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WEAK SEPARATION FUNCTIONS CONSTRUCTED BY GERSTEWITZ AND
TOPICAL FUNCTIONS WITH APPLICATIONS IN CONJUGATE DUALITY
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Abstract. This paper aims to construct some nonlinear weak separation functions in image space analysis
by virtue of the Gerstewitz and topical functions. Then, applying these separation functions, a framework
of conjugate type duality for constrained vector optimization problems is introduced. The primal problem
is scalarized and then the separation functions are applied to give a scalar dual problem. Meanwhile,
equivalent characterizations of the zero duality gap as well as the strong duality are established via
subdifferential calculus, separation properties, and saddle point assertions.
Keywords. Conjugate duality; Image space analysis; Gerstewitz function; Nonlinear weak separation
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1. INTRODUCTION

The Gerstewitz function was introduced in [1] by Gerstewitz as separating functional for not
necessarily convex sets with the corresponding properties important for applications in vector
optimization (see also Gerstewitz and Iwanow in [2]). For assertions in the context of operator
theory where a functional of this type is used; see Krasnoselskiı [3] and Rubinov [4]. This
function has clear geometric interpretations and abundant properties, such as continuity, sub-
linearity, convexity, monotonicity, which were studied in [1, 5, 6, 7], and later followed by
numerous references, such as [8, 9, 10], under more general assumptions. Lipschitz properties
of this function also arouse lots of interests and were widely studied; see [11, 12] and refer-
ences therein. Gerth and Weidner established general separation theorems for not necessarily
convex sets based on the Gerstewitz function in [5], which provides the key instrument for
the proof of numerous theories for nonconvex problems. These results and generalizations of
the Gerstewitz function make it a powerful tool of scalarization in vector optimization as well
as related problems; see [8, 13, 14, 15, 16, 17, 18]. Another nonlinear function, providing a
scalarization approach which can be regarded as a dual reformulation of the Gerstewitz func-
tion, was introduced in [19] to derive some second order optimality conditions for a general
vector optimization problem. The relationships among these two scalarization functions and
the so-called oriented distance function (see Zaffaroni [20]) were discussed elaborately in [21]
by Crespi, Ginchev and Rocca, by Gutiérrez, Jiménez, Miglierina, and Molho in [8], and by
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Bouza, Quintana, and Tammer in [22]. Though maybe mostly known as a useful scalarization
tool, the application scope of Gerstewitz function is way beyond that. In production theory,
Gerstewitz type functions are introduced under the name of benefit function and shortage func-
tion; see [23, 24], while the coherent risk measure, which is a crucial concept in mathematical
finance, can also be formulated by functions of this type; see [25]. Many algorithms for solving
different optimization and related problems, like in [26, 27, 28, 29, 30], were constructed by
means of Gerstewitz function.

It is worth mentioning that there are close relationships between the Gerstewitz function and
the topical function, which is another vital tool exploited in this work. The class of topical
functions is an important subclass of the class of Gerstewitz functions. Gerstewitz function car-
ries all the basic features of a topical function, while every topical function can be enveloped
by a collection of Gerstewitz functions, forming the foundation of the abstract convex structure
of the topical function. Therefore, on one hand, Gerstewitz function can be seen as the sup-
port element of the topical function and studied in the context of abstract convex analysis; see
[31, 32, 33]. On the other hand, topical functions can also be investigated through Gerstewitz
functions. A topical function is a typical abstract convex function, introduced in [34] to model
discrete event systems and studied in the scheme of abstract convex analysis in [32, 33]. Now, it
has been extended to even more generalized forms with numerous applications in various fields,
like optimization, economics and dynamic system; see [35, 36, 37, 38].

In this paper, we want to employ the Gerstewitz function and the topical function to construct
weak separation functions, which are essential for image space analysis. Started in [39], the the-
ory of image space analysis has attracted a lot of attention and stimulated considerable research
in different kinds of areas during the past few decades. It is an approach that deals with the
problems in the image space, namely the space where images of the functions involved in the
given problems run, and has been proved to be a powerful tool for investigating lots of mathe-
matical topics. This approach focuses more on the geometric features of the sets corresponding
to the problem in the image space, rather than the properties of the related functions, and there-
fore, furnishes an effective way to study the optimization problems which might be nonconvex,
nonsmooth or discontinuous. Using image space analysis, many crucial results of optimization
theory, like necessary conditions and constraint qualifications, obtained by the classical way
can be rebuilt in a new perception and even led to more general conclusions. Some deep con-
nections among aspects, such as duality, gap functions, error bounds, that might be not evident
from other perspective can be revealed by this approach; see [40, 41, 42]. For more details, we
refer to [43, 44, 45] and the references therein.

Image space analysis provides a unified framework for studying any problems that can be
perceived as the impossibility of a certain parametric system. The impossibility is expressed as
the disjointness of two suitable subsets depending on the problem in the image space, which can
be clarified by showing that these subsets are contained in different level sets of some separation
functions. That is why the separation functions, especially regular weak separation functions,
are vital for this approach. Linear separation functions were introduced in [39] by Giannessi,
and then extended in [46, 47]. This kind of function is used maybe most frequently, but usually
invalid when it comes to the nonconvex case. Hence, some nonlinear ones are also proposed
with the help of some augmented Lagrangian functions, and nonlinear scalarization functions;
see [48, 49].
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The Gerstewitz function has been applied for introducing different separation functions in lit-
eratures like [50, 51]. Here, we want to further exploit the capability of the Gerstewitz function
for constructing separation functions. The parameter of the collections of separation functions
provided in [50] is in the image space, acting as a translation of the original function, while,
for those we propose in this work, the parameter is an element in the topological interior of
the ordering cone, which is a key factor for defining a Gerstewitz function. This is similar to
the situation of [51]. However, the separation functions given there are only regular for investi-
gating weakly efficient solutions, not for efficient ones. Here, besides the weak case, we shall
also introduce the groups of separation functions that can be regular for efficient solutions. In
addition to the Gerstewitz function, the closely related topical function also offers another way
to construct weak separation functions. Starting from monotonicity properties to full topical
features, we will make full use of this function in our discussion as well. Then, as application,
a framework of conjugate type duality by virtue of the weak separation functions is established.
We first give a general form of the dual problem and then investigate equivalent characteri-
zations of the zero duality gap and strong duality via subdifferential calculus, separation and
saddle point assertions, under certain additional assumptions.

The rest of this paper is organized as follows. In Section 2, some preliminaries are recalled,
including the concepts and properties of Gerstewitz function, and topical function and separa-
tion function in image space analysis. In Section 3, we investigate the behavior of the Ger-
stewitz function when the element in the topological interior of the ordering cone varies. In
Section 4, several collections of nonlinear weak separation functions are introduced by means
of Gerstewitz and topical functions, and simultaneously, the regularities of them are discussed.
In Sections 5, applying these separation functions, together with a scalarization technique, we
establish a conjugate type duality framework for a general constrained vector optimization,
studying the zero duality gap as well as strong duality statements. In Section 6, the last section,
some conclusions are given.

2. PRELIMINARIES

Let X , Y , Z be real Banach spaces equipped with the norms ‖ · ‖X , ‖ · ‖Y and ‖ · ‖Z , while
KX , KY and KZ , inducing the partial order in X , Y and Z, respectively, are closed, convex and
pointed cones with nonempty interior. The partial order relation on Y induced by KY is denoted
by �KY :

y1 �KY y2 :⇐⇒ y1 ∈ y2 +KY .

For a subset A ⊂ Y , we denote the topological interior and closure of A by intA and cl A
respectively, and the closed ball with the center x and the radius ε by B(x,ε).

In optimization, the following monotonicity properties of a function ζ : Y → R̄ :=R∪{±∞}
are important.

Definition 2.1. Let ζ : Y → R̄.
(i) ζ is called KY -monotone if y1 �KY y2 implies ζ (y1)≤ ζ (y2) for every y1,y2 ∈ Y .

(ii) ζ is called strictly intKY -monotone if y1 �intKY y2 implies ζ (y1) < ζ (y2) for every
y1,y2 ∈ Y .

Further monotonicity properties are introduced in Definition 4.1.
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Recall that an element ȳ ∈ A is said to be a maximal element of A if ({ȳ}+KY )∩A = {ȳ},
while ȳ ∈ A is said to be a weakly maximal element of A if ({ȳ}+ intKY )∩A = /0. The sets
of all the maximal elements and all the weakly maximal elements are denoted by MaxA and
WMaxA, respectively.

Next, we introduce the main tools in this paper, namely, the notions of the Gerstewitz and
topical functions.

Definition 2.2. ([32]) Let e ∈ intKY . A function ψ : Y → R̄ is called topical w.r.t. e if it has
both of the following properties:

(i) KY -monotone, i.e., y1 �KY y2⇒ ψ(y1)≥ ψ(y2), for all y1, y2 ∈ Y .
(ii) translation invariant w.r.t. e, i.e., ψ(y+λe) = ψ(y)+λ for all y ∈ Y and λ ∈ R.

Definition 2.3. ([1]) Let e ∈ intKY and ω ∈ Y . The Gerstewitz function is defined as

∀y ∈ Y : ϕω,e(y) := sup{λ ∈ R : λe�KY y+ω}.

Another function we shall use in this paper, which has the symmetric form of ϕω,e, is the
function that

∀y ∈ Y : ξω,e(y) := inf{λ ∈ R : λe�KY y+ω}. (2.1)
Since what is mainly considered here is the case where ω = 0Y , we shall simply denote ϕ0Y ,e

and ξ0Y ,e by ϕe and ξe, respectively. The Gerstewitz function and its symmetric form are both
very useful in vector optimization and enjoy many good properties. Here we list some of them
for later use.

Proposition 2.1. ([6]) Let ω ∈ Y and ϕω,e : Y → R be defined as above. Then
(i) ϕω,e and ξω,e are finite-valued and continuous.

(ii) ϕω,e and ξω,e are translation invariant w.r.t. e.
(iii) {y ∈ Y : ϕω,e(y) ≥ λ} = λe−ω +KY , {y ∈ Y : ϕω,e(y) > λ} = λe−ω + intKY , {y ∈

Y : ϕω,e(y) = λ}= λe−ω +bdKY , for all λ ∈ R.
(iv) {y ∈ Y : ξω,e(y) ≤ λ} = λe−ω −KY , {y ∈ Y : ξω,e(y) < λ} = λe−ω − intKY , {y ∈

Y : ξω,e(y) = λ}= λe−ω−bdKY , for all λ ∈ R.
(v) ϕω,e(y) =−ξ−ω,e(−y), for all y ∈ Y .

(vi) ξω,e is strictly intKY -monotone, i.e., y1�intKY y2 implies ζ (y1)< ζ (y2) for every y1,y2 ∈
Y .

As seen in Proposition 2.1(iii) and (iv), the Gerstewitz function is characterized by its lower/upper
sublevel sets w.r.t. the level λ ∈ R, given for a function ζ : Y → R̄ as

lev≤λ ζ := {y ∈ Y | ζ (y)≤ λ},

lev≥λ ζ := {y ∈ Y | ζ (y)≥ λ}
as well as the strict lower/upper sublevel sets

lev<λ ζ := {y ∈ Y | ζ (y)< λ},

lev>λ ζ := {y ∈ Y | ζ (y)> λ},
respectively.

The class of topical functions is a subclass of the class of Gerstewitz functions, see (iii) and
(iv) in the following proposition (shown in [52, Proposition 4.1.1]):
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Proposition 2.2. Let ζ : Y → R̄, e ∈ Y \{0}, and K̃ := lev≤0 ζ . Then, the following conditions
are equivalent to each other:

(i) lev≤λ ζ = K̃ +λe,
(ii) epiζ = {(y,λ ) ∈ Y ×R | y ∈ K̃ +λe}.

(iii) ζ (y+λe) = ζ (y)+λ for all y ∈ Y and λ ∈ R.
(iv) ζ (y) = inf{λ ∈ R : y ∈ λe+ K̃}, for all y ∈ Y .

Proposition 2.3. ([53]) Let e ∈ intKY . For the ordering cone KY , one has y ∈ KY \{0Y} if and
only if

∀ ε ∈ (0,1) : (1− ε)ϕe(y)+ εξe(y)> 0.

Given a collection of functions W ⊆ {w | w : Y → R̄}, a function h : Y → R̄ is called abstract
convex w.r.t. W , or W -convex if h can be enveloped by W , i.e.,

∀ y ∈ Y : h(y) = sup{w(y) : w ∈ supp(h,W )},
where

supp(h,W ) := {w ∈W | ∀y ∈ Y : w(y)≤ h(y)}
is the support set of h. The corresponding concepts of subdifferential and conjugation, called

W -subdifferential (at ȳ ∈ Y ) and W -conjugate function, are defined by

∂W h(ȳ) = {w ∈W | ∀y ∈ Y : w(y)−w(ȳ)≤ h(y)−h(ȳ)}, (2.2)

hc(W )(w) = sup {w(y)−h(y) : y ∈ Y} for all w ∈W, (2.3)

respectively.
As shown in [32, Theorem 3.2] by Mohebi and Samet, the topical function is a typical exam-

ple of abstract convex functions, with Gerstewitz functions as its minorant elements, meaning
that a function f : Y → R̄ is topical w.r.t. e if and only if

f (y) = sup{ϕω,e(y) : ϕω,e ∈ supp( f ,W e
ϕ)},

where W e
ϕ = {ϕω,e : ω ∈ Y}.

Consider the following constrained vector optimization problem

min{ f (x) : g(x)�KZ 0Z}, (VOP)

where f : X → Y and g : X → Z. Set R := {x ∈ X : g(x) �KZ 0Z}. We say that x0 ∈R is an
efficient solution of (VOP) if ({ f (x0)}−KY )∩ f (R) = { f (x0)}. Under the assumption intKY 6=
/0, we say that x0 ∈R is a weakly efficient solution of (VOP) if ({ f (x0)}− intKY )∩ f (R) = /0.

For an arbitrary x̄ ∈ X , define the function Ax̄ : X → Y ×Z by Ax̄(x) := ( f (x̄)− f (x),g(x)),
and

K := {(u,v) ∈ Y ×Z : u = f (x̄)− f (x), v = g(x), x ∈ X},
which is actually Ax̄(X) and said to be the image of (VOP). It is a subset of space Y ×Z, called
the image space associated with (VOP). Set

H := {(u,v) ∈ Y ×Z : u ∈ intKY , v ∈ KZ}, (2.4)

H o := {(u,v) ∈ Y ×Z : u ∈ KY \{0Y}, v ∈ KZ}. (2.5)

Then, it is not hard to verify that, for any x̄ ∈R, it is a weakly efficient solution of (VOP) if
and only if K ∩H = /0, while it is an efficient solution of (VOP) if and only if K ∩H o = /0.
Such disjointness can be conducted by the separation functions.
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Definition 2.4. The class W of functions w : Y ×Z→ R̄ is called the class of weak separation
functions w.r.t. H given by (2.4) (or w.r.t. H o given by (2.5), respectively) if

H (H o)⊂ lev≥0 w for all w ∈W and
⋂

w∈W
lev>0 w⊂H (H o), (2.6)

while, it is called the class of regular weak separation functions w.r.t. H (H o, respectively)
if ⋂

w∈W
lev>0 w = H (H o). (2.7)

Here, we denote the upper level set of w w.r.t. the level 0 by

lev≥0 w := {(u,v) ∈ Y ×Z : w(u,v)≥ 0},

and the strict upper level set of w w.r.t. the level 0 by

lev>0 w := {(u,v) ∈ Y ×Z : w(u,v)> 0}.

3. PARAMETER IN GERSTEWITZ FUNCTION

We want to make use of the Gerstewitz functions to introduce some nonlinear weak separation
functions. From (2.3), it can be seen that the element e ∈ intKY is essential for obtaining useful
properties (like continuity properties, see Proposition 2.1) of the Gerstewitz function, and we
shall regard it as a key parameter for the construction of separation functions. Therefore, in this
section, we try to figure out how the Gerstewitz function behaves with the variation of e∈ intKY .

Stability properties of the solution set mapping of the Gerstewitz functional are derived by
Penot and Sterna-Karwat in [54, 55] and by Sterna-Karwat in [56]. The assertion in the follow-
ing proposition was given in a more general form by Sterna-Karwat in [56].

Proposition 3.1. For any y ∈ Y fixed, ϕ(·)(y) : intKY → R is continuous on intKY .

Proof. First note that Proposition 2.1 (i) guarantees ϕe(y)∈R for all e∈ intKY and y∈Y , while
ϕe(y)e�KY y as KY is closed. Letting ε > 0 be arbitrary, one has ϕe(y)− ε < ϕe(y) and hence

(ϕe(y)− ε)e�intKY ϕe(y)e�KY y.

Thus there exists some δ1 > 0 such that (ϕe(y)− ε)(e+ h) �KY y and e+ h ∈ intKY for all
h ∈ B(0Y ,δ1), which indicates

ϕe+h(y)≥ ϕe(y)− ε, for all h ∈ B(0Y ,δ1). (3.1)

On the other hand, as ϕe(y)< ϕe(y)+ε , applying Proposition 2.1 (iii), y /∈ (ϕe(y)+ε)e+KY .
Then, we can find some δ2 > 0 satisfying

e+h ∈ intKY and y /∈ (ϕe(y)+ ε)(e+h)+KY for all h ∈ B(0Y ,δ2).

Hence,
ϕe+h(y)< ϕe(y)+ ε, for all h ∈ B(0Y ,δ2). (3.2)

This, together with (3.1), yields |ϕe+h(y)−ϕe(y)|< ε for all h∈B(0Y ,δ ), where δ =min{δ1,δ2}.
�

Proposition 3.2. For any y ∈ Y fixed, one has ϕαe(y) = 1
α

ϕe(y) for all α > 0 and e ∈ intKY .
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Proof. For arbitrary α > 0 and e ∈ intKY ,

ϕαe(y) = sup{λ ∈ R : λ (αe)�KY y}= sup{ 1
α
(λα) ∈ R : (λα)e�KY y}

=
1
α

ϕe(y).

�

For a given y ∈ Y , we use certain monotonicity properties of ϕ(·)(y) in order to characterize
the set to which y ∈ Y belongs in the next proposition.

Proposition 3.3. Let y ∈ Y .

(i) y ∈ intKY if and only if
e1 �intKY e2 implies ϕe1(y)> ϕe2(y) for any e1, e2 ∈ intKY .

(ii) Given some e1 ∈ intKY , then
y ∈ {λe1 : λ > 0} if and only if
e1 �KY \{0Y } e2 implies ϕe1(y)> ϕe2(y) for any e2 ∈ intKY .

(iii) y ∈ bdKY if and only if
ϕe(y) = 0 for every e ∈ intKY .

(iv) y /∈ KY if and only if
e1 �intKY e2 implies ϕe1(y)< ϕe2(y) for any e1, e2 ∈ intKY .

(v) Given some e2 ∈ intKY , then
y ∈ {λe2 : λ < 0} if and only if
e1 �KY \{0Y } e2 implies ϕe1(y)< ϕe2(y) for any e1 ∈ intKY .

Proof. (i) Let y ∈ intKY and pick any e1, e2 ∈ intKY such that e1 �intKY e2. Setting λ1 = ϕe1(y)
and λ2 = ϕe2(y), it follows from Proposition 2.1 (iii) that λ1 > 0, λ2 > 0, and

y = λ1e1 +q1 = λ2e2 +q2

for some q1, q2 ∈ bdKY . Supposing λ1 ≤ λ2, one has

q1 = λ2e2−λ1e1 +q2 �KY λ1(e2− e1)+q2 �intKY 0Y ,

contradicting that q1 ∈ bdKY . Therefore, λ1 > λ2, i.e., ϕe1(y)> ϕe2(y).
Conversely, pick some e1 ∈ intKY and let e2 = 2e1. Then there exists ϕe1(y)> ϕe2(y) due to

e1 �intKY 2e1, which means, according to Proposition 3.2, ϕe1(y)>
1
2ϕe1(y). This demonstrates

that ϕe1(y)> 0. Hence, with Proposition 2.1 (iii), we can conclude y ∈ intKY .
(ii) Assume that y= λ1e1 for some λ1 > 0 and e2 ∈ intKY satisfying e1�KY \{0Y } e2. Applying

Proposition 2.1 (iii), y can also be expressed as y = λ2e2 + q2, where λ2 = ϕe2(y) > 0 and
q2 ∈ bdKY . Supposing λ1 ≤ λ2, one has that λ1e1 = y = λ2e2 +q2 gives

q2 = λ1e1−λ2e2 �KY λ2(e1− e2),

which is a contradiction. Hence, λ1 > λ2, i.e., ϕe1(y)> ϕe2(y).
Conversely, first according to (i), y ∈ intKY , meaning that ϕe(y)> 0 for any e ∈ intKY . Sup-

posing y /∈ {λe1 : λ > 0}, one has

y = ϕe1(y)e1 +q1 = ϕe1(y)(e1 +
1

ϕe1(y)
q1) (3.3)
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for some q1 ∈ bdKY \ {0Y}. Letting e2 = e1 +
1

ϕe1(y)
q1, one has e2 �KY \{0Y } e1, while (3.3)

shows ϕe1(y) = ϕe2(y), which is a contradiction. Thus y ∈ {λe1 : λ > 0}.
(iii) Let y ∈ bdKY , which means y ∈ 0e+bdKY for all e ∈ intKY . According to Proposition

2.1 (iii), this is equivalent to ϕe(y) = 0 for all e ∈ intKY .
(iv) and (v) can be proved in similar ways as in (i) and (ii), respectively. �

In addition to the monotonicity, there are some other features of ϕ(·)(y) depending on y, and
they can be divided into three cases that y ∈ intKY , y ∈ bdKY or y /∈ KY .

Proposition 3.4. Let y ∈ Y and e1, e2 ∈ intKY .
(i) ϕe1+e2(y)< ϕe1(y)+ϕe2(y) if y ∈ intKY .

(ii) ϕe1+e2(y) = ϕe1(y)+ϕe2(y) if y ∈ bdKY .
(iii) ϕe1+e2(y)> ϕe1(y)+ϕe2(y) if y /∈ KY .

Proof. (i) Supposing y ∈ intKY , according to Proposition 3.3 (i), one has e1 �intKY e1 + e2 im-
plies ϕe1+e2(y) < ϕe1(y). Meanwhile, y ∈ intKY guarantees ϕe2(y) > 0. Thus ϕe1+e2(y) <
ϕe1(y)+ϕe2(y).

(ii) It straightforwardly follows from Proposition 3.3 (iii).
(iii) Supposing y /∈KY , according to Proposition 3.3 (iv), one has that e1�intKY e1+e2 implies

ϕe1+e2(y) > ϕe1(y). Meanwhile, y /∈ KY guarantees ϕe2(y) < 0, which leads to ϕe1+e2(y) >
ϕe1(y)+ϕe2(y). �

Proposition 3.5. Consider y ∈ Y . Then, if y /∈ intKY , then ϕ(·)(y) :→ R is a concave function.
Particularly, if y ∈ bdKY , then

ϕαe1+(1−α)e2(y) = 0 = αϕe1(y)+(1−α)ϕe2(y), for all e1,e2 ∈ intKY , α ∈ [0,1].

Proof. Suppose y /∈ KY and

y =−λ1e1 +q1, y =−λ2e2 +q2,

where λ1,λ2 > 0, q1, q2 ∈ bdKY . It follows that

e1 =
1
λ1

(−y+q1), e2 =
1
λ2

(−y+q2).

Then

αe1 +(1−α)e2 =
α

λ1
(−y+q1)+

1−α

λ2
(−y+q2)

= −αλ2 +(1−α)λ1

λ1λ2
y+(

α

λ1
q1 +

1−α

λ2
q2),

and

y =− λ1λ2

αλ2 +(1−α)λ1
(αe1 +(1−α)e2)+

λ1λ2

αλ2 +(1−α)λ1
(

α

λ1
q1 +

1−α

λ2
q2),

which imply, according to Proposition 2.1 (iii), that

ϕαe1+(1−α)e2(y) ≥ − λ1λ2

αλ2 +(1−α)λ1

≥ −αλ1− (1−α)λ2

= αϕe1(y)+(1−α)ϕe2(y).
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Hence, for any y /∈ KY ,

ϕαe1+(1−α)e2(y)≥ αϕe1(y)+(1−α)ϕe2(y), for all e1, e2 ∈ intKY , α ∈ [0,1].

If y ∈ bdKY , then ϕe(y) = 0 for any e ∈ intKY . Hence,

ϕαe1+(1−α)e2(y) = 0 = αϕe1(y)+(1−α)ϕe2(y), for all e1, e2 ∈ intKY , α ∈ [0,1].

�

For the case that y∈ intKY , we can always find an example with ϕαe1+(1−α)e2(y)>αϕe1(y)+
(1−α)ϕe2(y) and also an example with

ϕαe1+(1−α)e2(y)< αϕe1(y)+(1−α)ϕe2(y).

Example 3.1. Let y ∈ intKY , α = 1
2 , e1 =

1
2y, and e2 = y. Then ϕe1(y) = 2, ϕe2(y) = 1. There-

fore,

αϕe1(y)+(1−α)ϕe2(y) =
1
2
·2+ 1

2
·1 =

3
2
, ϕαe1+(1−α)e2(y) = ϕ 3

4 y(y) =
4
3
,

satisfying that
ϕαe1+(1−α)e2(y)< αϕe1(y)+(1−α)ϕe2(y).

On the other hand, we can choose some α ∈ (1
2 ,1) and then pick some q1 ∈ bdKY and e ∈

intKY such that y−q1 ∈ intKY and y−ξe(q1)e ∈ intKY . Considering ξe(q1), one sees that there
exists some q2 ∈ bdKY with q2 = ξe(q1)e−q1. Let e1 = y−q1, e2 = y−q2. Then,

αe1 +(1−α)e2 = y+(1−2α)q1− (1−α)ξe(q1)e�intKY y,

which implies that

ϕαe1+(1−α)e2(y)> 1.

Meanwhile,

αϕe1(y)+(1−α)ϕe2(y) = αϕy−q1(y)+(1−α)ϕy−q2(y) = 1.

4. WEAK SEPARATION FUNCTIONS

In this section, we introduce the collections W
ϕ

Π1
, . . . ,W

ϕ

Π4
of nonlinear weak separation

functions by virtue of the Gerstewitz function as well as the collections W1, . . . ,W5 of nonlinear
weak separation functions by virtue of the topical function. Furthermore, we investigate their
properties and study the relationships between them.

Consider the Banach spaces Y and Z with the corresponding ordering cones KY and KZ . Pick
eY ∈ intKY and eZ ∈ intKZ , α > 0, β ≥ 0, and consider the functions ϕαeY (·) : Y → R and
ϕβeZ(·) : Z→ R; see Definition 2.3. Furthermore, define the function ϕ0Z on Z by

ϕ0Z(z) := 0 for all z ∈ Z.

We now define a collection of functions involving the Gerstewitz function introduced in Defi-
nition 2.3 with fixed elements eY ∈ intKY and eZ ∈ intKZ by

W
ϕ

Π1
:= {ϕαeY (·)+ϕβeZ(·) : Y ×Z→ R | α > 0, β ≥ 0}, (4.1)

where
Π1 := {(α,β ) ∈ R2 : α > 0, β ≥ 0}. (4.2)
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In W
ϕ

Π1
, the parameters α and β are given by Π1 and the elements used to define the Gerstewitz

functions range along eY and eZ , respectively. Note that the Gerstewitz function is defined by
any element in the interior of the ordering cone, and for every (eY ,eZ) ∈ intKY × intKZ , the
functionals ϕeY and ϕeZ enjoy the properties given in Proposition 2.1.

Let eY and eZ be ranged over the entire intKY and intKZ , which gives the following collection
of functions, involving the Gerstewitz function introduced in Definition 2.3:

W
ϕ

Π2
:=

{
ϕeY (·)+ϕeZ(·) : Y ×Z→ R | eY ∈ intKY , (4.3)

eZ ∈ (intKZ ∪{0Z})
}
,

where
Π2 := intKY × (intKZ ∪{0Z}). (4.4)

This class of separation functions is actually the class that was proposed in [51].
In the following proposition, we show that collections Wϕ

Π1
and W

ϕ

Π2
are classes of regular

weak separation functions w.r.t. H (H is given by (2.4)) in the sense of Definition 2.4.

Proposition 4.1. The collections W
ϕ

Π1
and W

ϕ

Π2
are classes of regular weak separation func-

tions w.r.t. H , i.e., ⋂
α>0,β≥0

lev>0(ϕαeY (·)+ϕβeZ(·)) = H ,

and ⋂
eY∈intKY ,

eZ∈(intKZ∪{0Z})

lev>0(ϕeY (·)+ϕeZ(·)) = H .

Proof. Consider Wϕ

Π1
and arbitrary elements α > 0, β ≥ 0, and (u,v) ∈H . We apply Proposi-

tion 2.1 and obtain ϕαeY (u)> 0, and ϕβeZ(v)≥ 0. Therefore, ϕαeY (u)+ϕβeZ(v)> 0.
Conversely, suppose (u,v) ∈

⋂
α>0,β≥0 lev>0(ϕαeY (·)+ϕβeZ(·)). Particularly, setting α = 1

and β = 0, we have ϕeY (u) > 0, which, according to Proposition 2.1, indicates that u ∈ intKY .
If v /∈ KZ . From Proposition 2.1, one has ϕeZ(v)< 0. Using Proposition 3.2, one has

ϕαeY (u)+ϕeZ(v) =
1
α

ϕeY (u)+ϕeZ(v)→ ϕeZ(v),

as α →+∞, which contradicts (u,v) ∈
⋂

α>0,β≥0 lev>0(ϕαeY (·)+ϕβeZ(·)). Hence, v ∈ KZ . As
for Wϕ

Π2
, it can be proved similarly. �

With regard to H o, in order to propose the class of separation functions that is regular w.r.t.
H o, we involve a further function ξαeY : Y → R (see (2.1)) in the definition of the following
collection W

ϕ

Π3
. Set

W
ϕ

Π3
:=

{
(εϕαeY +(1− ε)ξαeY )(·)+ϕβeZ(·) : Y ×Z→ R | (4.5)

ε ∈ (0,1),α > 0, β ≥ 0
}
.

The parameter set for Wϕ

Π3
is

Π3 := {(ε,α,β ) ∈ R3 : ε ∈ (0,1),α > 0, β ≥ 0}. (4.6)
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Elements for defining the Gerstewitz functions range along eY and eZ , respectively. Similarly,
we can also consider the situation where eY and eZ range over the entire intKY and intKZ , i.e.,

W
ϕ

Π4
:=

{
(εϕeY +(1−ε)ξeY )(·)+ϕeZ(·) :Y ×Z→ R | (4.7)

ε∈(0,1),eY ∈ intKY ,eZ∈(intKZ ∪{0Z})
}

with the parameter set
Π4 := {ε ∈ (0,1)}. (4.8)

In the following proposition, we show that the collections Wϕ

Π3
and W

ϕ

Π4
are classes of regular

weak separation functions w.r.t. H o in the sense of Definition 2.4, where H o is given by (2.5).

Proposition 4.2. The collections W
ϕ

Π3
and W

ϕ

Π4
are classes of regular weak separation func-

tions w.r.t. H o, i.e., ⋂
α>0,β≥0,ε∈(0,1)

lev
>0

((εϕαeY +(1− ε)ξαeY )(·)+ϕβeZ(·)) = H o,

and ⋂
eY∈intKY ,

eZ∈(intKZ∪{0Z}),
ε∈(0,1)

lev
>0

((εϕeY +(1− ε)ξeY )(·)+ϕeZ(·)) = H o.

Proof. Considering W
ϕ

Π3
, we pick arbitrary ε ∈ (0,1), α > 0, β ≥ 0, and (u,v) ∈H o. Ac-

cording to Propositions 2.1 and 2.3, one has (εϕαeY +(1− ε)ξαeY )(u) > 0 and ϕβeZ(v) ≥ 0.
Therefore,

(εϕαeY +(1− ε)ξαeY )(u)+ϕβeZ(v)> 0.
Conversely, we assume

(u,v) ∈
⋂

α>0,β≥0,ε∈(0,1)
lev
>0

((εϕαeY +(1− ε)ξαeY )(·)+ϕβeZ(·)). (4.9)

Particularly, setting α = 1 and β = 0, we have (εϕeY +(1− ε)ξeY )(u)> 0 for every ε ∈ (0,1).
It follows from Proposition 2.3 that u ∈ KY \{0Y}. Supposing v /∈ KZ , we find from Proposition
2.1 that ϕeZ(v)< 0. Using Proposition 3.2, we obtain

(εϕαeY +(1− ε)ξαeY )(u)+ϕeZ(v) =
1
α
(εϕeY +(1− ε)ξeY )(u)+ϕeZ(v)→ ϕeZ(v),

as α →+∞, which contradicts (4.9). Hence, v ∈ KZ .
For Wϕ

Π4
, it can be proved similarly. �

Next, we compute some infinmums of the collections of functions introduced in (4.1), (4.3),
(4.5), and (4.7). These values can be used to detect whether (u,v) ∈ KY ×KZ or not, and
moreover, they are important conditions for us to investigate the duality theory we shall build
in Section 5.

Proposition 4.3. For the collection W
ϕ

Π1
in (4.1), one has

inf
β≥0
{ϕᾱeY (u)+ϕβeZ(v)}=

{
ϕᾱeY (u) if v ∈ KZ,

−∞ if v /∈ KZ,
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for every ᾱ > 0 fixed, while,

inf
α>0,β≥0

{ϕαeY (u)+ϕβeZ(v)}=

{
0 if u ∈ KY and v ∈ KZ,

−∞ otherwise.

Proof. Let ᾱ > 0 be arbitrary. If v ∈ KZ , then, by Proposition 2.1, ϕβeZ(v) ≥ 0 for any β ≥ 0.
Since ϕ0Z(v) = 0, we can deduce infβ≥0{ϕᾱeY (u)+ϕβeZ(v)} = ϕᾱeY (u). If v /∈ KZ , then, also
by Proposition 2.1, ϕeZ(v)< 0. Then, it follows from Proposition 3.2 that

ϕβeZ(v) =
1
β

ϕeZ(v)→−∞

as β → 0. Hence, infβ≥0{ϕᾱeY (u)+ϕβeZ(v)}=−∞.
If u ∈ KY and v ∈ KZ , then, by Proposition 2.1, one has ϕαeY (u)≥ 0 and ϕβeZ(v)≥ 0 for any

α > 0 and β ≥ 0. Note that ϕ0Z(v) = 0. By Proposition 3.2, one has

ϕαeY (u) =
1
α

ϕeY (u)→ 0

as α →+∞, which implies infα>0,β≥0{ϕαeY (u)+ϕβeZ(v)}= 0.
If u /∈KY , then, applying Proposition 2.1, one obtains ϕeY (u)< 0. Meanwhile, by Proposition

3.2, one has

ϕαeY (u) =
1
α

ϕeY (u)→−∞

as α → 0. Hence, infα>0,β≥0{ϕαeY (u)+ϕβeZ(v)}=−∞. Similarly, we can deduce that

inf
α>0,β≥0

{ϕαeY (u)+ϕβeZ(v)}=−∞

if v /∈ KZ . �

With a similar argument, we can also obtain the following results concerning the collection
W

ϕ

Π2
given by (4.3).

Proposition 4.4. Let (u,v) ∈ Y ×Z.

(i) For the collection W
ϕ

Π2
, one has

inf
eZ∈(intKZ∪{0Z})

{ϕēY (u)+ϕeZ(v)}=

{
ϕēY (u) if v ∈ KZ,

−∞ if v /∈ KZ,

for every ēY ∈ intKY fixed, while,

inf
eY∈intKY ,

eZ∈(intKZ∪{0Z})

{ϕeY (u)+ϕeZ(v)}=

{
0 if u ∈ KY and v ∈ KZ,

−∞ otherwise.

(ii) For the collection W
ϕ

Π3
, one has

inf
β≥0
{(ε̄ϕᾱeY +(1− ε̄)ξᾱeY )(u)+ϕβeZ(v)}

=

{
(ε̄ϕᾱeY +(1− ε̄)ξᾱeY )(u) if v ∈ KZ,

−∞ if v /∈ KZ,
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for every ᾱ > 0 and ε̄ ∈ (0,1) fixed, while,

inf
α>0,β≥0,

ε∈(0,1)

{(εϕαeY +(1− ε)ξαeY )(u)+ϕβeZ(v)}

=

{
0 ifu ∈ KY and v ∈ KZ,

−∞ otherwise.

(iii) For the collection W
ϕ

Π4
, one has

inf
eZ∈(intKZ∪{0Z})

{(ε̄ϕēY +(1− ε̄)ξēY )(u)+ϕeZ(v)}

=

{
(ε̄ϕēY +(1− ε̄)ξēY )(u) if v ∈ KZ,

−∞ if v /∈ KZ,

for every ēY ∈ intKY and ε̄ ∈ (0,1) fixed, while,

inf
eY∈intKY ,

eZ∈(intKZ∪{0Z}),
ε∈(0,1)

{(εϕeY +(1− ε)ξeY )(u)+ϕeZ(v)}

=

{
0 if u ∈ KY and v ∈ KZ,

−∞ otherwise.

The following classes of separation functions come out from the topical function. Here, we
consider some further monotonicity properties (compare Definition 2.1).

Definition 4.1. Let ζ : Y → R̄ and ȳ ∈ Y .

(i) ζ is called strictly intKY -monotone at ȳ if, for every y ∈ Y , ȳ �intKY y implies ζ (ȳ) <
ζ (y), and y�intKY ȳ implies ζ (y)< ζ (ȳ).

(ii) ζ is called strongly KY -monotone at ȳ if, for every y ∈ Y , ȳ �KY \{0Y } y implies ζ (ȳ) <
ζ (y), and y�KY \{0Y } ȳ implies ζ (y)< ζ (ȳ).

Furthermore, we introduce collections of functions depending from certain monotonicity
properties and the translation invariance as supposed in the definition of topical functions (see
Definition 2.2). This means that these collections are related to an approach using abstract
convex functions and will be useful for deriving duality statements in Section 5.

Pick some eY ∈ intKY and eZ ∈ intKZ . In the following construction, elements eY and eZ can
be fixed, unlike the situation above, where eY and eZ range as parameters. Define the following
collections of functions

W1 := {ζ : Y ×Z→ R̄ : (i) ζ (·,v) is KY -monotone for every v ∈ Z fixed,

(ii) ζ (u, ·) is KZ-monotone for every u ∈ Y fixed,

(iii) ζ (0Y ,0Z) = 0.}
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and

W2 := {ζ : Y ×Z→ R̄ : (i) ζ (·, ·) is (KY ×KZ)-monotone,

(ii) ζ (·,v) is topical w.r.t. eY for every v ∈ Z fixed,

or,

ζ (u, ·) is topical w.r.t. eZ for every u ∈ Y fixed,

(iii) ζ (0Y ,0Z) = 0}.

Set

W3 := {ζ : Y ×Z→ R̄ : (i) ζ (·,v) is topical w.r.t. eY for every v ∈ Z fixed,

(ii) ζ (u, ·) is KZ-monotone for every u ∈ Y fixed,

(iii) ζ (0Y ,0Z) = 0.}

and

W4 := {ζ : Y ×Z→ R̄ : (i) ζ (u,0Z)> 0 for every u ∈ KY \{0Y},
(ii) ζ (u, ·) is KZ-monotone for every u ∈ Y fixed,

(iii) ζ (0Y ,0Z) = 0.},

while,

W5 := {ζ : Y ×Z→ R̄ : (i) ζ (·,v) is topical w.r.t. eY , and strongly

KY -monotone

at any ū ∈ {λeY : λ ∈ R} for every v ∈ Z fixed,

(ii) ζ (u, ·) is KZ -monotone, for every u ∈ Y fixed,

(iii) ζ (0Y ,0Z) = 0.}.

In the following propositions, (taking into account the notions introduced in Definition 2.4),
we claim that W1 and W2 are collections of weak separation functions w.r.t. both H (given by
(2.4)) and H o (given by (2.5)). W3 is a collection of regular weak separation functions w.r.t.
H , but only a weak one w.r.t. H o, while, W4 and W5 are both collections of regular weak
separation functions w.r.t. H o.

Proposition 4.5. The collection W1 and W2 are classes of weak separation functions w.r.t. both
H and H o, i.e.,

∀ζ ∈Wi : H ⊂ lev≥0 ζ ,
⋂

ζ∈Wi

lev>0 ζ ⊂H (i = 1,2),

and
∀ζ ∈Wi : H o ⊂ lev≥0 ζ ,

⋂
ζ∈Wi

lev>0 ζ ⊂H o, (i = 1,2).

Proof. (i) Considering W1, for every (u,v)∈H and ζ ∈W1, we fidn from the increasing prop-
erty of ζ that ζ (u,v)≥ ζ (0Y ,0Z) = 0, which means that H ⊂ lev≥0 ζ , ∀ζ ∈W1. Conversely,
Suppose (u,v) ∈

⋂
ζ∈W1

lev>0 ζ . Since the functions ζ1 and ζ2, defined as ζ1(y,z) = ϕeY (y) and
ζ2(y,z) = ϕeZ(z), both belong to W1, we have ζ1(u,v) > 0 and ζ2(u,v) > 0, which indicates
that u ∈ intKY and v ∈ intKZ . Therefore, (u,v) ∈H .
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(ii) The assertion for W2 can be proved similarly as in (i). Just note that the functions ζ1 and
ζ2 above also belong to W2.

As for H o, using the increasing property of ζ in Wi, i = 1, 2, we can obtain H o ⊂
lev≥0 ζ , ∀ζ ∈Wi, i= 1, 2. Then, as H ⊂H o, there is also

⋂
ζ∈Wi

lev>0 ζ ⊂H o, i= 1, 2. �

Proposition 4.6. The collection W3 is a class of regular weak separation functions w.r.t. H ,
i.e., ⋂

ζ∈W3

lev>0 ζ = H ,

while it is only a class of weak separation functions w.r.t. H o, i.e.,

∀ζ ∈W3 : H o ⊂ lev≥0 ζ ,
⋂

ζ∈W3

lev>0 ζ ⊂H o.

Proof. For every (u,v) ∈H , there exists some λ̄ > 0 such that λ̄eY �KY u. Then, for every
ζ ∈W3, we obtain

ζ (u,v)≥ ζ (λ̄eY ,0Z) = ζ (0Y ,0Z)+ λ̄ = λ̄ > 0,

as ζ (·,v) is topical w.r.t. eY and ζ (0Y ,0Z) = 0, which means (u,v) ∈
⋂

ζ∈W3
lev>0 ζ .

On the other hand, we take an arbitrary (u,v) ∈
⋂

ζ∈W3
lev>0 ζ . Define ψeY : Y ×Z→ R̄ by

ψeY (y,z) := sup {λ ∈ R : (λeY ,0Z)�KY×KZ (y,z)}.
Then, actually

ψeY (y,z) =

{
ϕeY (y) if z ∈ KZ,

−∞ if z /∈ KZ,

which indicates ψeY ∈W3. Therefore, we have ψeY (u,v) > 0, which shows that u ∈ intKY
and v ∈ KZ , i.e., (u,v) ∈H . So, we obtain

⋂
ζ∈W3

lev>0 ζ = H . Due to the monotonicity
property of ζ in W3, we obtain H o ⊂ lev≥0 ζ for all ζ ∈W3. Then, as H ⊂H o, there is also⋂

ζ∈W3
lev>0 ζ = H ⊂H o. �

Proposition 4.7. The collection W4 is a class of regular weak separation functions w.r.t. H o,
i.e., ⋂

ζ∈W4

lev>0 ζ = H o.

Proof. For every (u,v) ∈H o and ζ ∈W4, since ζ (u, ·) is KZ-monotone, we obtain

ζ (u,v)≥ ζ (u,0Y )> 0.

On the other hand, we take an arbitrary (u,v) ∈
⋂

ζ∈W4
lev>0 ζ . Picking some ε ∈ (0,1), we

define ψε
eY

: Y ×Z→ R̄ by

ψ
ε
eY
(y,z) = (1− ε)sup {λ ∈ R : (λeY ,0Z)�KY×KZ (y,z)}

+ ε inf {λ ∈ R : λeY �KY y}.
Then, actually

ψ
ε
e (y,z) =

{
(1− ε)ϕeY (y)+ εξeY (y) if z ∈ KZ,

−∞ if z /∈ KZ,
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indicating ψε
eY
∈W4 for all ε ∈ (0,1). Therefore, we have ψε

eY
(u,v)> 0 for all ε ∈ (0,1), which

shows that u ∈ KY \{0Y} and v ∈ KZ according to Proposition 2.3, i.e., (u,v) ∈H o. �

Proposition 4.8. The collection W5 is a class of regular weak separation functions w.r.t. H o,
i.e., ⋂

ζ∈W5

lev>0 ζ = H o.

Proof. For every (u,v) ∈H o and ζ ∈W5, since 0Y ∈ {λeY : λ ∈ R}, we obtain

ζ (u,v)> ζ (0Y ,v)≥ ζ (0Y ,0Z) = 0.

On the other hand, take an arbitrary (u,v) ∈
⋂

ζ∈W5
lev>0 ζ . For any ε ∈ (0,1), the function

ψε
eY

defined in the proof of Proposition 4.7 also belongs to W5. Therefore, it follows that
ψε

eY
(u,v) > 0 for all ε ∈ (0,1). By Proposition 2.3, this shows u ∈ KY \ {0Y} and v ∈ KZ , i.e.,

(u,v) ∈H o. �

For the sake of further applications in duality theory, we also discuss the value of infζ∈Wi ζ (y,z),
i = 1,2,3,4,5 here. Especially, we derive a description of infζ∈Wi ζ (y,z), i = 1,2,3,4,5 in cer-
tain terms of the Gerstewitz function.

Proposition 4.9. For the collection W1, one has

inf
ζ∈W1

ζ (u,v) =

{
0 if u ∈ KY and v ∈ KZ,

−∞ otherwise.

Proof. Since the functions ζ1 and ζ2, defined as ζ1(y,z) = ϕeY (y) and ζ2(y,z) = ϕeZ(z), both
belong to W1, we have ζ1(u,v) < 0 if u /∈ KY , while ζ2(u,v) < 0 if v /∈ KZ . Then, it follows
from αζ1, αζ2 ∈W1 for all α > 0 that infζ∈W1

ζ (u,v) = −∞ if u /∈ KY or v /∈ KZ . For the
case that (u,v) ∈ KY ×KZ , since ζ is (KY ×KZ)-monotone for every ζ ∈W1, infζ∈W1

ζ (u,v)≥
ζ (0Y ,0Z) = 0. Considering the function ζ3 ∈W1 defined as ζ3(y,z) ≡ 0, wesee that there is
ζ3(u,v) = 0. Hence, infζ∈W1

ζ (u,v) = 0 when (u,v) ∈ KY ×KZ . �

Proposition 4.10. For the collection W2, for u ∈ Y , v ∈ Z, one has

inf
ζ∈W2

ζ (u,v) =

{
min{ϕeY (u),ϕeZ(v)} if u ∈ KY and v ∈ KZ,

−∞ otherwise.

Proof. Considering the functions ζ1 and ζ2, defined as ζ1(y,z) = ϕeY (y) and ζ2(y,z) = ϕeZ(z),
it is easy to observe that ζ1 +αζ2 and αζ1 + ζ2 belong to W2 for every α ≥ 0. Applying
Proposition 2.1, we have ζ1(u,v) < 0 if u /∈ KY , while ζ2(u,v) < 0 if v /∈ KZ . Hence, when
α → +∞, (ζ1 +αζ2)(u,v)→−∞ if v /∈ KZ , and (αζ1 + ζ2)(u,v)→−∞ if u /∈ KY , implying
that infζ∈W2

ζ (u,v) =−∞ if u /∈ KY or v /∈ KZ .
With regard to the case where (u,v) ∈ KY ×KZ , according to Proposition 2.1, we have

u = ϕeY (u)eY +q1, v = ϕeZ(v)eZ +q2,

for some q1 ∈ bdKY and q2 ∈ bdKZ . Then, for any ζ ∈W3,

ζ (u,v) = ζ (q1,v)+ϕeY (u)≥ ζ (0Y ,0Z)+ϕeY (u) = ϕeY (u)

if ζ is topical w.r.t. eY , while,

ζ (u,v) = ζ (u,q2)+ϕeZ(v)≥ ζ (0Y ,0Z)+ϕeZ(v) = ϕeZ(v)
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if ζ is topical w.r.t. eZ . This, together with the fact that ζ1(u,v) = ϕeY (u) and ζ2(u,v) = ϕeZ(v),
implies

inf
ζ∈W2

ζ (u,v) = min{ϕeY (u),ϕeZ(v)},

when (u,v) ∈ KY ×KZ . �

Proposition 4.11. For the collection W3, for u ∈ Y , v ∈ Z, one has

inf
ζ∈W3

ζ (u,v) =

{
ϕeY (u) if v ∈ KZ,

−∞ if v /∈ KZ.

Proof. Since the function

ψeY (y,z) = sup {λ ∈ R : (λeY ,0Z)�KY×KZ (y,z)}

=

{
ϕeY (y) if z ∈ KZ,

−∞ if z /∈ KZ,

belongs to W3, we can conclude that infζ∈W3
ζ (u,v) = −∞ when v /∈ KZ . If v ∈ KZ , then, for

any ζ ∈W3, ζ (u,v)≥ ζ (u,0Z) as ζ (u, ·) is KZ-monotone. According to Proposition 2.1, there
exists some qu ∈ bdKY such that u = ϕeY (u)eY +qu. Then, the topical property guarantees that

ζ (u,0Z) = ζ (ϕeY (u)eY +qu,0Z) = ϕeY (u)+ζ (qu,0Z)≥ ϕeY (u).

Therefore, infζ∈W3
ζ (u,v)≥ϕeY (u) in this case. Noting that the function ψeY ∈W3 and ψeY (u,v)=

ϕeY (u), we can deduce that infζ∈W3
ζ (u,v) = ϕeY (u). �

Proposition 4.12. For the collection W4, for u ∈ Y , v ∈ Z, one has

inf
ζ∈W4

ζ (u,v) =

{
0 if u ∈ KY and v ∈ KZ,

−∞ otherwise.

Proof. Considering the function defined as

ψeY ,eZ(y,z) := sup {λ ∈ R : (λeY ,0Z)�KY×KZ (y,z)}
+ inf {λ ∈ R : λeY �KY y}
+ sup {λ ∈ R : (0Y ,λeZ)�KY×KZ (y,z)}

=

{
ϕeY (y)+ξeY (y)+ϕeZ(z) if y ∈ KY and z ∈ KZ,

−∞ otherwise,

we have ψeY ,eZ ∈W4. Hence, we deduce that infζ∈W4
ζ (u,v) = −∞ when u /∈ KY or v /∈ KZ .

If u ∈ KY and v ∈ KZ , then, for any ζ ∈W4, ζ (u,v) ≥ ζ (u,0Z) ≥ 0 as ζ (u, ·) is KZ-monotone.
Hence, infζ∈W4

ζ (u,v)≥ 0 in this case. Noting that the function ψαeY ,αeZ ∈W4 for every α > 0
and, according to Proposition 3.2,

ψαeY ,αeZ(u,v) =
1
α

ψeY ,eZ(u,v)→ 0

as α →=+∞, we can conclude that infζ∈W4
ζ (u,v) = 0. �
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Proposition 4.13. For the collection W5, for u ∈ Y , v ∈ Z, one has

inf
ζ∈W5

ζ (u,v) =

{
ϕeY (u) if v ∈ KZ,

−∞ if v /∈ KZ.

Proof. Since, for any ε ∈ (0,1), function

ψ
ε
eY
(y,z) := (1− ε)sup {λ ∈ R : (λeY ,0Z)�KY×KZ (y,z)}

+ ε inf {λ ∈ R : λeY �KY y}

=

{
(1− ε)ϕeY (y)+ εξeY (y) if z ∈ KZ,

−∞ if z /∈ KZ,

belongs to W5, we can conclude that infζ∈W5
ζ (u,v) = −∞ when v /∈ KZ . If v ∈ KZ , then, for

any ζ ∈W5, ζ (u,v)≥ ζ (u,0Z) as ζ (u, ·) is KZ-monotone. According to Proposition 2.1, there
exists some qu ∈ bdKY such that u = ϕeY (u)eY +qu. Then, the topical property shows that

ζ (u,0Z) = ζ (ϕeY (u)eY +qu,0Z) = ϕeY (u)+ζ (qu,0Z)≥ ϕeY (u).

Therefore, infζ∈W5
ζ (u,v)≥ϕeY (u) in this case. Meanwhile, since ψε

eY
∈W5 for every ε ∈ (0,1)

and ψε
eY
(u,v)→ ϕeY (u) when ε → 1, we can deduce that infζ∈W5

ζ (u,v) = ϕeY (u). �

Remark 4.1. According to Propositions 4.11 and 4.13, given some (u,v) ∈Y ×Z, the infimum
values infζ∈W3

ζ (u,v) and infζ∈W5
ζ (u,v) not only give a detection of whether (u,v) ∈ KY ×KZ

or not, but also present the scalarization of u by ϕeY .

We will use the properties of the collections W1, . . . ,W5 of (regular) weak separation func-
tions derived in this section for the discussion of useful dual problems in the examples of Section
5.

5. FRAMEWORK OF CONJUGATE DUALITY WITH SCALARIZATION

In this section, we consider the general constrained vector optimization that

min{ f (x) : g(x)�KZ 0Z}, (VOP)

where f : X → Y and g : X → Z. Denote the feasible set {x ∈ X : g(x)�KZ 0Z} by R. We shall
give a framework of conjugate duality for this problem with the help of the separation functions
we constructed in the previous section.

One way to give the dual problem for a (VOP) is to scalarize the objective function of (VOP)
and to construct a scalar dual problem to the scalarized problem. Then, one is looking for
certain relationships between the dual problem and the original (VOP).

Duality assertions for vector optimization problems based on a scalarization by means of
nonlinear scalarizing functions are given in the books by Göpfert, Riahi, Tammer, Zălinescu
[6, Section 3.7] and Boţ, Grad, and Wanka [57]. The main tools in the proofs of the duality
statements in these books are the monotonicity and the translation invariance of the scalarizing
functions. These properties are essential for the definition of the collections of (regular) weak
separation functions introduced and discussed in Section 4.

Given a scalarization function p : Y → R, we have the following scalar problem

min{p( f (x)) : g(x)�KZ 0Z}. (SP)

Then, in general,



WEAK SEPARATION FUNCTIONS AND APPLICATIONS 877

(i) If x̄ is a solution to (SP), it must be at least a weakly efficient solution for (VOP);
(ii) However, the inverse is not necessarily true. That is to say, even if x̄ is an efficient

solution to (VOP), it might not be a solution to (SP); see Example 5.1.

Example 5.1. Suppose X = R and (Y,KY ) = (Z,KZ) = (R2,R2
+). Take ξeY as p, where eY =

(1,1). Then, ξeY (y) = max{y1,y2} for every y = (y1,y2) ∈ Y . Set f (x) = (x,−x+ 1), g(x) =
(x,−x+1). It is not hard to verify that the whole segment AB := {(y1,y2) : y2 =−y1 +1, y1 ≥
0, y2 ≥ 0} is the efficient solution set for (VOP). However, for (SP), (1

2 ,
1
2) is the only solution

with optimal value

ξe( f (
1
2
,
1
2
)) = max{1

2
,−1

2
+1}= 1

2
,

while, any point (y1,y2) ∈ AB, when y1 6= 1
2 , is not a solution of (SP). Using ξeY to scalarize the

(VOP) fails to detect these efficient solutions.

For the sake of reaching the whole solution set, we try to consider a collection of scalarization
functions P. If, for every (weakly) efficient solution x̄ of (VOP), there exists some px̄ ∈ P such
that x̄ is a solution to the corresponding scalar problem given by px̄, i.e.,

min{px̄( f (x)) : g(x)�KZ 0Z}, (SP-px̄)

then we can detect all the (weakly) efficient solutions of (VOP) with the whole collection P.
To be more general, we study a collection of scalar optimization problems corresponding to

(VOP)
{(SP−π) : π ∈Π},

where Π is a certain parameter set, which means that (SP-π) represents a certain way of scalar-
ization, where π ∈Π is the parameter involved in it. The feasible set of (SP−π) is denoted by
Rπ . As we want to use this family of problems to detect all the (weakly) efficient solutions of
(VOP), (SP−π), π ∈Π, is required to satisfy the following assumptions.

Assumption S:
(i) For every π ∈ Π, if x̄ is a solution to (SP−π), then it is also a (weakly) efficient solution to

(VOP).
(ii) If x̄ is an (weakly) efficient solution to (VOP), then there exists some π̄ ∈ Π such that x̄ is a

solution to (SP− π̄).
We provides some examples for scalarized problems corresponding to (VOP) next.

Example 5.2. Picking some eY ∈ intKY , we consider the scalarized problem

min{ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z}, (SP-x̂)

where x̂ ∈R is the parameter and the scalarizing functional ξeY is given by (2.1).
(i) For any parameter x̂ ∈ R, if x̄ is a solution to (SP− x̂), but not a weak efficient solu-

tion to (VOP), which means that there exists some x̃ ∈R such that f (x̃) �intKY f (x̄), then we
obtain f (x̃)− f (x̂) �intKY f (x̄)− f (x̂). Applying Proposition 2.1, we have ξeY ( f (x̃)− f (x̂)) <
ξeY ( f (x̄)− f (x̂)), contradicting that x̄ is a solution to (SP− x̂).

(ii) Suppose that x̄ is a weakly efficient solution to (VOP). Setting x̂ = x̄, we have the scalar
problem

min{ξeY ( f (x)− f (x̄)) : g(x)�KZ 0Z}. (SP-x̄)
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We claim that x̄ is a solution to (SP− x̄). Otherwise, there exists some x̃ with g(x̃)�KZ 0Z such
that

ξeY ( f (x̃)− f (x̄))< ξeY ( f (x̄)− f (x̄)) = 0,

which, by Proposition 2.1, implies f (x̃)− f (x̄) ∈ − intKY , i.e. f (x̃)�intKY f (x̄), which contra-
dicts that x̄ is a weakly efficient solution to (VOP).

In the example above, parameter x̂ ranges in the feasible set of (VOP). With a similar argu-
ment, it is easy to observe that it still works if x̂ ranges in the whole space X . Besides, we can
also see eY as a parameter by letting it range in intKY . That is to say, the group of problems

{min{ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z} : x̂ ∈ X},

and
{min{ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z} : (x̂,eY ) ∈ X× intKY},

both satisfy Assumption S w.r.t. weakly efficient solution.

Example 5.3. For the case where Y and Z are finite dimensional spaces, while f =( f1, f2, ..., fn) :
X → Rn and g = (g1,g2, ...,gm) : X → Rm are both convex, the (VOP) is a convex problem.
Then, the collection

{min{
n

∑
i=1

αi fi(x) : g(x)�Rm
+

0Rm} :
n

∑
i=1

αi = 1,α ≥ 0},

satisfies Assumption S w.r.t. weakly efficient solution.

Next, we give some examples for efficient solutions.

Example 5.4. Fixing some eY ∈ intKY , consider the problems that

min{αϕeY ( f (x)− f (x̂))+(1−α)ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z}, (SPe-(x̂,α))

where x̂ ∈R, α ∈ (0,1) are the parameters, ϕeY is given by Definition 2.3, and ξeY is given by
(2.1).

(i) We claim that, for any α ∈ (0,1), if x̄ is a solution to (SP− (x̄,α)), i.e., x̄ is a fixed point
of the set-valued function

Ψ
e
α : X ⇒ X

x̂ 7−→ sol(SP− (x̂,α)),

then x̄ is an efficient solution to (VOP), where sol(SP− (x̂,α)) denotes the solution set of
(SP− (x̂,α)).

Otherwise, there exists some x̃ ∈R such that f (x̃)�KY \{0Y } f (x̄), i.e., f (x̃)− f (x̄)�KY \{0Y }
0Y . Then, according to Proposition 2.3,

αϕeY ( f (x̃)− f (x̄))+(1−α)ξeY ( f (x̃)− f (x̄))

< 0

= αϕeY ( f (x̄)− f (x̄))+(1−α)ξeY ( f (x̄)− f (x̄)),

which contradicts that x̄ is a solution of SP− (x̄,α).
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(ii) Conversely, we claim that if x̄ is an efficient solution of (VOP), then it is a solution of the
scalar problem that

min{ sup
α∈(0,1)

{αϕeY ( f (x)− f (x̄))+(1−α)ξeY ( f (x)− f (x̄))} : g(x)�KZ 0Z}. (SPe-supα )

If x̄ is an efficient solution of (VOP), then, for any point x ∈R, there is f (x)�KY \{0Y } f (x̄). If
f (x) = f (x̄), then

αϕeY ( f (x)− f (x̄))+(1−α)ξeY ( f (x)− f (x̄)) = 0, ∀α ∈ (0,1).

If f (x) 6= f (x̄), then f (x)− f (x̄) /∈ −KY , and therefore, by Proposition 2.1, there is some
ᾱ ∈ (0,1) such that ᾱϕeY ( f (x)− f (x̄))+(1− ᾱ)ξeY ( f (x)− f (x̄))> 0, which shows that

sup
α∈(0,1)

{αϕeY ( f (x)− f (x̄))+(1−α)ξeY ( f (x)− f (x̄))}> 0.

Hence,

sup
α∈(0,1)

{αϕeY ( f (x̄)− f (x̄))+(1−α)ξeY ( f (x̄)− f (x̄))}

= 0

≤ sup
α∈(0,1)

{αϕeY ( f (x)− f (x̄))+(1−α)ξeY ( f (x)− f (x̄))},

for any x ∈R.
Similarly, let x̂ range in the whole space X and eY range in intKY . The class of problems

min{αϕeY ( f (x)− f (x̂))+(1−α)ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z}, (SPe-(x̂,α,eY ))

where (x̂,α,eY ) ∈ X × (0,1)× intKY is the parameter, enjoys similar results. Although this
example is not consistent with Assumption S exactly, the collection of scalar problem {(SP−
(x̂,α)) : x̂ ∈R, α ∈ (0,1)} still offers a way to detect all the efficient solutions of (VOP).

Example 5.5. Fixing some l ∈K#
Y := {y∗ ∈Y ∗ : y∗(y)> 0 for all y∈KY \{0Y}} (K#

Y denotes the
quasi-interior of the dual cone of KY ), or some scalarization function l : Y → R that is strongly
KY -monotone (i.e., for all y1, y2 ∈Y , y1�KY \{0Y } y2 implies l(y1)< l(y2)), consider the problem

min{l( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z}, (SPe-x̂)

where x̂ ∈R is the parameter.
We have proved, in [58] that, for any parameter x̂ ∈R, if x̄ is a solution to (SP− x̂), then it is

also an efficient solution to (VOP). Conversely, if x̄ is an efficient solution of (VOP), then it is a
solution to the scalar problem with the parameter itself, i.e., the problem that

min{l( f (x)) : f (x)�KY f (x̄), g(x)�KZ 0Z}, (SPe-x̄)

which means that x̄ is an efficient solution to (VOP) if and only if it is a fixed point of the
set-valued map that

Ψ
e : X ⇒ X

x̂ 7−→ sol(SPe− x̂).

Thus, the collection

{min{l( f (x)) : f (x)�KY f (x̄), g(x)�KZ 0Z} : x̂ ∈R}
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satisfies Assumption S w.r.t. efficient solution. Furthermore, if we also let l range as a parame-
ter, we consider

min{l̂( f (x)) : f (x)�KY f (x̄), g(x)�KZ 0Z}, (SPe-(x̂, l̂))

where x̂ ∈R, while, l̂ ∈ LKY \{0Y } or l̂ ∈ LKY \{0Y }−mono. Here, LKY \{0Y } is defined as a subset
of

{y∗ ∈ Y ∗ : y∗(y)> 0, for all y ∈ KY \{0Y}}
and LKY \{0Y }−mono is defined as a subset of

{l : Y → R : l is strongly KY -monotone}.

Then, the collection

{min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z} : x̂ ∈R, l̂ ∈ LKY \{0Y }}

or

{min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z} : x̂ ∈R, l̂ ∈ LKY \{0Y }−mono}

still satisfies Assumption S w.r.t. efficient solution. Similarly, fixing some l ∈ {y∗ ∈Y ∗ : y∗(y)>
0,∀y ∈ intKY}, or some scalarization function l : Y → R that is strictly intKY -monotone (i.e.,
y1 �intKY y2 implies l(y1) < l(y2)), for instance, the Gerstewitz function ϕeY . Consider the
problems

min{l( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z}, (SP-x̂)

where x̂ ∈R is the parameter. Then, x̄ is a weakly efficient solution of (VOP) if and only if it is
a fixed point of the set-valued map that

Ψ : X ⇒ X

x̂ 7−→ sol(SP− x̂).

Thus, the collection

{min{l( f (x)) : f (x)�KY f (x̄), g(x)�KZ 0Z} : x̂ ∈R}

satisfies Assumption S w.r.t. weakly efficient solution. Also, if we let l range as a parameter,
we consider

min{l̂( f (x)) : f (x)�KY f (x̄), g(x)�KZ 0Z}, (SP-(x̂, l̂))

where x̂ ∈R, while,

l̂ ∈ LintKY ⊂ {y
∗ ∈ Y ∗ : y∗(y)> 0, ∀y ∈ intKY}

or

l̂ ∈ LintKY−mono ⊂ {l : Y → R : l is strictly intKY -monotone}.

Then, the collection

{min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z} : x̂ ∈R, l̂ ∈ LintKY }

or

{min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z} : x̂ ∈R, l̂ ∈ LintKY−mono}

still satisfies Assumption S w.r.t. weakly efficient solution.
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We come back to these examples for discussing special constructions of the dual problem at
the end of this section. In order to formulate the following scalarized problem depending from
parameters π ∈ Π, we use the notations gπ , ZΠ and KZΠ

to denote the corresponding terms in
(VOP) after scalarization. Note that the collection {(SP−π) : π ∈ Π} is a family of problems
that scalarize the original (VOP) in a similar way. Hence, for every π ∈ Π, (SP− π) has a
uniform constrained space (ZΠ,KZΠ

). This is the reason that we use notation (ZΠ,KZΠ
) rather

than (Zπ ,KZπ
). However, for different parameters, the constrained map might be different.

Hence, we use gπ instead of gΠ.
Consider the scalarized primal problem

min{p( f (x);π) : gπ(x)�(KZ)Π
0ZΠ
}, (SP-π)

where Π is a parameter set, π ∈ Π is a fixed parameter, p(·;π) : Y → R, gπ : X → ZΠ, (KZ)Π

is the ordering cone of ZΠ, and 0ZΠ
is the zero element in ZΠ. We suppose that this collection

of problems {(SP−π) : π ∈ Π} satisfies Assumption S w.r.t. (weakly) efficient solution and
inf{p( f (x);π) : x ∈ X}>−∞ for every π ∈Π.

In order to formulate the dual problem to (SP-π), π ∈ Π, we consider another collection of
functions

WΓ := {w(·;γ) : ZΠ→ R∪{−∞} : γ ∈ Γ}
such that w(0ZΠ

;γ) ∈ R for every γ ∈ Γ. Here, Γ is the parameter set of WΓ.

Remark 5.1. We explain these notions using some examples studied before. For the case of
Example 5.2, the scalarized problem is

min{ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z}. (SP-x̂)

So, x̂ ∈R = {x ∈ X : g(x) �KZ 0Z} are the parameters. Hence, Π = R, π = x̂, while, gπ = g,
(ZΠ,KZΠ

) = (Z,KZ).
In Example 5.5, (VOP) is scalarized as

min{l( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z}, (SPe-x̂)

i.e.,
min{l( f (x)) : f (x̂)− f (x)�KY 0Y , g(x)�KZ 0Z}, (SPe-x̂)

where l ∈ {y∗ ∈ Y ∗ : y∗(y) > 0, for all y ∈ KY \{0Y}}, or l is some scalarization function that
is strongly KY -monotone. In this situation, Π = R = {x ∈ X : g(x)�KZ 0Z} and π = x̂, while,
gπ(·) = ( f (x̂)− f (·),g(·)), ZΠ = Y ×Z, and KZΠ

= KY ×KZ .

For (SP−π), we define the function Fπ : X×ZΠ→ R̄ by

Fπ(x,zΠ) :=

{
p( f (x);π) if gπ(x)�KZΠ

zΠ,

+∞ if gπ(x)�KZΠ
zΠ.

We now consider the unconstrained scalarized primal problem

min{Fπ(x,zΠ) : x ∈ X}. (SP-(π,zΠ))

The corresponding optimal value function Φπ : ZΠ→ R̄ is defined as

Φπ(zΠ) := inf{Fπ(x,zΠ) : x ∈ X}.
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The Lagrange function is given corresponding to the scalarized primal objective function Fπ of
the unconstrained problem and to the collection of functions WΓ with w(·;γ) ∈WΓ, i.e.,

Lπ(x,γ) := inf{Fπ(x,zΠ)−w(zΠ;γ)+w(0ZΠ
;γ) : zΠ ∈ ZΠ},

for every x ∈ X and γ ∈ Γ. It is not hard to observe that

Lπ(x,γ) = inf{Fπ(x,zΠ)−w(zΠ;γ)+w(0ZΠ
;γ) : zΠ ∈ ZΠ}

= inf{p( f (x);π)−w(zΠ;γ)+w(0ZΠ
;γ) : gπ(x)�KZΠ

zΠ}
= p( f (x);π)−w(gπ(x);γ)+w(0ZΠ

;γ),

if w(·;γ) is KZΠ
-monotone (i.e., z1

Π
�KZΠ

z2
Π

implies w(z1
Π

;γ) ≤ w(z2
Π

;γ)), for every γ ∈ Γ.
Getting rid of the primal variable x, we obtain the objective function of the dual problem as

inf{Lπ(x,γ) : x ∈ X}
= inf{inf{Fπ(x,zΠ)−w(zΠ;γ)+w(0ZΠ

;γ) : zΠ ∈ ZΠ} : x ∈ X}
= inf{inf{Fπ(x,zΠ) : x ∈ X}−w(zΠ;γ)+w(0ZΠ

;γ) : zΠ ∈ ZΠ}
= −sup{−Φπ(zΠ)+w(zΠ;γ) : zΠ ∈ ZΠ}+w(0ZΠ

;γ)

= −Φ
c(WΓ)
π (γ)+w(0ZΠ

;γ),

where Φ
c(WΓ)
π is the WΓ-conjugate function of Φπ given by (2.3).

So, we consider the following dual problem to (SP-π):

max{−Φ
c(WΓ)
π (γ)+w(0ZΠ

;γ) : γ ∈ Γ}, (SD-π)

with the optimal value

val(SD−π) = sup{−Φ
c(WΓ)
π (γ)+w(0ZΠ

;γ) : γ ∈ Γ}

= Φ
c(WΓ)c(WΓ)
π (0ZΠ

).

In the following theorem, we show a weak duality statement for (SP-π) and (SD-π) in scalar-
ized form.

Theorem 5.1 (Weak duality for (SP-π) and (SD-π)). For all x̄ ∈ {x ∈ X : gπ(x)�KZΠ
0ZΠ
} and

γ̄ ∈ Γ, it holds that
−Φ

c(WΓ)
π (γ̄)+w(0ZΠ

; γ̄)≤ p( f (x̄);π).

Proof. For any γ̄ ∈ Γ and x̄ ∈ {x ∈ X : gπ(x)�KZΠ
0ZΠ
}, we obtain

−Φ
c(WΓ)
π (γ̄)+w(0ZΠ

; γ̄)

= inf{inf{Fπ(x,zΠ)−w(zΠ; γ̄)+w(0ZΠ
; γ̄) : zΠ ∈ ZΠ} : x ∈ X}

≤ Fπ(x̄,zΠ)−w(zΠ; γ̄)+w(0ZΠ
; γ̄),

for any zΠ ∈ ZΠ. Particularly, setting zΠ = 0ZΠ
, we obtain

−Φ
c(WΓ)
π (γ̄)+w(0ZΠ

; γ̄) ≤ Fπ(x̄,zΠ)−w(0ZΠ
; γ̄)+w(0ZΠ

; γ̄)

= p( f (x̄);π).

�
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Next, we discuss the zero duality gap and strong duality, for which we first consider the
relationship to a separation result. Consider a parameter set Θ and assume that there exists
another collection of functions

WΘ := {w(·;θ) : Y → R∪{−∞} : θ ∈Θ},

such that
{w(·;θ)+w(·;γ) : Y ×ZΠ→ R∪{−∞} : θ ∈Θ, γ ∈ Γ} (5.1)

forms a collection of weak separation functions for (VOP) w.r.t. HΠ (or H o
Π

), where

HΠ := intKY ×KZΠ
and H o

Π := (KY \{0Y})×KZΠ
.

For the case that parameter π is only involved in the objective function, meaning that gπ = g
and (ZΠ,KZΠ

) = (Z,KZ), there is the following result. This separation result can be considered
as a conclusion from strong duality.

Theorem 5.2. Let Π, Γ, and Θ be parameter sets such that (5.1) forms a collection of weak
separation functions for (VOP). Consider the pair (SP-π) and (SD-π). Suppose that, for every
π ∈Π, there exists some θπ ∈Θ and a function w(·;θπ) ∈WΘ such that

∀y1 y2 ∈ Y : w(y1− y2;θπ)≤ p(y1;π)− p(y2;π). (5.2)

Let π ∈ Π be arbitrary. Assume that x̄ is a solution of (SP−π) and γ̄ is a solution of (SD−
π) with val(SP− π) = val(SD− π). Then, there are separation functions w(·;θπ) ∈WΘ and
w(·; γ̄) ∈WΓ such that

∀x ∈ X : w( f (x̄)− f (x);θπ)+w(g(x); γ̄)−w(0Z; γ̄)≤ 0.

Proof. It follows from val(SP−π) = val(SD−π) with solutions x̄ and γ̄ that

p( f (x̄);π) =−Φ
c(WΓ)
π (γ̄)+w(0Z; γ̄).

Then,
∀z ∈ Z : −p( f (x̄);π)+w(0Z; γ̄) = Φ

c(WΓ)
π (γ̄)≥ w(z; γ̄)−Φπ(z).

Particularly, for any x ∈ X , setting z = g(x), it gives that

−p( f (x̄);π)+w(0Z; γ̄)≥ w(g(x); γ̄)−Φπ(g(x))≥ w(g(x); γ̄)− p( f (x);π),

i.e.,
∀x ∈ X : p( f (x̄);π)− p( f (x);π)+w(g(x); γ̄)−w(0Z; γ̄)≤ 0.

Taking into account (5.2), for π ∈Π, we see that there exists some θπ ∈Θ such that

w( f (x̄)− f (x);θπ)≤ p( f (x̄);π)− p( f (x);π).

Then, the following separation result holds true

∀x ∈ X : w( f (x̄)− f (x);θπ)+w(g(x); γ̄)−w(0Z; γ̄)≤ 0.

�

Conversely, we obtain a strong duality statement from a separation result in the following
theorem.
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Theorem 5.3. Let Π, Γ and Θ be parameter sets such that (5.1) forms a collection of weak
separation functions for (VOP). Suppose, for every θ ∈ Θ, a function w(·;θ) ∈WΘ and ȳ ∈
range f , there exists some πθ ∈Π such that

∀y ∈ Y : w(ȳ− y;θ)≥ p(ȳ;πθ )− p(y;πθ ),

while, for every γ ∈ Γ, w(·;γ) ∈ WΓ is KZ-monotone. Assume that there exist some x̄ with
g(x̄)�KZ 0Z and γ̄ ∈ Γ, θ̄ ∈Θ such that

∀x ∈ X : w( f (x̄)− f (x); θ̄)+w(g(x); γ̄)−w(0Z; γ̄)≤ 0 (5.3)

for w(·; θ̄) ∈WΘ and w(·; γ̄) ∈WΓ. Then, there exists some π
θ̄
∈Π for which

val(SP−π
θ̄
) = val(SD−π

θ̄
)

and x̄ ∈ sol(SP−π
θ̄
), γ̄ ∈ sol(SD−π

θ̄
).

Proof. For an arbitrary z ∈ Z, consider the x ∈ X with g(x)�KZ z. It follows from (5.3) and the
monotonicity property of w(·; γ̄) that

w(z; γ̄)−w(0Z; γ̄)≤ w(g(x); γ̄)−w(0Z; γ̄)≤−w( f (x̄)− f (x); θ̄).

Since, for θ̄ ∈Θ and f (x̄) ∈ range f , there exists some π
θ̄
∈Π such that

w( f (x̄)− f (x); θ̄)≥ p( f (x̄);π
θ̄
)− p( f (x);π

θ̄
),

we obtain
w(z; γ̄)−w(0Z; γ̄)+ p( f (x̄);π

θ̄
)≤ p( f (x);π

θ̄
).

This holds for all z ∈ Z and x ∈ X with g(x)�KZ z, which indicates that

∀z ∈ Z : w(z; γ̄)−w(0Z; γ̄)+ p( f (x̄);π
θ̄
) ≤ inf{p( f (x);π

θ̄
) : g(x)�KZ z}

= Φπ
θ̄
(z).

Hence,
∀z ∈ Z : w(z; γ̄)−Φπ

θ̄
(z)≤ w(0Z; γ̄)− p( f (x̄);π

θ̄
),

which shows that
p( f (x̄);π

θ̄
)≤−Φ

c(WΓ)
π

θ̄
(γ̄)+w(0Z; γ̄).

Then, due to the weak duality assertion in Theorem 5.1, this means val(SP−π
θ̄
) = val(SD−

πθ ), while, x̄ and γ̄ are solutions of (SP−π
θ̄
) and (SD−π

θ̄
), respectively. �

Remark 5.2. Theorem 5.3 works if we give the stronger assumptions that for every θ ∈ Θ,
there exists some πθ ∈Π such that

∀y1, y2 ∈ Y : w(y1− y2;θ)≥ p(y1;πθ )− p(y2;πθ ),

and, for every γ ∈ Γ, w(·;γ) is KZ-monotone. These conditions only depend on the choice
of {p(·;π) : π ∈ Π}, {w(·;θ) : θ ∈ Θ} and {w(·;γ) : γ ∈ Γ}. It is independent of the specific
(VOP).

In the following remarks, we show that the conditions of Theorems 5.2, 5.3 are fulfilled for
the collections of separation functions Wϕ

Π2
and W

ϕ

Π3
.
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Remark 5.3. Taking Example 5.2, for instance, the scalar problem is

{min{ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z} : (x̂,eY ) ∈ X× intKY}, (SP-(x̂,eY ))

with parameter (x̂,eY ) ∈ X× intKY , meaning that Π = X× intKY , π = (x̂,eY ), while,

p(y;π) = p(y; x̂,eY ) = ξeY (y− f (x̂)), gπ = g, (ZΠ,KZΠ
) = (Z,KZ).

Consider the collection of separation functions given by (4.3) (this is a class of regular weak
separation functions; see Proposition 4.1):

W
ϕ

Π2
= {ϕeY (·)+ϕeZ(·) : Y ×Z→ R : eY ∈ intKY , eZ ∈ (intKZ ∪{0Z})},

meaning that Θ = intKY , Γ = (intKZ ∪{0Z}), and w(·,θ) = ϕeY (·), w(·,γ) = ϕeZ(·) (see the
collection of functions in (5.1)). Picking an arbitrary π = (x̂,eY ) ∈Π,

p(y1; x̂,eY )− p(y2; x̂,eY ) = ξeY (y1− f (x̂))−ξeY (y2− f (x̂))

= −ϕeY ( f (x̂)− y1)+ϕeY ( f (x̂)− y2)

≥ ϕeY (y1− y2),

for all y1, y2 ∈ Y . Hence, for every π = (x̂,eY ) ∈Π, set θ(x̂,eY ) = eY , then

∀y1 y2 ∈ Y : w(y1− y2;θπ)≤ p(y1;π)− p(y2;π).

Conversely, pick an arbitrary θ ∈Θ, i.e., eY ∈ intKY , and ȳ ∈ range f , assuming that f (x̄) = ȳ.
For any y ∈ Y , there is

w(ȳ− y;θ) = ϕeY (ȳ− y)

= −ξeY (y− ȳ)

= ξeY (ȳ− f (x̄))−ξeY (y− f (x̄))

= p(ȳ; x̄,eY )− p(y; x̄,eY ).

Hence, for arbitrary eY ∈ intKY , and ȳ ∈ range f , picking some x̄ ∈ f−1(ȳ) and setting πθ =
(x̄,eY ), one has

∀y ∈ Y : w(ȳ− y;θ)≥ p(ȳ;πθ )− p(y;πθ ).

Meanwhile, for every γ ∈ Γ, i.e., eZ ∈ intKZ ∪{0Z}, according to Proposition 2.1, w(·;γ) =
ϕeZ(·) is KZ-monotone. Thus, the assumptions in Theorems 5.2 and 5.3 are all satisfied.

Remark 5.4. As for the scalar problem

min{αϕeY ( f (x)− f (x̂))+(1−α)ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z}, (SPe-(x̂,α,eY ))

given in Example 5.4, in which (x̂,α,eY ) ∈ X × (0,1)× intKY is the parameter, meaning that
Π = X× (0,1)× intKY , π = (x̂,α,eY ) and

p(y;π) = p(y; x̂,α,eY ) = αϕeY ( f (x)− f (x̂))+(1−α)ξeY ( f (x)− f (x̂)),

gπ = g, (ZΠ,KZΠ
) = (Z,KZ).

If we consider the collection of separation functions given by (4.3) (this is a class of regular
weak separation functions, see Proposition 4.1):

W
ϕ

Π2
= {ϕeY (·)+ϕeZ(·) : Y ×Z→ R : eY ∈ intKY , eZ ∈ (intKZ ∪{0Z})},
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then Θ = intKY , Γ = (intKZ∪{0Z}), and w(·;θ) = ϕeY (·), w(·;γ) = ϕeZ(·). Picking an arbitrary
π = (x̂,α,eY ) ∈Π, one has

p(y1; x̂,α,eY )− p(y2; x̂,α,eY ) = αϕeY (y1− f (x̂))+(1−α)ξeY (y1− f (x̂))

−αϕeY (y2− f (x̂))− (1−α)ξeY (y2− f (x̂))

= αϕeY (y1− f (x̂))−αϕeY (y2− f (x̂))

+(1−α)ξeY (y1− f (x̂))− (1−α)ξeY (y2− f (x̂))

≥ αϕeY (y1− y2)+(1−α)ϕeY (y1− y2)

= ϕeY (y1− y2),

for all y1, y2 ∈ Y . Hence, for every π = (x̂,α,eY ) ∈Π, setting θ(x̂,α,eY ) = eY , one has

∀y1 y2 ∈ Y : w(y1− y2;θπ)≤ p(y1;π)− p(y2;π), i.e.,

the condition (5.2) in Theorem 5.2 is satisfied.
If what we consider is the collection of separation functions given by (4.5) (this is a class of

regular weak separation functions; see Proposition 4.2):

W
ϕ

Π3
= {(αϕeY +(1−α)ξeY )(·)+ϕeZ(·) :Y ×Z→ R |

α ∈ (0,1),eY ∈ intKY ,eZ ∈ (intKZ ∪{0Z})},
then Θ = (0,1)× intKY , Γ = (intKZ ∪{0Z}), and w(·;θ) = (αϕeY +(1−α)ξeY )(·), w(·;γ) =
ϕeZ(·) (see the collection of functions in (5.1)). Picking an arbitrary θ ∈ Θ, i.e., (α,eY ) ∈
(0,1)× intKY , and ȳ ∈ range f with f (x̄) = ȳ, for any y ∈ Y ,

w(ȳ− y;θ) = αϕeY (ȳ− y)+(1−α)ξeY (ȳ− y)

= −αξeY (y− ȳ)− (1−α)ϕeY (y− ȳ)

= (1−α)ϕeY (ȳ− f (x̄))+αξeY (ȳ− f (x̄))

−(1−α)ϕeY (y− f (x̄))−αξeY (y− f (x̄))

= p(ȳ; x̄,1−α,eY )− p(y; x̄,1−α,eY ).

Hence, for arbitrary (α,eY ) ∈ (0,1)× intKY , and ȳ ∈ range f , taking some x̄ ∈ f−1(ȳ) and
setting πθ = (x̄,1−α,eY ), one has

w(ȳ− y;θ)≥ p(ȳ;πθ )− p(y;πθ ), ∀y ∈ Y.

Besides, applying Proposition 2.1, w(·;γ) = ϕeZ(·) is KZ-monotone for every γ ∈ Γ. Thus, the
conditions in Theorem 5.3 are all satisfied.

Now, we try to consider the collection of scalar problems like what is given in Example 5.5,

min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z}, (SP-(x̂, l̂))

for which the parameters are not only given in objective function for scalarization, but also
involved in constraint as level sets. Assuming that x̂ ∈R = {x ∈ X : g(x) �KZ 0Z} and l̂ ∈ L̂,
where L̂ is a group of scalarization functions. Then, Π = R× L̂ and π = (x̂, l̂). Meanwhile,
gπ(·) = ( f (x̂)− f (·),g(·)), ZΠ = Y ×Z, and KZΠ

= KY ×KZ . The corresponding collection of
weak separation functions has the following form

{w(y;θ)+w(y′,z;γ) : Y ×Y ×Z→ R∪{−∞} : θ ∈Θ,γ ∈ Γ}. (5.4)

In this case, we have the following assertions concerning a conclusion from strong duality.
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Theorem 5.4. Consider a group L̂ of scalarization functions and Π = R × L̂. Let Γ and Θ

be parameter sets such that (5.4) forms a collection of weak separation functions for (VOP).
Assume that for every l̂ ∈ L̂, there exists some θl̂ ∈Θ such that for w(·;θl̂) ∈WΘ holds

∀y1 y2 ∈ Y : w(y1− y2;θl̂)≤ l̂(y1)− l̂(y2),

while, for every γ ∈Γ, w(·, ·;γ) is (KY ×KZ)-monotone. Let π = (x̂, l̂)∈Π be arbitrary. Suppose
that x̄ is a solution of (SP−(x̂, l̂)) and γ̄ is a solution of (SD−(x̂, l̂)) satisfying val(SP−(x̂, l̂)) =
val(SD− (x̂, l̂)). Then, there are separation functions w(·;θl̂) and w(·, ·; γ̄) corresponding to
(5.4) such that

∀x ∈ X : w( f (x̄)− f (x);θl̂)+w( f (x̄)− f (x),g(x); γ̄)−w(0Y ,0Z; γ̄)≤ 0.

Proof. val(SP− (x̂, l̂)) = val(SD− (x̂, l̂)) with solutions x̄ and γ̄ means

l̂( f (x̄)) =−Φ
c(WΓ)
π (γ̄)+w(0Y ,0Z; γ̄),

where π = (x̂, l̂). Besides, there are g(x̄)�KZ 0Z and f (x̄)�KZ f (x̂). Then,

∀(y,z) ∈ Y ×Z : −l̂( f (x̄))+w(0Y ,0Z; γ̄) = Φ
c(WΓ)
π (γ̄)≥ w(y,z; γ̄)−Φπ(y,z).

Particularly, for any x ∈ X , setting y = f (x̂)− f (x) and z = g(x), it can be deduced that

−l̂( f (x̄))+w(0Y ,0Z; γ̄)

≥ w( f (x̂)− f (x),g(x); γ̄)−Φπ( f (x̂)− f (x),g(x))

≥ w( f (x̂)− f (x),g(x); γ̄)− l̂( f (x)),

i.e.,
l̂( f (x̄))− l̂( f (x))+w( f (x̂)− f (x),g(x); γ̄)−w(0Y ,0Z; γ̄)≤ 0.

For l̂ ∈ L̂, there exists some θl̂ ∈Θ such that

w( f (x̄)− f (x);θl̂)≤ l̂( f (x̄))− l̂( f (x)).

Then, together with the monotonicity property of w(·, ·; γ̄) and f (x̄)�KY f (x̂), we can deduce

w( f (x̄)− f (x);θl̂)+w( f (x̄)− f (x),g(x); γ̄)−w(0Y ,0Z; γ̄)≤ 0.

�

The inverse is given as follows.

Theorem 5.5. Consider a group L̂ of scalarization functions and Π = R × L̂. Let Γ and Θ

be parameter sets such that (5.4) forms a collection of weak separation functions for (VOP).
Suppose for every θ ∈Θ and ȳ ∈ range f , there exists some l̂θ ∈ L̂ such that

∀y ∈ Y : w(ȳ− y;θ)≥ l̂θ (ȳ)− l̂θ (y),

while, for every γ ∈ Γ, w(·, ·;γ) is (KY ×KZ)-monotone. Assume that there exist some x̄ with
g(x̄)�KZ 0Z and γ̄ ∈ Γ, θ̄ ∈Θ such that

∀x ∈ X : w( f (x̄)− f (x); θ̄)+w( f (x̄)− f (x),g(x); γ̄)−w(0Y ,0Z; γ̄)≤ 0. (5.5)

Then, there exists some π
θ̄
= (x̂

θ̄
, l̂

θ̄
) ∈Π for which

val(SP− (x̂
θ̄
, l̂

θ̄
)) = val(SD− (x̂

θ̄
, l̂

θ̄
))

and x̄ ∈ sol(SP− (x̂
θ̄
, l̂

θ̄
)), γ̄ ∈ sol(SD− (x̂

θ̄
, l̂

θ̄
)).
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Proof. Picking an arbitrary (y,z)∈Y×Z for the x∈X satisfying g(x)�KZ z and f (x̄)− f (x)�KY

y, (5.5) and the monotonicity property of w(·, ·; γ̄) imply that

w(y,z; γ̄)−w(0Y ,0Z; γ̄) ≤ w( f (x̄)− f (x),g(x); γ̄)−w(0Y ,0Z; γ̄)

≤ −w( f (x̄)− f (x); θ̄).

Since, for θ̄ ∈Θ and f (x̄) ∈ range f , there exists some l̂
θ̄
∈ L̂ such that

w( f (x̄)− f (x); θ̄)≥ l̂
θ̄
( f (x̄))− l̂

θ̄
( f (x)),

we obtain
w(y,z; γ̄)−w(0Y ,0Z; γ̄)+ l̂

θ̄
( f (x̄))≤ l̂

θ̄
( f (x)).

This holds for all (y,z) ∈ Y ×Z and x ∈ X with g(x)�KZ z, f (x̄)− f (x)�KY y, showing that

∀(y,z) ∈ Y ×Z : w(y,z; γ̄)−w(0Y ,0Z; γ̄)+ l̂
θ̄
( f (x̄))≤Φπ

θ̄
(y,z),

where π
θ̄
= (x̂

θ̄
, l̂

θ̄
) = (x̄, l̂

θ̄
). Therefore,

∀(y,z) ∈ Y ×Z : w(y,z; γ̄)−Φπ
θ̄
(y,z)≤ w(0Y ,0Z; γ̄)− l̂

θ̄
( f (x̄)),

which implies
l̂
θ̄
( f (x̄))≤−Φ

c(WΓ)
π

θ̄
(γ̄)+w(0Y ,0Z; γ̄).

Then, due to the weak duality in Theorem 5.1, this means val(SP−π
θ̄
) = val(SD−π

θ̄
), while,

x̄ and γ̄ are solutions of (SP− π
θ̄
) and (SD− π

θ̄
), respectively. Taking into account π

θ̄
=

(x̂
θ̄
, l̂

θ̄
) = (x̄, l̂

θ̄
), we get val(SP− (x̂

θ̄
, l̂

θ̄
)) = val(SD− (x̂

θ̄
, l̂

θ̄
)) and x̄ ∈ sol(SP− (x̂

θ̄
, l̂

θ̄
)), γ̄ ∈

sol(SD− (x̂
θ̄
, l̂

θ̄
)). �

Remark 5.5. In Example 5.5, for the class of scalar problems

min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z}, (SP-(x̂, l̂))

where x̂ ∈ R and l̂ ∈ LKY \{0Y } ⊂ {y
∗ ∈ Y ∗ : y∗(y) > 0, ∀y ∈ KY \ {0Y}}. Hence, Π = R ×

LKY \{0Y } and π = (x̂, l̂). Meanwhile, gπ(·) = ( f (x̂)− f (·),g(·)), ZΠ =Y×Z and KZΠ
=KY ×KZ .

Consider the collection of functions

Wl̂,ϕ ={l̂(y)+ϕ(eY ,eZ)(y
′,z) :Y×Y×Z→ R |

l̂ ∈ LKY \{0Y },(eY ,eZ) ∈ (intKY×intKZ)∪{(0Y ,0Z)}}.

In this situation, we have Θ = LKY \{0Y }, Γ = (intKY × intKZ)∪{(0Y ,0Z)}, and w(·;θ) = l̂(·),
w(·, ·;γ) = ϕ(eY ,eZ)(·, ·) involved in the collection of functions in (5.4). It is not hard to observe
that this is a collection of regular weak separation functions w.r.t. H o

Π
if

∩l∈LKY \{0Y }
lev>0 l ⊂ KY \{0Y}.

Applying Proposition 2.1, for every (eY ,eZ) ∈ (intKY × intKZ)∪ {(0Y ,0Z)}, ϕ(eY ,eZ)(·, ·) is
(KY ×KZ)-monotone, while, every l̂ ∈ LKY \{0Y } is linear. Thus, the conditions in Theorems
5.2 and 5.3 are all satisfied. Then, for any π = (x̂, l̂) ∈ Π, if x̄ is a solution of (SP− (x̂, l̂))
and γ̄ = (ēY , ēZ) is a solution of (SD− (x̂, l̂)), with val(SP− (x̂, l̂)) = val(SD− (x̂, l̂)), then for
θl̂ = l̂ ∈ LKY \{0Y }, one has

∀x ∈ X : l̂( f (x̄)− f (x))+ϕ(ēY ,ēZ)( f (x̄)− f (x),g(x))≤ 0.
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Conversely, if there exist some x̄ with g(x̄)�KZ 0Z and γ̄ = (ēY , ēZ)∈ Γ, l̄ ∈ LKY \{0Y }, such that

∀x ∈ X : l̄( f (x̄)− f (x))+ϕ(ēY ,ēZ)( f (x̄)− f (x),g(x))≤ 0.

then, setting πl̄ = (x̄, l̄), we have val(SP− (x̄, l̄)) = val(SD− (x̄, l̄)) and x̄ ∈ sol(SP− (x̄, l̄)),
(ēY , ēZ) ∈ sol(SD− (x̄, l̄)).

Next, we consider the correlation between the strong duality and the saddle points. We
consider the general situation, i.e., the scalarized problem

min{p( f (x);π) : gπ(x)�KZΠ
0ZΠ
}, (SP-π)

with Rπ 6= /0 for every π ∈Π, where π ∈Π is the parameter, and the collection of functions

WΓ = {w(·;γ) : ZΠ→ R̄ : γ ∈ Γ}.

Recall that the corresponding Lagrange function for (SP−π) is

Lπ(x,γ) = inf{Fπ(x,zΠ)−w(zΠ;γ)+w(0ZΠ
;γ) : zΠ ∈ ZΠ},

for every x ∈ X and γ ∈ Γ. If, in addition, w(·;γ) is KZΠ
-monotone for every γ ∈ Γ, then

Lπ(x,γ) = p( f (x);π)−w(gπ(x);γ)+w(0ZΠ
;γ).

For a pair (x̄, γ̄) ∈ X×Γ, we say it is a saddle point of (SP−π) if

∀x ∈ X , γ ∈ Γ : Lπ(x̄,γ)≤ Lπ(x̄, γ̄)≤ Lπ(x, γ̄). (5.6)

In the next theorem, we show the relationship between strong duality and the existence of a
saddle point.

Theorem 5.6. Let Π and Γ be parameter sets and WΓ be a collection of functions. Suppose that
w(·;γ) ∈WΓ is KZΠ

-monotone for every γ ∈ Γ, and

inf{w(zΠ;γ)−w(0ZΠ
;γ) : γ ∈ Γ}=

{
0 if zΠ �KZΠ

0ZΠ
,

−∞ if zΠ �KZΠ
0ZΠ

.
(5.7)

Let π ∈ Π be an arbitrary element. Then, a pair (x̄, γ̄) ∈ X ×Γ is a saddle point of (SP−π) if
and only if

val(SP−π) = val(SD−π),

while, x̄ and γ̄ are solutions of (SP−π) and (SD−π), respectively.

Proof. Suppose that (x̄, γ̄) ∈ X×Γ is a saddle point of (SP−π), meaning that

∀x ∈ X , γ ∈ Γ : Lπ(x̄,γ)≤ Lπ(x̄, γ̄)≤ Lπ(x, γ̄),

i.e.,

∀γ ∈ Γ : p( f (x̄);π)−w(gπ(x̄);γ)+w(0ZΠ
;γ)≤ p( f (x̄);π)−w(gπ(x̄); γ̄)+w(0ZΠ

; γ̄), (5.8)

and

∀x ∈ X : p( f (x̄);π)−w(gπ(x̄); γ̄)+w(0ZΠ
; γ̄)≤ p( f (x);π)−w(gπ(x); γ̄)+w(0ZΠ

; γ̄). (5.9)

It follows from (5.9) that w(gπ(x̄); γ̄)−w(0ZΠ
; γ̄) 6=−∞, while, with (5.8), we obtain

∀γ ∈ Γ : w(gπ(x̄);γ)−w(0ZΠ
;γ)≥ w(gπ(x̄); γ̄)−w(0ZΠ

; γ̄).
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Together with (5.7), we can deduce that g(x̄) ∈ KZΠ
and

w(gπ(x̄); γ̄)−w(0ZΠ
; γ̄) = inf{w(gπ(x̄);γ)−w(0ZΠ

;γ) : γ ∈ Γ}= 0.

Then, (5.9) becomes

∀x ∈ X : p( f (x̄);π)+w(gπ(x); γ̄)−w(0ZΠ
; γ̄)≤ p( f (x);π).

Then, for an arbitrary zΠ ∈ ZΠ, considering those x ∈ X with gπ(x) �KZΠ
zΠ, as w(·; γ̄) is

KZΠ
-monotone, there is

p( f (x̄);π)+w(zΠ; γ̄)−w(0ZΠ
; γ̄)≤ p( f (x);π).

This implies

p( f (x̄);π)+w(zΠ; γ̄)−w(0ZΠ
; γ̄)≤Φπ(zΠ),

i.e.,

w(zΠ; γ̄)−Φπ(zΠ)≤−p( f (x̄);π)+w(0ZΠ
; γ̄).

Due to the arbitrariness of zΠ, we can get

p( f (x̄);π)≤−Φ
c(WΓ)
π (γ̄)+w(0ZΠ

; γ̄).

With the weak duality assertion in Theorem 5.1, we can conclude that

val(SP−π) = p( f (x̄);π) =−Φ
c(WΓ)
π (γ̄)+w(0ZΠ

; γ̄) = val(SD−π),

while, x̄ ∈ sol(SP−π) and γ̄ ∈ sol(SD−π). Conversely, suppose that x̄ is feasible for (SP−π),
and

p( f (x̄);π) =−Φ
c(WΓ)
π (γ̄)+w(0ZΠ

; γ̄).

Then,

∀zΠ ∈ ZΠ : −p( f (x̄);π)+w(0ZΠ
; γ̄) = Φ

c(WΓ)
π (γ̄) (5.10)

≥ w(zΠ; γ̄)−Φπ(zΠ).

Pick an arbitrary x ∈ X , setting zΠ = gπ(x). Then, obviously gπ(x) �KZΠ
zΠ, and therefore,

Φπ(zΠ) = Φπ(gπ(x))≤ p( f (x);π). With (5.10), we obtain

∀x ∈ X : −p( f (x̄);π)+w(0ZΠ
; γ̄)≥ w(gπ(x); γ̄)− p( f (x);π),

i.e.,

∀x ∈ X : p( f (x̄);π)≤ p( f (x);π)−w(gπ(x); γ̄)+w(0ZΠ
; γ̄).

Particularly, for the case where x = x̄, there is

w(gπ(x̄); γ̄)−w(0ZΠ
; γ̄)≤ 0.

On the other hand, since gπ(x̄)�KZΠ
0ZΠ

, we have

w(gπ(x̄); γ̄)−w(0ZΠ
; γ̄) ≥ inf{w(gπ(x̄);γ)−w(0ZΠ

;γ) : γ ∈ Γ}
= 0.

Hence,
w(gπ(x̄); γ̄)−w(0ZΠ

; γ̄) = 0.
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Then, from (5.11), we obtain

∀x ∈ X : p( f (x̄);π)−w(gπ(x̄); γ̄)+w(0ZΠ
; γ̄)≤ p( f (x);π)−w(gπ(x); γ̄)+w(0ZΠ

; γ̄),

i.e.,

∀x ∈ X : Lπ(x̄, γ̄)≤ Lπ(x, γ̄).

Also, as

w(gπ(x̄); γ̄)−w(0ZΠ
; γ̄) = 0 = inf{w(gπ(x̄);γ)−w(0ZΠ

;γ) : γ ∈ Γ},

we have

∀γ ∈ Γ : w(gπ(x̄); γ̄)−w(0ZΠ
; γ̄)≤ w(gπ(x̄);γ)−w(0ZΠ

;γ).

Thus, for all γ ∈ Γ,

p( f (x̄);π)−w(gπ(x̄);γ)+w(0ZΠ
;γ)≤ p( f (x̄);π)−w(gπ(x̄); γ̄)+w(0ZΠ

; γ̄),

meaning that, for all γ ∈ Γ, Lπ(x̄,γ)≤ Lπ(x̄, γ̄). �

Remark 5.6. Taking Example 5.2, for instance, the scalarized problem is

min{ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z}, (SP-(x̂,eY ))

for which π = (x̂,eY ) and Π = X × intKY , while, p(y;π) = p(y; x̂,eY ) = ξeY (y− f (x̂)), gπ = g,
(ZΠ,KZΠ

) = (Z,KZ). Regard the collection of functions

{ϕeZ(·) : Z→ R : eZ ∈ intKZ ∪{0Z}}

as WΓ, i.e., Γ= intKZ∪{0Z}, w(·;γ) =w(·;eZ) = ϕeZ(·). Since ϕeZ(·) is KZ-monotone for every
eZ ∈ intKZ ∪{0Z}, the corresponding Lagrange function for (SP− (x̂,eY )) is

L(x̂,eY )(x,eZ) = ξeY ( f (x)− f (x̂))−ϕeZ(g(x))+ϕeZ(0Z)

= ξeY ( f (x)− f (x̂))−ϕeZ(g(x)),

for every x ∈ X and eZ ∈ intKZ ∪{0Z}. Applying Proposition 4.4, there is also

inf{ϕeZ(z) : eZ ∈ intKZ ∪{0Z}}=

{
0 if z�KZ 0Z,

−∞ if z�KZ 0Z.

All conditions of Theorem 5.6 are satisfied. Therefore, the strong duality w.r.t. parameter (x̂,eY )
holds, meaning that

ξeY ( f (x̄)− f (x̂)) =−Φ
c(WΓ)
(x̂,eY )

(ēZ),

for some x̄ ∈R and ēZ ∈ intKZ ∪{0Z}, if and only if (x̄, ēZ) is a saddle point of (SP− (x̂,eY )).

Remark 5.7. With regard to Example 5.5, for the collection of scalar problems

min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z}, (SP-(x̂, l̂))

where x̂ ∈R and l̂ ∈ L̂ ⊂ {l : Y → R}, where L̂ is a group of scalarization functions, there are
Π = R× L̂ and π = (x̂, l̂), while, gπ(·) = ( f (x̂)− f (·),g(·)), ZΠ = Y ×Z, and KZΠ

= KY ×KZ .
Take the collection of functions

{ϕ(eY ,eZ)(y,z) : Y ×Z→ R : (eY ,eZ) ∈ (intKY × intKZ)∪{(0Y ,0Z)}}
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as WΓ, meaning that Γ= (intKY × intKZ)∪{(0Y ,0Z)}. Since ϕ(eY ,eZ) is (KY ×KZ)-monotone for
every (eY ,eZ) ∈ (intKY × intKZ)∪{(0Y ,0Z)}, the corresponding Lagrange function for (SP−
(x̂, l̂)) is

L(x̂,l̂)(x,eY ,eZ) = l̂( f (x))−ϕ(eY ,eZ)(g(x̂,l̂)(x))+ϕ(eY ,eZ)(0Y ,0Z)

= l̂( f (x))−ϕ(eY ,eZ)( f (x̂)− f (x),g(x)),

for every x ∈ X and (eY ,eZ) ∈ (intKY × intKZ)∪{(0Y ,0Z)}.
Besides, it follows from Proposition 4.4 that

inf{ϕ(eY ,eZ)(y,z) :(eY ,eZ) ∈ (intKY×intKZ)∪{(0Y ,0Z)}}

=

{
0 if (y,z)�KY×KZ (0Y ,0Z),

−∞ if (y,z)�KY×KZ (0Y ,0Z).

The conditions of Theorem 5.6 are also satisfied. Therefore, the strong duality w.r.t. parameter
(x̂, l̂) holds, i.e.,

l̂( f (x̄)) =−Φ
c(WΓ)

(x̂,l̂)
(ēY , ēZ),

for some x̄ ∈R(x̂,l̂) and (ēY , ēZ) ∈ (intKY × intKZ)∪{(0Y ,0Z)}, if and only if (x̄, ēZ) is a saddle

point of (SP− (x̂, l̂)).

Next, we investigate the characterization of zero dual gap property by virtue of subdifferen-
tials (see (2.2)). We also consider the general situation, the scalarized problem

min{p( f (x);π) : gπ(x)�KZΠ
0ZΠ
}, (SP-π)

where π ∈Π is the parameter.
In the next theorem, we derive a characterization of the strong duality assertion by the WΓ-

subdifferential given in (2.2).

Theorem 5.7. Let Π and Γ be parameter sets and WΓ a collection of functions. Let π ∈ Π be
arbitrary and consider the problems (SP− π) and (SD− π). Then, for the primal problem
(SP−π) with the corresponding optimal value function Φπ ,

γ̄ ∈ ∂WΓ
Φπ(0ZΠ

)

if and only if
val(SP−π) = val(SD−π),

and γ̄ is a solution of (SD−π).

Proof. Suppose γ̄ ∈ ∂WΓ
Φπ(0ZΠ

), meaning that

∀zΠ ∈ ZΠ : Φπ(zΠ)−Φπ(0ZΠ
)≥ w(zΠ, γ̄)−w(0ZΠ

, γ̄),

i.e.,
∀zΠ ∈ ZΠ : w(zΠ, γ̄)−Φπ(zΠ)≤ w(0ZΠ

, γ̄)−Φπ(0ZΠ
).

This shows
Φ

c(WΓ)
π (γ̄)≤ w(0ZΠ

, γ̄)−Φπ(0ZΠ
).

Therefore,
Φπ(0ZΠ

)≤ w(0ZΠ
, γ̄)−Φ

c(WΓ)
π (γ̄),
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which, according to the weak duality assertion in Theorem 5.1, indicates that

val(SP−π) = val(SD−π),

and γ̄ is a solution of (SD−π).
Conversely, val(SP−π) = val(SD−π) and γ̄ ∈ sol(SD−π) imply

Φπ(0ZΠ
) = w(0ZΠ

, γ̄)−Φ
c(WΓ)
π (γ̄).

Then, it follows that

∀zΠ ∈ ZΠ : w(0ZΠ
, γ̄)−Φπ(0ZΠ

) = Φ
c(WΓ)
π (γ̄)≥ w(zΠ, γ̄)−Φπ(zΠ),

i.e.,
∀zΠ ∈ ZΠ : Φπ(zΠ)−Φπ(0ZΠ

)≥ w(zΠ, γ̄)−w(0ZΠ
, γ̄).

Hence, γ̄ ∈ ∂WΓ
Φπ(0ZΠ

).
�

This is a result straightforward from the definition of subdifferential in the sense of abstract
convexity. As the notion of subgradient only involves the information about the optimal value
of the primal problem, when using the subdifferential to discuss the duality, we can only get
the zero dual gap with a solution of dual problem. It will not give us a solution of the primal
problem. However, if we could somehow compute the value of −Φ

c(WΓ)
π (γ̄) +w(0ZΠ

; γ̄) for
some γ̄ ∈ ∂WΓ

Φπ(0ZΠ
), then, for any x̄ ∈Rπ satisfying p( f (x̄);π) ≤ −Φ

c(WΓ)
π (γ̄)+w(0ZΠ

; γ̄),
we deduce x̄ ∈ sol(SP−π) by the weak duality assertion in Theorem 5.1.

Remark 5.8. Take, for instance, Example 5.2, where the scalar problem is

min{ξeY ( f (x)− f (x̂)) : g(x)�KZ 0Z}, (SP-(x̂,eY ))

with Π = X× intKY , π = (x̂,eY ) and p(y;π) = p(y; x̂,eY ) = ξeY (y− f (x̂)), gπ = g, (ZΠ,KZΠ
) =

(Z,KZ).
The collection of functions involved in the dual problem is given by

WΓ = {ϕeZ(·) : Z→ R : eZ ∈ intKZ ∪{0Z}},

where Γ = intKZ ∪{0Z}. For any (x̂,eY ) ∈ X× intKY , ēZ ∈ ∂WΓ
Φ(x̂,eY )(0Z) means

∀z ∈ Z : Φ(x̂,eY )(z)−Φ(x̂,eY )(0Z)≥ ϕēZ(z)−ϕēZ(0Z).

Suppose that we find a parameter (x̂,eY ), for which the corresponding optimal value map Φ(x̂,eY )

is subdifferentiable at 0Z . If there exists some ēZ ∈ ∂WΓ
Φ(x̂,eY )(0Z) such that −Φ

c(WΓ)
(x̂,eY )

(ēZ)≥ 0,
then we can conclude that x̂ is a solution of (SP− (x̂,eY )) as long as x̂ is feasible.

Remark 5.9. Similar thing happens in Example 5.5, in which the collection of scalar problems
is

min{l̂( f (x)) : f (x)�KY f (x̂), g(x)�KZ 0Z}, (SP-(x̂, l̂))

with parameters x̂ ∈R and l̂ ∈ L̂ ⊂ {l : Y → R}. There are Π = R× L̂ and π = (x̂, l̂), while,
gπ(·) = ( f (x̂)− f (·),g(·)), ZΠ = Y × Z, and KZΠ

= KY ×KZ . The collection of functions
involved in the dual problem is given by

WΓ = {ϕ(eY ,eZ)(y,z) : Y ×Z→ R : (eY ,eZ) ∈ (intKY × intKZ)∪{(0Y ,0Z)}},
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where Γ = (intKY × intKZ)∪{(0Y ,0Z)}. For any (x̂, l̂) ∈ R× L̂, (ēY , ēZ) ∈ ∂WΓ
Φ(x̂,l̂)(0Y ,0Z)

means

∀(y,z) ∈ Y ×Z : Φ(x̂,l̂)(y,z)−Φ(x̂,l̂)(0Y ,0Z)≥ ϕ(ēY ,ēZ)(y,z)−ϕēY ,ēZ(0Y ,0Z).

Suppose that we find a parameter (x̂, l̂) such that the corresponding optimal value map Φ(x̂,l̂)
is subdifferentiable at (0Y ,0Z). If there exists some (ēY , ēZ) ∈ ∂WΓ

Φ(x̂,l̂)(0Y ,0Z) with

−Φ
c(WΓ)

(x̂,l̂)
(ēY , ēZ)≥ l̂( f (x̂)),

then we deduce that x̂ is a solution of (SP− (x̂, l̂)).

6. CONCLUSIONS

In this paper, collections of nonlinear weak separation functions were constructed via the
Gerstewitz and topical functions. Simultaneously, the properties of Gerstewitz function with
respect to the parameters were investigated. Then, with the aid of these separation functions, we
established a conjugate dual problem for a general constrained vector optimization problem.
Moreover, equivalent characterizations of the zero duality gap property and strong duality by
means of subdifferentials, separation properties, and the saddle point assertions were obtained.

For further research it is of interest to show sufficient conditions for the existence of saddle
points, the existence of optimal solutions of the primal and dual problem such that strong duality
statements hold as well as for the existence of elements of the subdifferential of the primal
optimal value function. Furthermore, it is of interest to derive duality statements based on our
general approach for special classes of vector optimization problems in order to get manageable
dual problems taking advantage of the special structure of the primal problem. This can be
useful for the development of numerical methods.

Acknowledgments
The authors are grateful to the reviewer for useful suggestions which improved the contents of
this paper. This research was partially supported by the National Natural Science Foundation
of China (Grant numbers: 11971078, 12071379, and 12201160).

REFERENCES
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