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Abstract. In this paper, we consider a class of composite multiobjective optimization problems, subject
to a closed convex constraint set, defined on Riemannian manifolds. To tackle this problem, we propose
the generalized conditional gradient method with two step size strategies, including Armijo step size and
the nonmonotone line search step size. Under some reasonable conditions, the global convergence result
is established, and the iteration-complexity bound for composite multiobjective optimization problems
is presented on Riemannian manifolds.
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1. INTRODUCTION

Many practical problems in real-world problems with conflicting objectives, economics, en-
gineering, human decision making, architecture, and machine learning can be modelled as mul-
tiobjective optimization problems; see, for example, [1, 2, 3, 4, 5] and the references therein.
The most straightforward approach to multiobjective optimization problems is linear scalar-
ization approach, where multiobjective optimization problems are converted into scalar-valued
ones. Thus, aiming to solve multiobjective optimization problems, we can apply standard,
single-objective optimization algorithms to solve the resulting relaxed problem; see, for exam-
ple, [4, 5, 6, 7, 8].

In recent years, some algorithms for multiobjective optimization problems have been studied
on Riemannian manifolds; see, for example, [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. These algo-
rithms include steepest descent method [13, 19], Newton’s method [13, 19], projected gradient
method [20], and trust-region method [21]. Due to the practical applicability of multiobjective
optimization problems, it is imperative to explore new convergent algorithms for this new and
growing area of research.

In this paper, we study the composite multiobjective optimization problem defined on Rie-
mannian manifolds, where the objective function F : M → (R

⋃
{+∞})m, given by F(x) :=
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( f1(x), · · · , fm(x)), has the following special separable structure:

f j(x) := g j(x)+h j(x), ∀ j = 1, · · · ,m,

where M is a Riemannian manifold, g j : M → R
⋃
{+∞} is proper, convex, and lower semi-

continuous, and h j : M → R is continuous differentiable. We define G : M → (R
⋃
{+∞})m

by G(x) := (g1(x), · · · ,gm(x)) and H : M→ Rm by H(x) := (h1(x), · · · ,hm(x)), and denote this
problem by

min
x∈M

F(x) := G(x)+H(x). (1.1)

The set dom(G) := {x ∈M|g j(x)<+∞, j = 1, · · · ,m} is assumed to be convex and compact in
this paper.

In 2018, Bot and Grad [7] proposed a forward-backward proximal point type algorithm for
problem (1.1) in Euclidean space. Tanabe et al. [8] designed a proximal gradient method for
solving composite multiobjective optimization problems. Assuncão et al. [6] extended the con-
ditional gradient method, known as Frank-Wolfe algorithm, for composite multiobjective opti-
mization problems. The conditional gradient method was exhibited for the convex linear system
in [22]. Moreover, they proved that the conditional gradient method applied to the equivalent
minimization formulation of the convex linear system, converges to a solution at a linear rate.
In [23], a generalized conditional gradient method and its connection to an iterative shrinkage
method was investigated, and the convergence of this generalized method for general class of
functions was proved. Based on the results of [6, 8, 22, 23], Assuncão et al. [24] proposed the
generalized version of the conditional gradient method for composite multiobjective optimiza-
tion problems with three step size strategies, including Armijo type, adaptive and diminishing
step sizes. Moreover, some asymptotic convergence properties and iteration-complexity bounds
were established in [24].

Motivated by the results described above, in this paper, we design the generalized condi-
tional gradient method to solve composite multiobjective optimization problems with Armijo
and nomonotone line search step sizes on Riemannian manifolds. Under some reasonable con-
ditions, we establish the global convergence of the generalized gradient method for composite
multiobjective optimization problems. The iteration-complexity bound on the objective func-
tion is also established. Since a Riemannian manifold, in general, does not have a linear struc-
ture, usual techniques in the Euclidean space cannot be applied and new techniques have to
be developed. Our results are distinguished from the following aspects: First, we generalize
the generalized conditional gradient method in [24] from Rn to Riemannian manifolds; Sec-
ond, our results can be regarded as a generalization of [20] from smooth objective functions
to non-smooth objective functions on Riemannian manifolds; Third, exponential mappings and
parallel transports in [20] are extended to retractions and isometric vector transports in this
paper, respectively, which makes the method more efficient.

Our work is organized as follows: In Section 2, some necessary definitions and concepts
are provided on Riemannian manifolds. In Section 3, we present the generalized conditional
gradient method for composite multiobjective optimization problems on Riemannian manifolds.
In Section 4, under some reasonable conditions, the global convergence result of the generalized
conditional gradient method for composite multiobjective optimization problems is provided,
and the iteration-complexity bound is established on Riemannian manifolds. The last section,
Section 5, ends this paper with a conclusion.
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2. PRELIMINARIES

In this section, we recall some definitions and results from Riemannian manifolds, which can
be found in some introductory books on Riemannian geometry, see for example [11, 15].

Let M be a finite-dimensional differentiable manifold. Given x ∈M, the tangent space of M
at x is denoted by TxM and the tangent bundle of M by T M =

⋃
x∈M TxM. We denote by 〈,〉x the

inner product on TxM with the associated norm ‖ · ‖x. If there is no confusion, then we omit the
subscript x. If M is endowed with a Riemannian metric g, then M is a Riemannian manifold.
Given a piecewise smooth curve γ : [t0, t1]→M joining x to y, that is, γ(t0) = x and γ(t1) = y,
we can define the length of γ by l(γ) =

∫ b
a ‖γ ′(t)‖dt. By minimizing l(γ) over the set of all

curves, we can obtain a Riemannian distance d(x,y) which induces the original topology on M.
A Riemannian manifold is complete if for any x ∈ M, all geodesic emanating from x are

defined for all t ∈R. By Hopf-Rinow theorem [17], any pair of points x,y ∈M can be joined by
a minimal geodesic. The exponential mapping expx : TxM→M is defined by expx v = γv(1,x)
for each v ∈ TxM, where γ(·) = γv(·,x) is the geodesic starting x with velocity v, i.e., γ(0) = x
and γ ′(0) = v. It is easy to see that expx tv = γv(t,x) for each real number t.

The systematic use of the exponential mapping may not be desirable in all cases. Some local
mappings to TxM may reduce the computational cost while preserving the useful convergence
property of the considered method.

Definition 2.1. [19] Given x ∈M, a retraction is a smooth mapping Rx : TxM→M such that

(i) Rx(0x) = x for all x ∈M, where 0x denotes the zero element of TxM;
(ii) DRx(0x) = idTxM, where DRx denotes the derivative of Rx and id denotes the identity

mapping.

It is well-known that the exponential mapping is a special retraction, and some retractions are
approximations of the exponential mapping.

The parallel transport is often too expensive to compute in a practical method. The general-
ized vector transport, built upon the retraction Rx, has thus been proposed in [14, 16]. A vector
transport T : T M

⊕
T M→ T M, (ηx,ξx) 7→Tηxξx with the associated retraction Rx is a smooth

mapping such that, for all ηx in the domain of Rx and all ξx,ζx ∈ TxM, (i) Tηxξx ∈ TRx(ηx)M; (ii)
T0xξx = ξx; (iii) Tηx is a linear mapping. Let TS be the isometric vector transport [16] with Rx
as the associated retraction. Then it satisfies (i), (ii), (iii), and

(iv) g(TS(ηx)ξx,TS(ηx)ζx) = g(ξx,ζx).

In most practical cases, TS(ηx) exists for all ηx ∈ TxM, and we make this assumption throughout
the paper. Furthermore, let Tηx be the derivative of the retraction, i.e.,

Tηxξx = DRx(ηx)[ξx] =
d
dt

Rx(ηx + tξx)|t=0.

Let L(T M,T M) be the fiber bundle with base space M×M such that the fiber over (x,y) ∈
M×M is L(TxM,TyM). We recall from [5, Section 4] that a transporter L on M is a smooth sec-
tion of the bundle L(T M,T M). Furthermore, L−1(x,y) = L(y,x) and L(x,z) = L(y,z)L(x,y).
Given a retraction Rx, for any ηx,ξx ∈ TxM, the isometric vector transport TS is defined by

TS(ηx)ξx = L(x,Rx(ηx))(ξx).
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In this paper, from the locking condition proposed by Huang [13], we require

Tηxξx = TS(ηx)ξx.

In some manifolds, there exist retractions such that the above equality holds, e.g., the Stiefel
manifold and the Grassman manifold [13]. Furthermore, from the above results, we have

‖ξx‖= ‖TS(ηx)ξx‖= ‖L(x,Rx(ηx))(ξx)‖= ‖Tηxξx‖= ‖DRx(ηx)[ξx]‖.

3. THE GENERALIZED CONDITIONAL GRADIENT METHOD

Let J = {1,2, · · · ,m}, Rm
+ = {x∈Rm : x j ≥ 0, j ∈ J} and Rm

++ = {x∈Rm : x j > 0, j ∈ J}. For
x,y ∈ Rm

+, y� x (or x� y) means that y− x ∈ Rm
+ and y� x (or x≺ y) means that y− x ∈ Rm

++.
Let Ψ : M → (R

⋃
{+∞})m be a vector-valued function with Ψ := (ψ1(x),ψ2(x), · · · ,ψm(x))

and consider the problem

min
x∈M

Ψ(x). (3.1)

We study the problem of finding a Pareto optimal point of Ψ, i.e., a point x∗ ∈ M such that
there exists no other x ∈M with Ψ(x) � Ψ(x∗) and Ψ(x) 6= Ψ(x∗). In turn, x∗ ∈M is called a
weakly Pareto optimal point of (3.1), if there exists no other x ∈M such that Ψ(x)≺Ψ(x∗). A
necessary optimality condition for problem (3.1) at a point x∗ ∈M is given by

max
j∈J

ψ
′
j(x
∗;d)≥ 0, ∀d ∈ TxM. (3.2)

A point x∗ ∈ dom(Ψ) satisfying (3.2) is called a Pareto critical point of (3.1). From [13, 19],
Ψ is said to be convex on dom(Ψ) if Ψ(Ryt(R−1

y x)) � tΨ(x) + (1− t)Ψ(y), for all x,y ∈
dom(Ψ) and t ∈ [0,1]. If Ψ is differentiable and convex on dom(Ψ), we have ψ j(y)−ψ j(x)≥
〈gradψ j(x), R−1

x y〉, for all x,y ∈ dom(Ψ) and j ∈ J. Moreover, if ψ j is differentiable, we have
ψ ′j(x;d) = 〈gradψ j(x), d〉, for all d ∈ TxM and j ∈ J.

By the similar proof of Section 4.1 in [25], we have the following result.

Lemma 3.1. Let ψ : M→R
⋃
{+∞} be a convex function. Then, the function λ 7→ ψ(Rxλd)−ψ(x)

λ

is non-decreasing in (0,+∞). In particular, for any λ ∈ (0,1], we have

ψ(Rxλd)−ψ(x)
λ

≤ ψ(Rxd)−ψ(x), ∀d ∈ TxM. (3.3)

Consequently, ψ ′(x;d)≤ ψ(Rxd)−ψ(x).

In this paper, the following assumptions will be considered only when explicitly stated.
(A1) For all j ∈ J, the function g j is proper, convex and Lipschitz continuous on dom(G)

with constant Lg j > 0;
(A2) For all j ∈ J, the gradient function gradh j is Lipschitz continuous with constant Lh j > 0.
Let

LG := max{Lg j | j ∈ J}, LH := max{Lh j | j ∈ J}. (3.4)

The gap function θ : dom(G)→ R associated to the problem (1.1) is defined by

θ(x) = min
u∈M

max
j∈J
{g j(u)−g j(x)+ 〈gradh j(x), R−1

x u〉}. (3.5)
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Under (A1) and (A2), it is easy to check that the problem (3.5) has a solution and it belongs to
dom(G). Thus, we use p(x) ∈ dom(G) to denote a solution of (3.5), that is,

p(x) ∈ argmin
u∈M

max
j∈J
{g j(u)−g j(x)+ 〈gradh j(x), R−1

x u〉}. (3.6)

Therefore, combining (3.5) and (3.6), we conclude that

θ(x) = max
j∈J
{g j(p(x))−g j(x)+ 〈gradh j(x), R−1

x p(x)〉}.

Lemma 3.2. Let θ : dom(G)→ R be defined as (3.5). Then,
(i) θ(x)≤ 0;
(ii) θ(x) = 0 if and only if x is a Pareto critical point of (1.1);
(iii) θ(x) is upper semicontinuous.

Proof. (i) From the definition of θ(x), it follows that

θ(x)≤max
j∈J
{g j(u)−g j(x)+ 〈gradh j(x), R−1

x u〉}, ∀u ∈M. (3.7)

Thus, letting u = x in the previous inequality, we conclude that θ(x) = 0, which proves (i).
(ii) We first assume that x is a Pareto critical point of (1.1). By (3.2), we obtain

max
j∈J

f ′j(x;d)≥ 0, ∀d ∈ TxM. (3.8)

Note that, for all d ∈ TxM,

f ′j(x;d) = g′j(x;d)+ 〈gradh j(x), d〉. (3.9)

This, together with Lemma 3.1 and (3.8), gives that

max
j∈J
{g j(Rxd)−g j(x)+ 〈gradh j(x), d〉} ≥ 0. (3.10)

Setting d = R−1
x p(x) in (3.10) yields that

θ(x) = max
j∈J
{g j(p(x))−g j(x)+ 〈gradh j(x), R−1

x p(x)〉} ≥ 0, (3.11)

which, together with item (i), implies that θ(x) = 0.
Conversely, assuming θ(x) = 0, we have

max
j∈J
{g j(u)−g j(x)+ 〈gradh j(x), R−1

x u〉} ≥ 0, ∀u ∈M. (3.12)

In particular, given any α > 0, letting u = Rxαd in (3.12), we conclude that

max
j∈J
{

g j(Rxαd)−g j(x)
α

+ 〈gradh j(x), d〉} ≥ 0, ∀d ∈ TxM. (3.13)

Taking α → 0 in (3.13), it holds

max
j∈J

f ′j(x;d) = max
j∈J
{g′j(x;d)+ 〈gradh j(x), d〉} ≥ 0, ∀d ∈ TxM. (3.14)

Therefore, x is a Pareto critical point of problem (1.1).
(iii) Let {xk} be the sequence such that limk→∞ xk = x. Since p(x) ∈ dom(G), we obtain

θ(xk)≤max
j∈J
{g j(p(x))−g j(xk)+ 〈gradh j(xk), R−1

xk p(x)〉}. (3.15)
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From the property of the retraction R (see Section 4 in [19]), we have that R−1
(·) p(x) is continuous,

and

lim
k→∞

supθ(xk)≤max
j∈J
{g j(p(x))+ 〈gradh j(x), R−1

x p(x)〉+ lim
k→∞

sup(−g j(xk))}.

Since g j is lower semicontinuous, we obtain

lim
k→∞

sup[−g j(xk)]≤−g j(x).

Thus,

lim
k→∞

supθ(xk)≤max
j∈J
{g j(p(x))−g j(x)+ 〈gradh j, R−1

x p(x)〉}= θ(x), (3.16)

which concludes the proof. �

Next, we denote e := (1, · · · ,1)T ∈ Rm. Then we have the following result.

Lemma 3.3. Assume that F satisfies (A2). Let λ ∈ [0,1]. Then,

F(RxλR−1
x p(x))� F(x)+(λθ(x)+

LH

2
‖R−1

x p(x)‖2
λ

2)e. (3.17)

Proof. Since g j is convex, and gradh j is Lipschitz continuous with constant Lh j , it follows that
for any x ∈ dom(G) and λ ∈ [0,1],

f j(Rxλ (R−1
x p(x)))≤ (1−λ )g j(x)+λg j(p(x))+h j(x)+λ 〈gradh j(x), R−1

x p(x)〉

+
Lh j

2
‖R−1

x p(x)‖2
λ

2, ∀ j ∈ J, (3.18)

which yields

f j(Rxλ (R−1
x p(x)))≤ f j(x)+λ [〈gradh j(x), R−1

x p(x)〉−g j(x)+g j(p(x))]

+
Lh j

2
‖R−1

x p(x)‖2
λ

2, ∀ j ∈ J. (3.19)

Therefore, by the definition of LH , we have

F(Rxλ (R−1
x p(x)))� F(x)+(λθ(x)+

LH

2
‖R−1

x p(x)‖2
λ

2)e, (3.20)

which concludes the proof. �

Based on the above results, we introduce the generalized conditional gradient method for
composite multiobjective optimization problems on Riemannian manifolds, which generates
the conditional gradient method in [6, 22, 23, 24] from Rn to Riemannian manifolds.
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Algorithm 1 The generalized conditional gradient method

Step 0. Choose x0 ∈ dom(G) and set k := 0.
Step 1. Compute p(xk) and θ(xk) as follows:

p(xk) ∈ argmin
u∈M

max
j∈J
{g j(u)−g j(x)+ 〈gradh(xk), R−1

xk u〉}, (3.21)

θ(xk) = max
j∈J
{g j(p(xk))−g j(xk)+ 〈gradh j(xk), R−1

xk p(xk)〉}. (3.22)

Step 2. If θ(xk) = 0, then stop.
Step 3. Compute αk ∈ (0,1] by Algorithm 2 or Algorithm 3 and set

xk+1 := Rxkαk(R−1
xk p(xk)). (3.23)

Step 4. Set k := k+1 and go to Step 1.

Next, we compute the step size αk of Algorithm 1 with two step sizes. We begin by presenting
the Armijo step size.

Algorithm 2 Armijo step size

Step 0. Take ζ ∈ (0,1), 0 < µ1 < µ2 < 1, αk0 = 1 and set l := 0.
Step 1. If F(Rxkαkl(R

−1
xk p(xk)))� F(xk)−ζ αkl |θ(xk)|e, then set αk := αkl and Stop.

Step 2. Find αkl+1 ∈ [µ1αkl ,µ2αkl ].
Step 3. Set l := l +1 and go to Step 1.

The second step size is the nonmonotone line search, see for example [18, 20, 21].

Algorithm 3 Nonmonotone line search rule

Step 0. Take σ ∈ (0,1),β ∈ (0,1), 0≤ ηmin ≤ ηmax ≤ 1, and set l := 0.
Step 1. Set αk = β l and compute xk+1 = Rxkαk(R−1

xk p(xk)).
Step 2. If

F(Rxkαk(R−1
xk p(xk)))�Ck +σαkθ(xk)e, (3.24)

then stop. Here C0 = F(x0) and Ck = (Ck
1,C

k
2, · · · ,Ck

m) for k ≥ 1. Furthermore, Ck
j is computed

by the following rule:

Ck+1
j :=

ηkQkCk
j + f j(xk+1)

Qk+1
, ∀k ≥ 0, j ∈ J,

with Q0 = 1, η0 ∈ [ηmin,ηmax], Qk+1 := ηkQk +1, and ηk+1 being generated by an adaptive
formular [18].
Step 3. Set l := l +1 and go to Step 1.

If M = Rn and Rxη = x+η , the components of function G are the indicator function of a
set C, then Algorithm 1 can be regarded as a generalization of Algorithm 3 of [6] from Rn to
Riemannian manifolds..



846 X. LI, X. GE, K. TU

4. CONVERGENCE ANALYSIS

In this section, under some assumptions, we prove that every accumulation point of the se-
quence produced by Algorithm 1 is a Pareto critical point of F , and the iteration-complexity
bound is studied on Riemannian manifolds.

4.1. Convergence analysis using the Armijo step size.

Proposition 4.1. Let ζ ∈ (0,1) and xk ∈ dom(G). Then, there exists 0 < η̄ ≤ 1 such that

F(Rxkη(R−1
xk p(xk)))� F(xk)−ζ η |θ(xk)|e, ∀η ∈ (0, η̄ ]. (4.1)

Proof. Since H is differentiable and G is convex, for all η ∈ (0,1) and j ∈ J, we have

f j(Rxkη(R−1
xk p(xk)))

= g j(Rxkη(R−1
xk p(xk)))+h j(Rxkη(R−1

xk p(xk)))

≤ (1−η)g j(xk)+ηg j(p(xk))+h j(xk)+η〈gradh j(xk), R−1
xk (p(xk)〉+ o(η)

η
, (4.2)

which yields

f j(Rxkη(R−1
xk p(xk)))

≤ f j(xk)+η(〈gradh j(xk), R−1
xk p(xk)〉+g j(p(xk))−g j(xk))+

o(η)

η
. (4.3)

For all j ∈ J, since 〈gradh j(xk), R−1
xk p(xk)〉 ≤max j∈J〈gradh j(xk), R−1

xk (p(xk)〉, we obtain

F(Rxkη(R−1
xk p(xk)))� F(xk)+ηζ θ(xk)e+η((1−ζ )θ(xk)+

o(η)

η
)e.

Since limη→0
o(η)

η
= 0,θ(xk)< 0 and ζ ∈ (0,1), there exists η̄ ∈ (0,1] such that (4.1) holds for

all η ∈ (0, η̄ ]. �

Theorem 4.1. Assume that F satisfies (A1). Let {xk} be the sequence generated by Algorithm 1
with Armijo step size. Then, every limit point x̄ of {xk} is a Pareto critical point of problem (1.1).

Proof. Let x̄∈ dom(G) be a limit point of {xk} generated by Algorithm 1 with Armijo step size,
and limk∈K xk = x̄. It follows from Step 1 of Algorithm 2 that

0≺−ζ αkθ(xk)e� F(xk)−F(xk+1), ∀k ∈K. (4.4)

Consequently, the sequence {F(xk)}k∈K is monotone decreasing.
On the other hand, since {xk} ⊆ dom(G) and dom(G) is compact, there exists x∗ ∈ dom(G)

such that limk∈K xk = x∗. Then, we have

‖F(xk)−F(x∗)‖= ‖G(xk)−G(x∗)+H(xk)−H(x∗)‖

≤ ‖G(xk)−G(x∗)‖+‖H(xk)−H(x∗)‖

≤ LGd(xk,x∗)+‖H(xk)−H(x∗)‖, ∀k ∈K.

Since H is continuous and limk∈K xk = x∗, it holds

lim
k∈K

F(xk) = F(x∗).
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Thus, due to the monotonicity of {F(xk)}k∈K, by (4.4), we have

lim
k∈K

αkθ(xk) = 0. (4.5)

Therefore, there exists K1 ⊆K such that at least one of the following conclusions holds:

lim
k∈K1

θ(xk) = 0 or lim
k∈K1

αk = 0.

Consider the case that limk∈K1 θ(xk) = 0. Using Lemma 3.2, we obtain θ(x̄) = 0, which
implies that x̄ is a Pareto critical point.

Now, consider the case that limk∈K1 αk = 0. Suppose by contradiction that θ(x̄) < 0. Since
θ(·) is upper semi-continuous, θ(x̄) < 0 and limk∈K1 αk = 0, there exist δ > 0 and K2 ⊆ K1
such that

θ(xk)<−δ , ∀k ∈K2. (4.6)

Recall that {p(xk)} ⊆ dom(G) and dom(G) is compact. Without loss of generality, we assume
that there exists p̄ ∈ dom(G) such that

lim
k∈K2

p(xk) = p̄. (4.7)

Since αk < 1 for all k ∈K2, by Armijo step size, there exists ᾱk ∈ (0,αk/µ1) such that

F(Rxkᾱk(R−1
xk p(xk)))� F(xk)+ζ ᾱkθ(xk)e, ∀k ∈K2, (4.8)

which implies that

f jk(Rxkᾱk(R−1
xk p(xk)))> f jk(x

k)+ζ ᾱkθ(xk), ∀k ∈K2, (4.9)

for at least one jk ∈ J. Then, we have there exist j∗ ∈ J and K3 ⊆K2 such that

f j∗(Rxkᾱk(R−1
xk p(xk)))− f j∗(xk)

ᾱk
> ζ θ(xk), ∀k ∈K3. (4.10)

On the other hand, since 0 < ᾱk ≤ 1, we can apply Lemma 3.1 to obtain

g j∗(Rxkᾱk(R−1
xk p(xk)))−g j∗(xk)

ᾱk
≤ g j∗(p(xk))−g j∗(xk), ∀k ∈K3. (4.11)

Since h j∗ is differentiable and limk∈K3 ᾱk = 0, for all k ∈K3, we have

ᾱk〈gradh j∗(xk), R−1
xk p(xk)〉= h j∗(Rxkᾱk(R−1

xk p(xk)))−h j∗(xk)−o(ᾱk‖R−1
xk p(xk)‖), (4.12)

which, together with (4.11), implies that

θ(xk)≥ g j∗(p(xk))−g j∗(xk)+ 〈gradh j∗(xk), R−1
xk p(xk)〉

≥
f j∗(Rxkᾱk(R−1

xk p(xk)))− f j∗(xk)

ᾱk
−

o(ᾱk‖R−1
xk p(xk)‖)
ᾱk

, ∀k ∈K3. (4.13)

From (4.13) and (4.10), we know

f j∗(Rxkᾱk(R−1
xk p(xk)))− f j∗(xk)

ᾱk
> (
−ζ

1−ζ
)
o(ᾱk‖R−1

xk p(xk)‖)
ᾱk

, ∀k ∈K3. (4.14)
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On the other hand, it follows from (4.6) and (4.13) that

−δ +
o(ᾱk‖R−1

xk p(xk)‖)
ᾱk

>
f j∗(RxkᾱkR−1

xk p(xk))− f j∗(xk)

ᾱk
, ∀k ∈K3. (4.15)

Together with (4.14), it holds

−δ +
o(ᾱk‖R−1

xk p(xk)‖)
ᾱk

> (
−ζ

1−ζ
)
o(ᾱk‖R−1

xk p(xk)‖)
ᾱk

, ∀k ∈K3. (4.16)

Considering (4.7) and the smoothness of the retarction mapping R, we obtain δ < 0, which
contradicts to δ > 0. Thus, θ(x̄) = 0. From Lemma 3.2, we have x̄ is a Pareto critical point. �

Let x∗ ∈ dom(G) and Û be a neighborhood of 0x∗ in Tx∗M such that U := expx∗ Û . Then,
we have

d(x,x∗) = ‖exp−1
x∗ x− exp−1

x∗ x∗‖= ‖exp−1
x∗ x‖, ∀x ∈U .

Since exp is a retraction, we obtain D(R−1
x∗ ◦ expx∗)(0x∗) = id. Hence,

‖R−1
x∗ x‖= ‖R−1

x∗ x−R−1
x∗ x∗‖= ‖exp−1

x∗ x− exp−1
x∗ x∗‖+o(‖exp−1

x∗ x− exp−1
x∗ x∗‖)

= d(x,x∗)+o(d(x,x∗)).

Since dom(G) is a compact set, from the above equality, there exists Ω > 0 such that Ω ≥
max{‖R−1

x y‖ : x,y ∈ dom(G)}> diam(dom(G)). Moreover, we define

ρ := sup{‖gradh j(x)‖ | x ∈ dom(G), j ∈ J}, (4.17)

γ := min{ 1
(LG +ρ)Ω

,
2µ1(1−ζ )

LHΩ2 }. (4.18)

Lemma 4.1. Assume that F satisfies (A1)-(A2). Let {xk} be the sequence generated by Algo-
rithm 1 with Armijo step size. Then, αk ≥ γ|θ(xk)|> 0.

Proof. Since αk ∈ (0,1], let us consider two cases: αk = 1 and 0 < αk < 1.
First, we assume that αk = 1. From (3.22), we know

θ(xk) = max
j∈J
{g j(p(xk))−g j(xk)+ 〈gradh j(xk), R−1

xk p(xk)〉}< 0, (4.19)

which implies that

0 <−θ(xk)≤ g j(xk)−g j(p(xk))−〈gradh j(xk), R−1
xk p(xk)〉, (4.20)

for all j ∈ J. Thus, it follows from Cauchy-Schwarz inequality that

0 <−θ(xk)≤ LGd(xk, p(xk))+‖gradh j(xk)‖‖R−1
xk p(xk)‖. (4.21)

Using (4.17), we have 0 <−θ(xk)≤ (LG +ρ)Ω. Hence, from (4.18), we obtain

0 <−γθ(xk)≤ −θ(xk)

(LG +ρ)Ω
≤ 1, (4.22)

which shows that the desired equality holds.
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Now, we assume that 0 < αk < 1. From Armijo step size, we conclude that there exist
0 < ᾱk ≤min{1, αk

µ1
} and jk ∈ J such that

f jk(Rxkᾱk(R−1
xk p(xk)))> f jk(x

k)+ζ ᾱkθ(xk). (4.23)

By using Lemma 3.3, we have

f j(Rxkᾱk(R−1
xk p(xk)))≤ f j(xk)+ ᾱkθ(xk)+

LH

2
‖R−1

xk p(xk)‖2
ᾱ

2
k , ∀ j ∈ J. (4.24)

From the above inequality, we conclude that

−θ(xk)(1−ζ )<
LH

2
‖R−1

xk p(xk)‖2
ᾱk ≤

LH

2
‖R−1

xk p(xk)‖2 αk

µ1
. (4.25)

Therefore,

0 <−γθ(xk)≤−2µ1(1−ζ )

LHΩ2 θ(xk)< αk, (4.26)

which concludes the proof.. �

In the following results, we obtain the iteration-complexity bound of the generalized con-
ditional gradient method for composite multiobjective optimization problems on Riemannian
manifolds. We define

f j∗(x0) := max{ f j(x0) | j ∈ J}, (4.27)

f inf
j∗ := min{ f ∗j | j ∈ J}, (4.28)

where f ∗j := inf{ f j(x)|x ∈ dom(G)} for all j ∈ J.

Theorem 4.2. Assume that F satisfies (A1)-(A2). Then, limk→∞ F(xk) = F(x∗) for some x∗ ∈
dom(G). Moreover,
(i) limk→∞ θ(xk) = 0;

(ii) min{|θ(xk)| : k = 0, · · · ,N−1} ≤
√

f j∗(x0)− f inf
j∗

ζ γN .

Proof. (i) By Step 1 of Algorithm 2, we obtain

F(Rxkαk(R−1
xk p(xk)))� F(xk)+ζ αkθ(xk)e, (4.29)

or equivalently,

ζ αkθ(xk)e� F(xk)−F(xk+1). (4.30)

From Lemma 4.1, we have

0≺ ζ γ|θ(xk)|2e� F(xk)−F(xk+1), (4.31)

which implies that the sequence {F(xk)} is monotone decreasing.
By the similar proof of Theorem 4.1, we conclude that

lim
k→∞

F(xk) = F(x∗). (4.32)

This, together with (4.31), gives that

lim
k→∞
|θ(xk)|2 = 0. (4.33)
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Therefore, limk→∞ θ(xk) = 0.
(ii) From (4.31), for all j ∈ J, we obtain

N−1

∑
k=0
|θ(xk)|2 ≤

N−1

∑
k=0

1
ζ γ

[ f j(xk)− f j(xk+1)]≤ 1
ζ γ

[ f j∗(x0)− f inf
j∗ ]. (4.34)

Thus,

min{|θ(xk)|2 : k = 0, · · · ,N−1} ≤
[ f j∗(x0)− f inf

j∗ ]

ζ γN
, (4.35)

which concludes the proof. �

Corollary 4.1. Assume that F satisfies (A1)-(A2). Let ε > 0 and define K(ε) := {k ∈ N :
|θ(xk)|> ε}. Then,

|K(ε)| ≤
[ f j∗(x0)− f inf

j∗ ]

ζ γ

1
ε2 , (4.36)

where |K(ε)| denotes the number of elements of K(ε).

Proof. The proof follows from (4.35) straightforwardly. �

Corollary 4.2. Assume that F satisfies (A1)-(A2) and ε > 0. If |θ(xk)| > ε , then Algorithm 1
with Armijo line search performs, at most, 1+ ln(γε)

ln(µ2)
evaluations of F to compute the step size

αk.

Proof. Let tk and ωk be the numbers of inner iterations and evaluations of F with Armijo line
search to compute αk, respectively. By Algorithm 2, we get ωk = tk +1 and µ

tk
2 ≥ αk. Hence,

from Lemma 4.1, it follows that µ
tk
2 ≥ γ|θ(xk)|. Since |θ(xk)|> ε , we have µ

tk
2 ≥ γε . Therefore,

tk ≤ ln(γε)
ln(µ2)

, which concludes the proof. �

The following result follows from Corollaries 4.1 and 4.2 straightforwardly.

Theorem 4.3. Assume that F satisfies (A1)-(A2) and ε > 0. Then, Algorithm 1 with Armijo step
size generates a point xk such that |θ(xk)| ≤ ε , performing, at most,

m[(1+
ln(γε)

ln(µ2)
)
[ f j∗(x0)− f inf

j∗ ]

ζ γ

1
ε2 +1] = O(| ln(ε)|ε−2) (4.37)

evaluations of functions f1, · · · , fm.

Remark 4.1. If M = Rn and Rxη = x+η , then Theorems 4.1, 4.2 and 4.3 can reduce to Theo-
rems 8, 10 and 13 of [24].

4.2. Convergence analysis using the nonmonotone line search step size.

Proposition 4.2. Assume that F satisfies (A1)-(A2). Let {xk} be the sequence generated by
Algorithm 1 with the nonmonotone step size. Then,

F(xk)�Ck. (4.38)

Moreover, if xk is not a Pareto critical point of F, then there exists αk satisfying the nonmonotone
line search condition.
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Proof. Since θ(xk)< 0, by the nonmonotone line search (3.24), it follows that

F(xk)�Ck.

Now, we prove that there exists αk satisfying the nonmonotone line search condition. Since H
is differentiable and G is convex, for all j ∈ J, we conclude that

f j(Rxkαk(R−1
xk p(xk))) = g j(Rxkαk(R−1

xk p(xk)))+h j(Rxkαk(R−1
xk p(xk)))

≤ (1−αk)g j(xk)+αkg j(p(xk))+h j(xk)+αk〈gradh j(xk), R−1
xk p(xk)〉+ o(αk)

αk

= f j(xk)+αk[〈gradh j(xk), R−1
xk p(xk)〉+g j(p(xk))−g j(xk)]+

o(αk)

αk
. (4.39)

For all j ∈ J, since 〈gradh j(xk), R−1
xk p(xk)〉 ≤max j∈J〈gradh j(xk), R−1

xk p(xk)〉 and f j(xk)≤Ck
j ,

we have

F(Rxkαk(R−1
xk p(xk)))� Ck +σαkθ(xk)e+αk((1−σ)θ(xk)+

o(αk)

αk
)e. (4.40)

Observing that xk is not a Pareto critical point, θ(xk)< 0,σ ∈ (0,1), and that for αk > 0, small
enough, the condition (3.24) holds. �

Theorem 4.4. Assume that F satisfies (A1)-(A2). Let {xk} be the sequence generated by Algo-
rithm 1 with the nonmonotone line search step size. Then,

αk ≥min{β , 2β (1−σ)

LH

|θ(xk)|
‖R−1

xk p(xk)‖2
}. (4.41)

Proof. If αk ≥ β , then (4.41) holds.
If αk < β , then by (3.24) and Proposition 4.2, we have

F(Rxkαkβ
−1(R−1

xk p(xk)))�Ck +σαkβ
−1

θ(xk)e� F(xk)+σαkβ
−1

θ(xk)e. (4.42)

For all j ∈ J, define φ k
j : R→ R

⋃
{+∞} by

φ
k
j (t) := h j(Rxkt(R−1

xk p(xk))).

Note that

φ
k
j (αkβ

−1)−φ
k
j (0) = αkβ

−1 dφ k
j (0)

dt
+

∫
αkβ−1

0
[
dφ k

j (t)

dt
−

dφ k
j (0)

dt
]dt.

Define v(xk) = R−1
xk p(xk). From [13, 19], we have

dφ k
j (t)

dt
= 〈gradh j(Rxktv(xk)), DRxktv(xk)[v(xk)]〉.
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Thus, for all j ∈ J, it holds

h j(Rxkαkβ
−1v(xk))−h j(xk)

=αkβ
−1〈gradh j(xk), DRxk0v(xk)[v(xk)]〉

+
∫

αkβ−1

0
[〈gradh j(Rxktv(xk)), DRxktv(xk)[v(xk)]〉−〈gradh j(xk), DRxk0v(xk)[v(xk)]〉]dt

=αkβ
−1〈gradh j(xk), v(xk)〉

+
∫

αkβ−1

0
〈gradh j(Rxktv(xk))−L(xk, Rxktv(xk))gradh j(xk),L(xk,Rxktv(xk))v(xk)〉dt

≤αkβ
−1〈gradh j(xk), v(xk)〉

+
∫

αkβ−1

0
‖gradh j(Rxktv(xk))−L(xk,Rxktv(xk))gradh j(xk)‖‖L(xk,Rxktv(xk))v(xk)‖dt

≤αkβ
−1〈gradh j(xk), v(xk)〉+

∫
αkβ−1

0
tLH‖v(xk)‖2dt

≤αkβ
−1 max

j∈J
〈gradh j(xk), v(xk)〉+ LH

2
[αkβ

−1]2‖v(xk)‖2.

By (4.42), for all j ∈ J, we have

g j(Rxkαkβ
−1v(xk))−g j(xk)+h j(Rxkαkβ

−1v(xk))−h j(xk)≥ σαkβ
−1

θ(xk), (4.43)

which, together with the above inequality, implies that

g j(Rxkαkβ
−1v(xk))−g j(xk)+αkβ

−1 max
j∈J
〈gradh j(xk), v(xk)〉+ LH

2
[αkβ

−1]2‖v(xk)‖2

≥ σαkβ
−1

θ(xk), ∀ j ∈ J. (4.44)

Since G is convex, from Lemma 3.1, we have

g j(Rxkαkβ
−1v(xk))−g j(xk)≤ αkβ

−1[g j(p(xk))−g j(xk)], ∀ j ∈ J.

This, together with (4.44), gives that

αkβ
−1

θ(xk)+
LH

2
[αkβ

−1]2‖v(xk)‖2 ≥ σαkβ
−1

θ(xk).

Thus, αk ≥ 2β (1−σ)
LH

|θ(xk)|
‖R−1

xk p(xk)‖2 . �

Theorem 4.5. Assume that F satisfies (A1)-(A2). F is bounded from below, ηmax < 1, and there
exists c > 0 such that

|θ(xk)| ≥ c‖R−1
xk p(xk)‖2, ∀k ∈ N.

Then, every limit point of the sequence {xk} generated by Algorithm 1 with the nonmonotone
line search is a Pareto critical point of F.

Proof. We show that

F(xk+1)�Ck− ρ̄|θ(xk)|e, (4.45)
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where ρ̄ = min{σβ , 2σβ (1−σ)c
LH

}. The following two cases are possible.
Case 1. If αk ≥ β , then by (3.24),

F(xk+1)�Ck +σαkθ(xk)e =Ck−σαk|θ(xk)|e�Ck−σβ |θ(xk)|e,
which implies that (4.45).
Case 2. If αk < β , then by (4.41),

αk ≥
2β (1−σ)

LH

|θ(xk)|
‖R−1

xk p(xk)‖2
.

From (3.24), we have

F(xk+1)�Ck− 2σβ (1−σ)

LH

|θ(xk)|2

‖R−1
xk p(xk)‖2

e.

Since |θ(xk)| ≥ c‖R−1
xk p(xk)‖2, we know

F(xk+1)�Ck− 2σβ (1−σ)c
LH

|θ(xk)|e,

which implies (4.45). Consequently,

Ck+1 =
ηkQkCk +F(xk+1)

Qk+1
� ηkQkCk +Ck− ρ̄|θ(xk)|e

Qk+1
=Ck− ρ̄|θ(xk)|

Qk+1
e. (4.46)

Since F(x) is bounded from below and F(xk)�Ck, we conclude that Ck is bounded from below.
Together with (4.46), it holds

∞

∑
k=0

|θ(xk)|
Qk+1

≤
∞

∑
k=0

1
ρ̄
(Ck

j −Ck+1
j )<+∞, ∀ j ∈ J. (4.47)

Suppose that x∗ is a limit point of {xk}. Thus, we have θ(x∗) = 0. By contradiction, assume that
θ(x∗)< 0, which implies that there exists ε > 0,δ > 0 such that for all k ∈K, d(xk,x∗)≤ δ , we
have |θ(xk)| ≥ ε > 0. Therefore, we can get

∞

∑
k=0

|θ(xk)|
Qk+1

≥ ∑
k∈{k∈K|d(xk,x∗)≤δ}

ε

Qk+1
. (4.48)

Since ηmax < 1, by the similar proof of Theorem 2.2 in [18] , we have

Qk+1 ≤
1

1−ηmax
. (4.49)

Together with (4.48), it holds
∞

∑
k=0

|θ(xk)|
Qk+1

≥ ∑
k∈{k∈K|d(xk,x∗)≤δ}

(1−ηmax)ε =+∞,

which contradicts to (4.47). Thus, we have that θ(x∗) = 0. It follows from Lemma 3.2 that x∗

is a Pareto critical point of F , which concludes the proof. �

Theorem 4.6. Suppose that all assumptions of Theorem 4.5 are satisfied. The sequence {xk} is
generated by Algorithm 1 with the nonmonotone line search. Then, limk→∞ F(xk) = F(x∗) for
some x∗ ∈ dom(G). Moreover,
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(i) limk→∞ θ(xk) = 0;
(ii) min{|θ(xk)| : k = 0, · · · ,N−1} ≤ 1

(1−ηmax)ρ̄N ( f j∗(x0)− f inf
j∗ ).

Proof. (i) By the similar proof of Theorems 4.1 and 4.5, we obtain limk→∞ F(xk) = F(x∗) and
limk→∞ θ(xk) = 0.

(ii) From the proof of Theorem 4.5, we obtain the sequence {Ck
j} is bounded from below, and

N−1

∑
k=0

|θ(xk)|
Qk+1

≤
N−1

∑
k=0

1
ρ̄
(Ck

j −Ck+1
j ), ∀ j ∈ J.

Since C0 = F(x0), for all j ∈ J, we have C0
j = f j(x0). Moreover, from F(xk)�Ck, we know

N−1

∑
k=0

|θ(xk)|
Qk+1

≤
N−1

∑
k=0

1
ρ̄
(Ck

j −Ck+1
j )≤ 1

ρ̄
( f j∗(x0)− f inf

j∗ ).

Therefore,

min{|θ(xk)| : k = 0,1, · · · ,N−1} ≤ Qk+1

ρ̄N
( f j∗(x0)− f inf

j∗ )≤
1

(1−ηmax)ρ̄N
( f j∗(x0)− f inf

j∗ ),

which concludes the proof. �

Corollary 4.3. Suppose that all assumptions of Theorem 4.5 are satisfied and ε > 0. Define the
set K(ε) := {k ∈ N : |θ(xk)|> ε}. Then,

|K(ε)| ≤
f j∗(x0)− f inf

j∗

(1−ηmax)ρ̄ε
, (4.50)

where |K(ε)| denotes the number of elements of K(ε).

Proof. The proof follows from Theorem 4.6 straightforwardly. �

Theorem 4.7. Suppose that all assumptions of Theorem 4.5 are satisfied and ε > 0. Then,
Algorithm 1 with the nonmonotone line search generates a point xk such that |θ(xk)| ≤ ε , per-
forming, at most,

m[(max(1, ln(
2β (1−σ)ε

LHΩ2 )/ lnβ )+1)
[ f j∗(x0)− f inf

j∗ ]

(1−ηmax)ρ̄ε
+1] = O(| ln(ε)|ε−1)

evaluations of functions f1, · · · , fm.

Proof. Let tk be the number of inner iterations of F with the nonmonotone line search to com-
pute αk. By Algorithm 3, we have αk = β tk . Together with Theorem 4.4, it holds β tk =

αk ≥ min{β , 2β (1−σ)
LH

|θ(xk)|
‖R−1

xk p(xk)‖2}. Since |θ(xk)| > ε and Ω ≥ ‖R−1
xk p(xk)‖, it follows that tk ≤

max{1, ln(2β (1−σ)ε
LHΩ2 )/ lnβ}. This, together with Corollary 4.3, gives the result. �

Remark 4.2. Proposition 4.2 and Theorem 4.5 can be regarded as a generalization of Propo-
sition 4.5 and Theorem 4.6 of [20] from smooth objective functions to non-smooth functions,
respectively. Moreover, exponential mappings and parallel transports in [20] are extended to
retractions and isometric vector transports in this paper, respectively.

Next, we apply the generalized conditional gradient method for composite multiobjective
problems to sphere Sn−1.
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Example 4.1. On the unit sphere Sn−1 considered as a Riemannian manifold of Rn, the inner
product inherited from the standard inner product on Rn is given by

g(ξx,ηx) := ξ
T
x ηx, ∀ξx,ηx ∈ TxSn−1,

and the projection is given by Pxξx = (I− xxT )ξx. From Section 4 in [19], we have Rx(ηx) =
x+ηx
‖x+ηx‖ . The tangent space to Sn−1 is

TxSn−1 = {ξ ∈ Rn : xT
ξ = 0}.

Let S1 = {x = (x1,x2) ∈ R2 : x2
1 + x2

2 = 1}. We will apply Algorithm 1 with Armijo step size to
find a Pareto critical point of F = ( f̄1, f̄2). For each j = 1,2, we define f̄ j : R2→ R by

f̄ j(x) = ḡ j(x)+ h̄ j(x), (4.51)

where ḡ j : R2→ R is defined by

ḡ j(x) = δS1(x) =

{
0, x ∈ S1,

+∞, otherwise,

and h̄ j : R2→ R is defined by

h̄ j(x) = max
z∈Z j
‖(x2

1 +3x2
2)z‖, (4.52)

where Z j = {z ∈ R2|0 ≺ z � 2e}, e = (1,1)T ∈ R2. By the definition of ḡ j, the optimization
problem (4.51) can be rewritten as f j(x) : S1→ R, where

x 7→ f j(x) = max
z∈Z j
‖(x2

1 +3x2
2)z‖.

From Section 4 in [19], we obtain

grad f j(x) = Px f̄ j(x) = [grad f̄ j(x)]T − xxT [grad f̄ j(x)]T .

By setting A = diag(1,3) and ζ = 0.1, results in Table 1 show that the generalized conditional
gradient method is effective under different Armijo condition numbers. In Table 1, ”iter” and
”grad” denote the number of iterations, and the norm of the gradient for the composite opti-
mization problem (4.51), respectively.

TABLE 1. Numerical results for the composite optimization problem (4.51).

µ1 = 0.5, µ2 = 0.6 µ1 = 0.2, µ2 = 0.8 µ1 = 0.3, µ2 = 0.7

x iter grad x iter grad x iter grad
(0.242536, 0.970143) 1 9.4120e-1 (0.242536, 0.970143) 1 9.4120e-1 (0.540232, 0.540232) 2 1.8185e0
(0.841516, 0.540232) 2 1.8185e0 (0.980767, -0.178040) 3 7.0080e-1 (0.998657, 0.051803) 4 2.0690e-1
(0.980760, 0.195170) 3 7.6570e-1 (0.999562, -0.029607) 5 1.1840e-1 (0.999819, -0.019032) 5 7.6100e-2
(0.999471, 0.032526) 4 1.3000e-1 (0.999996, -0.002845) 7 1.1400e-2 (0.999997, -0.002629) 7 1.0500e-2

(0.999990, 0.044516) 5 1.7800e-2 (1.000000, 0.000884) 8 3.5000e-3 (1.000000, -0.000364) 9 1.5000e-3
(1.000000, 0.000605) 6 2.4000e-3 (1.000000, 0.000085) 10 3.4132e-4 (1.000000, 0.000135) 10 5.4212e-4
(1.000000, 0.000082) 7 3.2939e-4 (1.000000, -0.000027) 11 1.0605e-4 (1.000000, 0.000019) 12 7.4904e-5
(1.000000, 0.000011) 8 4.4797e-5 (1.000000, -0.000003) 12 1.0239e-5 (1.000000, 0.000003) 14 1.0360e-5
(1.000000, 0.000002) 9 6.0924e-6 (1.000000, 0.000001) 14 3.1815e-6 (1.000000, -0.000001) 15 3.8560e-6
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5. CONCLUSIONS

In this paper, the generalized conditional gradient method for the composite multiobjective
optimization problem was proposed on Riemannian manifolds. Under some conditions, the
global convergence and the iteration-complexity bound was investigated. Future research di-
rections involve establishing explicit asymptotic and non-asymptotic convergence rates, nu-
merically competitive Riemannian proximal subgradient algorithm, and proximal augmented
Lagrangian methods for composite multiobjective optimization problems.
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