaa>1 XXXaaa1|p‖ψ1 ≤ 4‖|z|2p‖ψ1 ≤ 4‖max{1, |z|2p}‖ψ1 ≤ 4‖max{1,z2}‖ψ1 ≤ c,

where z∼N (0,1) and ‖ · ‖ψ1 := supk≥1(E| · |k)1/k. Therefore,

P

(∣∣∣∣∣ m

∑
i=1

(Xi−µ)

∣∣∣∣∣≥ t

)
≤ 2exp

(
− t2

c1m

)
, (5.6)

for any 1/2≤ p≤ 1 [25]. Then we discuss the case that 0 < p < 1
2 . In order to apply Theorem

5.1, we should estimate

τ = supk≥1(3.1)
1
4

[
2kk!
(2k)!

E(X−µ)2k
] 1

2k

,

when X = |aaa>1 XXXaaa1|p and µ = EX . According to (5.5), we have

E(X−µ)2k = Eρ,t( f (ρ)g(t)−Eρ f (ρ)Etg(t))2k,

where f (ρ) = ρ2p and g(t) = |α +(β −α)t|p with the density functions on ρ and t as

p(ρ) =
1
2

ρ
3 exp(−ρ

2/2), 0≤ ρ < ∞ and p(t) = 1, 0≤ t ≤ 1.

Therefore, by (x+ y)2k ≤ 22k−1x2k +22k−1y2k, we can obtain that

E(X−µ)2k =Eρ,t( f (ρ)g(t)−Eρ f (ρ)Etg(t))2k = Eρ

(
Et( f (ρ)g(t)−Eρ f (ρ)Etg(t))2k ∣∣ ρ

)
≤22k−1Eρ

(
Et( f (ρ)g(t)− f (ρ)Etg(t))2k ∣∣ ρ

)
+22k−1Eρ

(
Et( f (ρ)Etg(t)−Eρ f (ρ)Etg(t))2k ∣∣ ρ

)
≤22k−1Eρ f (ρ)2k ·Et(g(t)−Etg(t))2k +22k−1Etg(t)2k ·Eρ( f (ρ)−Eρ f (ρ))2k.

Now we calculate the upper bounds of Eρ f (ρ)2k ·Et(g(t)−Etg(t))2k and Etg(t)2k ·Eρ( f (ρ)−
Eρ f (ρ))2k separately.
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(a) Estimation of Eρ f (ρ)2k ·Et(g(t)−Etg(t))2k.
On one hand, we have

Eρ f (ρ)2k =
∫ +∞

0
ρ

4pk · 1
2

ρ
3 exp(−ρ

2/2)dρ = 22pk
Γ(2pk+2)≤ 22k(b2pkc+2)!.

On the other hand, we denote ν = Etg(t). By direct calculation, we have

ν =


(1/2)p/2, α = β =

√
2

2 ;
1

p+1 ·
1

α−β
· (α p+1−β p+1), α 6= β and β ≥ 0;

1
p+1 ·

1
α−β
· (α p+1 +(−β )p+1), β < 0.

If

Et(g(t)−Etg(t))2k

≤


0, α = β =

√
2

2 ;

p2k ·
(√

5
2 e
)2k

+
√

5 · pd(1−2p)ked(1−2p)ke!+ p2k · (
√

5)2k, α 6= β and β ≥ 0;

2pd(1−2p)ked(1−2p)ke!+2p2k(2
√

2e)2k, β < 0,

(5.7)

then

Et(g(t)−Etg(t))2k ≤ 2p2k ·
(

2
√

2e
)2k

+
√

5 · pd(1−2p)ked(1−2p)ke!,

which leads to

Eρ f (ρ)2kEt(g(t)−Etg(t))2k

≤ 22k(b2pkc+2)! ·
(

2p2k ·
(

2
√

2e
)2k

+
√

5 · pd(1−2p)ked(1−2p)ke!
)
.

(5.8)

Therefore, we should estimate Et(g(t)−Etg(t))2k in (5.7) case by case.
When α = β =

√
2

2 , it is easy to see that Et(g(t)−Etg(t))2k = 0.
When α 6= β and β ≥ 0, by taking x = α +(β −α)t, it obtains that

Et(g(t)−Etg(t))2k

=
∫ 1

0
(|α +(β −α)t|p−ν)2kdt =

∫ 1

0
((α +(β −α)t)p−ν)2kdt

=
1

α−β

∫
α

β

(xp−ν)2kdx =
1

α−β

∫
ν1/p

β

(xp−ν)2kdx+
1

α−β

∫
α

ν1/p
(xp−ν)2kdx. (5.9)

Since xp−ν ≤ (x−ν1/p) · p ·ν1−1/p when x≥ ν1/p, then

1
α−β

∫
α

ν1/p
(xp−ν)2kdx≤ 1

α−β

∫
α

ν1/p
(x−ν

1/p)2k · p2k ·ν2(1−1/p)kdx

=
1

α−β
p2k ·ν2(1−1/p)k · 1

2k+1
(α−ν

1/p)2k+1.

(5.10)

Similarly, we have

1
α−β

∫
ν1/p

β

(xp−ν)2kdx≤ 1
α−β

· p2k ·β 2(p−1)k
˙1

2k+1
(ν1/p−β )2k+1, (5.11)
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and

1
α−β

∫
ν1/p

β

(xp−ν)2kdx≤ 1
α−β

∫
ν1/p

0
(xp−ν)2kdx

≤ 1
α−β

·ν2k+1/p pd(1−2p)ked(1−2p)ke!
(5.12)

by taking q = p, λ = 2k, and τ = (1− 2p)/2 in Lemma 5.1. Plugging (5.10) and (5.12) into
(5.9) when 0≤ β ≤

√
5/5, and plugging (5.10) and (5.11) into (5.9) when

√
5/5≤ β <

√
2/2,

we have

Et(g(t)−Etg(t))2k ≤

p2k ·
(√

5
2 e
)2k

+
√

5 · pd(1−2p)ked(1−2p)ke!, 0≤ β ≤
√

5/5;

p2k ·
(√

5
2 e
)2k

+ p2k · (
√

5)2k,
√

5/5≤ β <
√

2/2.

Therefore, when α 6= β and β ≥ 0, we have

Et(g(t)−Etg(t))2k ≤ p2k ·

(√
5

2
e

)2k

+
√

5 · pd(1−2p)ked(1−2p)ke!+ p2k · (
√

5)2k.

When β < 0, we have

Et(g(t)−Etg(t))2k

=
∫ 1

0
(|α +(β −α)t|p−ν)2kdt

=
∫ α

α−β

0
((α +(β −α)t)p−ν)2kdt +

∫ 1

α

α−β

((−α +(α−β )t)p−ν)2k dt

=
1

α−β

∫
α

0
(xp−ν)2kdx+

1
α−β

∫ −β

0
(xp−ν)2kdx.

Since

1
α−β

∫
α

0
(xp−ν)2kdx

≤
∫

α

0
(xp−ν)2kdx =

∫
ν1/p

0
(xp−ν)2kdx+

∫
α

ν1/p
(xp−ν)2kdx

≤ν
2k+1/p pd(1−2p)ked(1−2p)ke!+ p2k ·ν2(1−1/p)k · 1

2k+1
(α−ν

1/p)2k+1

≤pd(1−2p)ked(1−2p)ke!+ p2k · (
√

2e)2k,

with

1≥ ν
1/p ≥

(
1

p+1
·2−p/2

)1/p

= 2−1/2 · (p+1)−1/p ≥ 1√
2e

,
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and

1
α−β

∫ −β

0
(xp−ν)2kdx

≤
∫ −β

0
(xp−ν)2kdx =

∫
ν1/p

0
(xp−ν)2kdx+

∫ −β

ν1/p
(xp−ν)2kdx

≤ν
2k+1/p pd(1−2p)ked(1−2p)ke!+ p2k ·ν2(1−1/p)k · 1

2k+1
(−β −ν

1/p)2k+1

≤pd(1−2p)ked(1−2p)ke!+(2
√

2e)2k,

we have

Et(g(t)−Etg(t))2k =
1

α−β

∫
α

0
(xp−ν)2kdx+

1
α−β

∫ −β

0
(xp−ν)2kdx

≤ 2pd(1−2p)ked(1−2p)ke!+2p2k(2
√

2e)2k.

(b) Estimation of Etg(t)2kEρ( f (ρ)−Eρ f (ρ))2k.
On one hand, we have

Etg(t)2k =


(1/2)pk, α = β =

√
2

2 ;
1

2pk+1 ·
1

α−β
· (α2pk+1−β 2pk+1), α 6= β and β ≥ 0;

1
2pk+1 ·

1
α−β
· (α2pk+1 +(−β )2pk+1), β < 0.

Thus, for any α and β with α2 +β 2 = 1, it arrives at Etg(t)2k ≤ 1.
On the other hand, one denotes ω = Eρ(ρ

2p) = 2pΓ(p+2). Direct calculation yields that

4≥ ω
1/p ≥ 1,

and

Eρ(ρ
2p−Eρ(ρ

2p))2k

=
∫ +∞

0
(x2p−ω)2k · x

3

2
· exp(−x2/2)dx

≤
∫

ω1/2p

0
(x2p−ω)2k · x

3

2
dx︸ ︷︷ ︸

a

+
∫

∞

ω1/2p
(x2p−ω)2k · x

3

2
· exp(−x2/2)dx︸ ︷︷ ︸

b

.

Thus we need to estimate the upper bounds of (a) and (b), respectively. Taking x2 = t and
applying Lemma 5.1, we have

(a) =
∫

ω1/2p

0
(x2p−ω)2k · x

3

2
dx =

1
4

∫
ω1/p

0
(t p−ω)2ktdt

= ω
2k+1/p pkk!≤ 41+2k pkk!.
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Besides, it obtains that x2p−ω ≤
(

x−ω1/(2p)
)
· (2p) ·ω1−1/(2p) when x≥ ω1/(2p). It follows

that

(b)≤
∫

∞

ω1/2p

((
x−ω

1/(2p)
)
· (2p) ·ω1−1/(2p)

)2k
· x

3

2
· exp(−x2/2)dx

=(2p)2k ·ω2k−k/p ·
∫

∞

0
x2k

(
x+ω1/(2p)

2

)3

exp(−(x+ω
1/(2p))2/2)dx

≤(2p)2k ·ω2k−k/p ·
∫

∞

0
x2k(x3 +ω

3/(2p))exp(−x2/2)dx

=(2p)2k ·ω2k−k/p ·
∫

∞

0
x2k+3 exp(−x2/2)dx+(2p)2k ·ω2k−k/p+3/(2p) ·

∫
∞

0
x2k exp(−x2/2)dx

=(2p)2k ·ω2k−k/p ·2k+1 ·Γ(k+2)+(2p)2k ·ω2k−k/p+3/(2p) ·2k−1/2 ·Γ(k+1/2)

≤(k+1)! ·42k ·22k+1 · (2p)2k +(2p)2k ·42k+3 ·2k ·
√

π · (2k)!
22kk!

.

Thus

Eρ(ρ
2p−Eρ(ρ

2p))2k ≤ (k+1)! ·42k ·22k+2 · (2p)2k +(2p)2k ·42k+3 ·2k ·
√

π · (2k)!
22kk!

,

which leads to

Etg(t)2kEρ( f (ρ)−Eρ f (ρ))2k

≤ (k+1)! ·42k ·22k+2 · (2p)2k +(2p)2k ·42k+3 ·2k ·
√

π · (2k)!
22kk!

.
(5.13)

(c) Estimation of τ.
Based on (5.8) and (5.13), we have

2kk!
(2k)!

E(X−µ)2k

≤ 2kk!
(2k)!

·22k−1 ·22k(b2pkc+2)! ·
(

2p2k ·
(

2
√

2e
)2k

+
√

5 · pd(1−2p)ked(1−2p)ke!
)

+
2kk!
(2k)!

·22k−1 ·
(
(k+1)! ·42k ·22k+2 · (2p)2k +(2p)2k ·42k+3 ·2k ·

√
π · (2k)!

22kk!

)
≤(k+1) · (k+2) ·24k · p2k ·

(
2
√

2e
)2k

+(k+1) · (k+2) ·
√

5 · pd(1−2p)ke ·24k−1 ·
√

2πk exp(2)

+(k+1) ·28k+1 · (2p)2k +22k−1 · (2p)2k ·42k+3 ·
√

π.

The second inequality is based on Stirling’s approximation inequality [26]:

2kk!
(2k)!

· (n1!) · (n2!)≤
√

2exp(2) ·
√

4π2n1n2 ≤
√

2πk exp(2),

provided that n1 +n2 = k. Therefore,

τ = supk≥1(3.1)
1
4

[
2kk!
(2k)!

E(X−µ)2k
] 1

2k

. p+ p1/2−p,
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and

P

(∣∣∣∣∣ m

∑
i=1

(Xi−µ)

∣∣∣∣∣≥ t

)
≤ 2exp

(
− t2

c2mτ2

)
, (5.14)

when 0 < p≤ 1/2. Based on (5.6) and (5.14), we can conclude that

P

(∣∣∣∣∣ m

∑
i=1

(Xi−µ)

∣∣∣∣∣≥ t

)
≤ 2exp

(
− t2

cmτ2

)
, with τ ≤ p+ p1/2−p.

Here c = max{c1,2c2} as p+ p1/2−p ≤ 2 when 1/2 < p≤ 1. �

5.3. Proof of Theorem 3.3.

Proof. X is equivalent to X̃ with

X̃ = {XXX ∈Hn×n | XXX =UUUΣΣΣUUU∗, ΣΣΣ ∈ Λ, UUU ∈U },

where
Λ = {ΣΣΣ ∈ R2×2 | ΣΣΣ = diag(λ1,λ2), λ

2
1 +λ

2
2 = 1}

and
U = {UUU ∈ Cn×2 |UUU∗UUU = III, ‖UUU‖0,2 = L}= ∪|T |=LUT

with
UT = {UUU ∈ Cn×2 |UUU∗UUU = III, UUU =UUUT,:}.

Then we can construct the ε-net of X in the the following construction. We use QT to denote
an ε/3-net of UT , that is, for any UUU ∈UT , there exists some QQQ ∈QT ⊂UT such that QQQ = QQQT,:

and ‖QQQ−UUU‖F ≤ ε/3. We have |QT | ≤ (9
√

2/ε)4L, where |QT | is number of elements in QT
[27, Lemma 2.2]. Denoting Qε = ∪|T |=LQT , we obtain that

|Qε | ≤
(en

L

)L
(

9
√

2
ε

)4L

≤

(
9
√

2en
εL

)4L

.

Similarly, let Λε be as an ε/3-net of Λ with |Λε | ≤ (9/ε)2 and set

Nε = {UUUΣΣΣUUU∗ |UUU ∈Qε and ΣΣΣ ∈ Λε}.

Therefore, for any XXX =UUUΣΣΣUUU∗ ∈X , there exists some XXX0 =UUU0ΣΣΣ0UUU∗0 ∈Nε such that

‖XXX−XXX0‖F = ‖UUUΣΣΣUUU∗−UUU0ΣΣΣ0UUU∗0‖F ≤ ε.

Based on (3.3) and (3.4), we have that, for any XXX ∈Qε ,

2−3/2m(1−4η)‖XXX‖p
F ≤ ‖A (XXX)‖p

p ≤ 2m(1+η)‖XXX‖p
F

with probability at least

1−2

(
9
√

2en
εL

)5L

exp
(
− mη2

2cp1−2p

)
,

where c is some positive absolute constant. Set

C = max
XXX∈X

1
m
‖A (XXX)‖p

p.



624 Y. XIA, L. ZHOU

For any specific XXX ∈X , there exists XXX0 ∈Nε satisfying ‖XXX−XXX0‖F ≤ ε . As rank(XXX−XXX0)≤ 4,
it obtains that

XXX−XXX0 = XXX1 +XXX2

with XXX1
‖XXX1‖F

, XXX2
‖XXX2‖F

∈X , and 〈XXX1,XXX2〉= 0. On one hand,

‖A (XXX)‖p
p ≤‖A (XXX0)‖p

p +‖A (XXX−XXX0)‖p
p

≤‖A (XXX0)‖p
p +‖A (XXX1)‖p

p +‖A (XXX1)‖p
p

≤2m(1+η)+Cm(‖XXX1‖p
F +‖XXX2‖p

F)≤ 2m(1+η)+21−pCm(‖XXX1‖F +‖XXX2‖F)
p

≤2m(1+η)+21−p/2Cm‖XXX1 +XXX2‖p
F ≤ 2m(1+η)+2ε

pCm.

It implies that

C ≤ 2(1+η)

1−2ε p .

On the other hand, we can obtain that
‖A (XXX)‖p

p ≥‖A (XXX0)‖p
p−‖A (XXX−XXX0)‖p

p

≥2−3/2m(1−4η)−2ε
pCm≥ 2−3/2m(1−4η)−2

2(1+η)

1−2ε p · ε
pm.

Thus, for any XXX ∈X ,

m
(

2−3/2(1−4η)− (1+η)
4ε p

1−2ε p

)
≤ ‖A (XXX)‖p

p ≤
(

1+
η +2ε p

1−2ε p

)
·2m,

with probability at least

1−2

(
9
√

2en
εL

)5L

exp
(
− mη2

2cp1−2p

)
.

�

5.4. Proof of Theorem 3.4.

Proof. According to Theorem 3.1 and Theorem 3.3, we have

C =

(
1+

η +2ε p

1−2ε p

)
·2m and C = m

(
2−3/2(1−4η)− (1+η)

4ε p

1−2ε p

)
.

In order to meet
C > γC, where γ =

1
a2−p +

4
a1−p/2 ,

it is equivalent to obtain that

2−3/2(1−4η)(1−2ε
p)−4(1+η)ε p > 2γ(1−2ε

p)+2γ(η +2ε
p). (5.15)

The sufficient condition of (5.15) is

2−3/2(1−4η)− (4(1+η)ε p + ε
p)> 2γ(1+η). (5.16)

If
2−3/2(1−4η)> 4γ(1+η) (5.17)

and
4(1+η)ε p + ε

p ≤ (2−3/2(1−4η)−2γ(1+η))/2,
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then inequality (5.16) holds. Observe 4
a +

1
a2 ≤ γ ≤ 4

a1/2 +
1
a . In order to meet (5.17), η can be

taken as some constant that only depends on a. Besides, ε p can be taken as

ε
p =

2−3/2(1−4η)−2γ(1+η)

2(1+4(1+η))
:= τ(a)< 1.

It is enough to prove that

2

(
9
√

2en
εL

)5L

exp
(
− mη2

2cp1−2p

)
≤
(

k
en

)k

,

as
( k

en

)k ≤ 1/
(n

k

)
. This is equivalent to

m&
p1−2p

η2 ·ak ·
(

log(n/(ak))+
1
p

log(1/τ(a))
)
&a k+ pk log(n/k).

The second inequality above is based on 1≤ p−p ≤ 2. Thus it meets the conclusion. �
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