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Abstract. The aim of this paper is to present a vectorial penalisation approach for vector optimisation
problems in which the vector-valued objective function acts between real linear-topological spaces X and
Y , where the image space Y is partially ordered by a pointed convex cone. In essence, the approach re-
places the original constrained vector optimisation problem (with not necessarily convex feasible set) by
two unconstrained vector optimisation problems, where in one of the two problems a penalisation term
(function) with respect to the original feasible set is added to the vector objective function. To derive our
main results, we use a generalised convexity (quasiconvexity) notion for vector functions in the sense
of Jahn. Our results extend/generalise known results in the context of vectorial penalisation in multiob-
jective/vector optimisation. We put a special emphasis on the construction of appropriate penalisation
functions for several popular classes of (vector) optimisation problems (e.g., semidefinite/copositive pro-
gramming, second-order cone programming, optimisation in function spaces).
Keywords. Generalised Convexity; Pareto Efficiency; Penalisation; Vector Optimisation.

1. INTRODUCTION

In scalar as well as vector optimisation, it is well known that penalisation methods are a
very useful tools for dealing with constrained optimisation problems in order to derive useful
optimality conditions and corresponding numerical methods.

The essential idea is to reformulate a constrained problem into an unconstrained one and to
use the advantages of methods for unconstrained problems also for constrained problems.

The common idea of penalisation methods is to find an optimal solution of a constrained
problem as an optimal solution of an unconstrained problem by considering a combination of
the objective function with an additional penalty term that incorporates the constraints of the
original problem.

In scalar optimisation, there are well-known penalisation techniques: The infinite penalisa-
tion, where one works with extended real-valued functions (e.g., with the indicator function),
and the exact penalty principle (Clarke type penalisation), which employs the distance to the
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feasible set (or other exact penalty functions w.r.t. the given constraints) under the assumption
that the objective function is locally Lipschitz, see Eremin [1], Zangwill [2], Evans, Gould and
Tolle [3], Han and Mangasarian [4], Clarke [5] and references therein.

In [6], Ye extended the exact penalty principle to vectorial problems (Clarke-Ye type penal-
isation), see also Apetrii, Durea and Strugariu [7] where the directional minimal time function
is used as penalisation function and the references therein for some extension and more de-
tails. Furthermore, a Clarke-Ye type approach to penalisation for vector optimisation problems
is derived by Fukuda, Drummond and Raupp in [8], where a vector external penalty function
~ν : Rn→ Rm

≥ (with~ν continuous and~ν(x) = 0Rm if and only if x belongs to the feasible set S)
is used, i.e., the authors study a vector-valued penalisation approach f +α~ν .

In general, two main penalisation approaches can be considered for an original objective
function f , a penalisation parameter α and a penalisation function ν :

• Exact Penalty Principle: f +αν .
• Vectorial Penalisation Approach: ( f ,ν).

Notice that the infinite penalisation with α = 1 and ν = IS (where IS denotes the indicator
function with respect to the feasible set S), which is well-known in scalar optimisation, is an
exception in this context. The advantage of the approach ”Vectorial Penalisation” used in our
paper is that we do not need a penalty parameter α .

In our paper, we consider vector optimisation problems with an objective function f acting
between real linear-topological spaces X and Y . We suppose that the image space Y is partially
ordered by a pointed convex cone C . Vector optimisation in general spaces is a growing up and
vibrant field of mathematics with important applications in economics, mathematical finance,
risk theory and engineering.

Important relationships between constrained and unconstrained vector optimisation problems
are studied by Klamroth and Tind in [9], Günther [10, 11] and by Günther and Tammer in
[12, 13], see also Fletcher and Leyffer [14].

In [15] by Durea, Strugariu and Tammer, a penalisation method is discussed where the pe-
nalised objective function is composed of the original objective function and the function defin-
ing the restrictions. This allows the deduction of suitable optimality conditions for constrained
nondifferentiable vector optimisation problems. Recently, Schmölling [16] extended and gen-
eralised the vectorial penalisation approach in [12, 13] to problems where X and Y are linear
spaces and C is a convex cone in Y .

The aim of our paper is to extend the results in [10, 11, 12, 13] derived for vector optimisation
problems where the objective function takes its values in a finite dimensional Euclidean space
Rn equipped with the natural ordering cone Rn

≥ to problems where X , Y are linear spaces and
the ordering cone C is a convex cone in Y . In order to prove our main results, we assume that
certain generalised convexity (quasiconvexity) notions for vector functions are fulfilled.

Let us consider a constrained vector optimisation problem with an objective function that is
acting between real linear-topological spaces X (pre-image space) and Y (image space). Fur-
thermore, we are using the following settings:

• C is a pointed, convex cone in a real linear-topological space Y ,
• S and D are nonempty sets in a real linear-topological space X with S ⊆ D.
• The original vector objective function is given by



VECTORIAL PENALISATION IN VECTOR OPTIMISATION 653

f : D→ Y

and the penalisation function

ν : D→ R
leads us to an extended vector objective function

f⊗ : D→ Y ×R, f⊗ := ( f ,ν).

We deal with penalisation approaches in vector optimisation that aim to replace the original
constrained optimisation problem (with not necessarily convex feasible set) by some related
problems with an easier structured feasible set (or actually by some unconstrained problems).

In our vectorial penalisation approach, the original constrained vector optimisation problem

argminC
x∈S

f (x) (PS )

is replaced by two unconstrained vector optimisation problems

argminC
x∈D

f (x) (PD)

and
argminC×R≥

x∈D

f⊗(x). (P⊗D )

For deriving our main results, we use certain generalised convexity notions for vector func-
tions. We focus on the cone-quasiconvexity concept by Jahn [17]. Further concepts of gener-
alised convexity for vector functions are known from the literature; see, e.g., [17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27]. It is known that generalised convexity assumptions appear in different
applications such as economics (see, e.g., Cambini and Martein [28]).

The paper is structured as follows:
In the first part of Section 2, we introduce some basics in linear-topological spaces, we high-

light some important examples of convex cones that can be used in our approach (both as order-
ing cones in the solution concepts and as cones in the constraints) and we introduce some gen-
eral binary relations based on sets (or cones) in linear-topological spaces. In the second part of
Section 2, we formulate our general vector optimisation problem and recall some well-known
solution concepts ((weak/strict) efficiency) in vector optimisation and a class of generalised
convex (quasiconvex) vector functions in the sense of Jahn [17, Def. 7.11].

In Section 3, we analyse important relationships between constrained and unconstrained vec-
tor optimisation problems using generalised convexity concepts for vector functions.

Our main Section 4 contains the vectorial penalisation approach for general vector optimi-
sation problems. After studying basic properties of the penalisation function, which will play
a key role in our approach, we investigate special types of penalisation functions for vector
problems involving abstract constraints as well as for problems involving explicit generalised
inequality and equality constraints. In particular, for the cone-constraint case, we are able to
construct appropriate penalisation functions for some popular cones given in spaces of finite and
infinite dimension (e.g., Löwner cone, copositive cone, Bishop-Phelps cone, standard cone in
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the space of Lebesgue-integrable / essentially bounded functions). Furthermore, we analyse the
effects of adding/removing a penalisation term to/from the original vector objective function on
the nature of the solution sets of the vector optimisation problems (in the spirit of Fliege [29]).
We end Section 4 by stating our main results related to our vectorial penalisation approach for
general vector optimisation problems, which show profound relationships between the solution
sets of the vector problems (PS ), (PD), and (P⊗D ).

We conclude our paper with some closing remarks and an outlook for future research in
Section 5.

2. PRELIMINARIES

2.1. Basics in linear-topological spaces. Throughout the paper, the set of nonnegative real
numbers is denoted by R≥ and the set of positive real numbers by R>. Assume that V is a real
linear-topological space with corresponding topological dual space

V ∗ = {v∗ : V → R | v∗ is linear and continuous}.
The point 0V (respectively, 0V ∗) represents the origin in V (respectively, V ∗). For any set

Ω⊆V , we denote the topological interior, the topological boundary, the topological closure of
Ω by int(Ω), bd(Ω) and cl(Ω), respectively. A set Ω⊆V is called solid if int(Ω) 6= /0. For any
two points x,y ∈V , the closed, the open, the half-open line segments are defined by

[x,y] := {(1−λ )x+λy | λ ∈ [0,1]}, (x,y) := {(1−λ )x+λy | λ ∈ (0,1)},
[x,y) := {(1−λ )x+λy | λ ∈ [0,1)}, (x,y] := {(1−λ )x+λy | λ ∈ (0,1]}.

In a normed space setting, ‖·‖V denotes the underlying norm, SV the unit sphere, BV the
closed unit ball, V ∗ the dual normed space, and ‖·‖V ∗ , defined by

‖v∗‖V ∗ := sup{v∗(x) | x ∈ BV}= sup{v∗(x) | x ∈ SV} for all v∗ ∈V ∗,

the dual norm. For any ε > 0 and x ∈V , we denote by Bε(x) := {y∈V | ‖x− y‖V < ε} the open
norm ball and by Bε(x) := cl(Bε(x)) the closed norm ball in x of radius ε .

In the finite-dimensional spaceRn, we will denote the canonical unit vectors inRn by e1, . . . ,en,
and the Euclidean scalar product by 〈·, ·〉. Moreover, for any n ∈ N, we introduce the set of in-
dices In := {1,2, . . . ,n}.

As usual, a set Ω ⊆ V is convex if (1−λ )x+λy ∈ Ω for all x,y ∈ Ω and λ ∈ (0,1). The
convex hull of Ω, i.e., the smallest convex set of V containing Ω, is denoted by conv(Ω). It is
easy to check that Ω is convex if and only if conv(Ω) = Ω.

The following result (cf. [30, Cor. 3.22], [31, Ex. 10.16]) in the product space V1×V2 of two
real linear-topological spaces V1 and V2 will be later used in our proofs.

Lemma 2.1. Assume that V1,V2 are real linear-topological spaces and A1 ⊆ V1, A2 ⊆ V2 are
convex sets. Then,

int(A1×A2) = int(A1)× int(A2).

2.2. Convex cones and order relations. Cones will play an important role in our work, on the
one hand as ordering cones involved in the solution concepts, and on the other hand as cones
involved in the constraints of the vector optimisation problems. Recall that a set C ⊆ V with
0V ∈ C = R≥ ·C (= C +C) is called a (convex) cone. Moreover, we say that the cone C is
nontrivial if {0V} 6=C 6=V , pointed if C∩ (−C) = {0V}, reproducing if C−C =V .
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Assume that C ⊆V is a convex cone. In view of Jahn [17, Lem. 1.12 and 1.32], we have

int(C) =C+ int(C). (2.1)

The dual cone of C is given by

C+ := {x∗ ∈V ∗ | ∀c ∈C : x∗(c)≥ 0},

while the quasi-interior of the dual cone is given by

C# := {x∗ ∈V ∗ | ∀c ∈C \{0V} : x∗(c)> 0}.

Furthermore, the following assertions are well-known (see Jahn [17, Lem. 1.13 and 1.27]):
• If C is solid, then C is reproducing and C+ is pointed.
• If C# 6= /0, then C is pointed.

Assume that V = Rn is a real normed space. Then, for any nontrivial, convex cone C ⊆ V , the
following assertions hold true:

• If C is closed and pointed, then C# 6= /0 (by the Krein-Rutman theorem [17, Th. 3.38]).
• If C is closed, then C# 6= /0 if and only if 0 /∈ cl(conv(C∩SV )) (by [32, Th. 3.6]).
• If C is closed, then C# = int(C+) (by [32, Th. 2.5, Rem. 2.6]).
• cl(C) = (C+)+ (by the bipolar theorem [33, Th. 1.1.9]).
• int(C) = (C+)# (by the previous two assertions).

To illustrate our general approach, we present some important examples for spaces and cones,
and analyse their properties.

Example 2.2 (Standard cone in Rn). Consider the particular framework where V = Rn is a
finite-dimensional Euclidean space and let C = Rn

≥ be the standard ordering cone. It is well-
known that Rn

≥ is a nontrivial, closed, pointed, solid, reproducing, convex cone with

int
(
Rn
≥
)
=
{
(v1, . . . ,vn) ∈ Rn ∣∣∀ i ∈ In : vi > 0

}
,

bd
(
Rn
≥
)
=
{
(v1, . . . ,vn) ∈ Rn

≥
∣∣∃ i ∈ In : vi = 0

}
.

Example 2.3 (Polyhedral cone in Rn). Consider V = Rn, a nonempty finite set P ⊆ V \ {0V}
and a polyhedral cone C :=CP ⊆V given by

CP := {y ∈V | ∀p ∈ P : pT y≤ 0}.

Then, CP is a closed and convex cone with

int(CP) =
{

y ∈V
∣∣∀p ∈ P : pT y < 0

}
,

bd(CP) =
{

y ∈CP
∣∣∃ p ∈ P : pT y = 0

}
.

According to Günther and Popovici [34, Sec. 4.2], the following equivalences hold true:
• CP is nontrivial if and only if 0V /∈ int(conv(P)),
• CP is pointed if and only if {y ∈V | ∀p ∈ P : pT y = 0}= {0V},
• CP is solid if and only if 0V /∈ conv(P).

Example 2.4 (Lexicographic cone in Rn). Let V = Rn (n ≥ 2) and let C = Cn
lex be the lexico-

graphic cone, defined as the set of points whose first nonzero coordinate (if any) is positive:

Cn
lex := {0V}∪

{
(v1, . . . ,vn) ∈ Rn ∣∣∃ i ∈ In : vi > 0, @ j ∈ In, j < i : v j 6= 0

}
.
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It is known that Cn
lex is a nontrivial, pointed, solid, reproducing, convex cone with

int(Cn
lex) =

{
(v1, . . . ,vn) ∈ Rn ∣∣ v1 > 0

}
,

bd(Cn
lex) =

{
(v1, . . . ,vn) ∈ Rn ∣∣ v1 = 0

}
,

so that Cn
lex is not closed (see, e.g., Popovici [35]).

Example 2.5 (Löwner cone in Sn). Consider the space V = Sn of all real symmetric n× n
matrices. Then, the Löwner cone is defined by

C :=Sn
+ := {M ∈V | ∀y ∈ Rn : yT My≥ 0}
= {M ∈V |M is positive semidefinite},

while the interior and the boundary of Sn
+ are given by

int(Sn
+) = {M ∈V | ∀y ∈ Rn \{0Rn} : yT My > 0},

= {M ∈V |M is positive definite},

bd(Sn
+) = {M ∈Sn

+ | ∃y ∈ Rn \{0Rn} : yT My = 0}.
It is known that the Löwner cone is a nontrivial, closed, pointed, solid, reproducing, convex
cone in V .

Example 2.6 (Copositive cone in Sn). Consider the space V =Sn of all real symmetric n×n
matrices. Then, the copositive cone is defined by

C :=Sn
++ := {M ∈V | ∀y ∈ Rn

+ : yT My≥ 0}
= {M ∈V |M is copositive},

while the interior and the boundary of Sn
++ are given by

int(Sn
++) = {M ∈V | ∀y ∈ Rn

≥ \{0Rn} : yT My > 0},

= {M ∈V |M is strictly copositive},
bd(Sn

++) = {M ∈Sn
++ | ∃y ∈ Rn

≥ \{0Rn} : yT My = 0}.
It is known that the copositive cone is a nontrivial, closed, pointed, solid, reproducing, convex
cone in V which contains the Löwner cone Sn

+.

The following example in Sn generalises the previous two examples.

Example 2.7 (K-semidefinite cone in Sn). Consider the space V =Sn of all real symmetric n×
n matrices, and a closed, convex cone K ⊆ Rn with K 6= {0Rn}. Then, according to Eichfelder
and Jahn [36], the K-semidefinite cone is defined by

C :=Sn
K := {M ∈V | ∀y ∈ K : yT My≥ 0},
= {M ∈V |M is K-semidefinite},

while the interior and the boundary of Sn
K are given by

int(Sn
K) = {M ∈V | ∀y ∈ K \{0Rn} : yT My > 0},

= {M ∈V |M is strictly K-semidefinite},
bd(Sn

K) = {M ∈Sn
K | ∃y ∈ K \{0Rn} : yT My = 0}.
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It is known that the K-semidefinite cone is a nontrivial, closed, solid, reproducing, convex cone
in V , and if K is reproducing (e.g. if K is solid), then Sn

K is pointed.
For K := Rn we have Sn

K =Sn
+, while for K := Rn

≥ we have Sn
K =Sn

++.

Example 2.8 (Second-order cone (Lorentz cone) in Rn×R). Consider a real normed space
V = Rn with underlying norm ‖·‖V . Then, the second-order cone in V ×R is defined by

C := {(y, t) ∈V ×R | ‖y‖V ≤ t},

which is a nontrivial, closed, pointed, solid, convex cone with

int(C) = {(y, t) ∈V ×R | ‖y‖V < t},
bd(C) = {(y, t) ∈V ×R | ‖y‖V = t}.

Let us consider two specific settings:

(1) Consider a norm ‖·‖V×R on V ×R that is defined by

‖(y, t)‖V×R := ‖y‖V + |t| for all (y, t) ∈V ×R.

Then, C is actually a so-called Bishop-Phelps cone in the real normed space V ×R (for
more details, see Example 2.9), since

C = {(y, t) ∈V ×R | ‖(y, t)‖V×R ≤ 〈2en+1,(y, t)〉}.

(2) Assume that the norms ‖·‖V and ‖·‖V×R are given by the classical lp norm, p ∈ [1,∞],
in V and V ×R, respectively. It is known (see Eichfelder [37, Ex. 1.15] and Jahn [38])
that C is a Bishop-Phelps cone in V ×R, since

C =
{
(y, t) ∈V ×R

∣∣∣‖(y, t)‖V×R ≤ 〈2
1
p en+1,(y, t)

〉}
for p ∈ [1,∞), and

C = {(y, t) ∈V ×R | ‖(y, t)‖V×R ≤ 〈e
n+1,(y, t)〉}

for p = ∞. Now, consider p = 2. Then, C is the so-called Lorentz cone (also known as
ice cream cone) and, for any Q ∈ {BV ,SV}, admits the representation

C =
⋂
s∈Q

{
(y, t) ∈V ×R

∣∣sT y≤ t
}
,

and further satisfies

int(C) =
⋂
s∈Q

int
({

(y, t) ∈V ×R
∣∣sT y≤ t

})
=
⋂
s∈Q

{
(y, t) ∈V ×R

∣∣sT y < t
}

(for the proof of the latter two equalities one can use the convexity of the function
(y, t) 7→maxs∈Q sT y− t and the fact that the strict sublevel set of this function w.r.t. the
level zero is included in int(C), see Zălinescu [33, p.147]). Notice, for the case p = 2
we have ∥∥∥√2en+1

∥∥∥
(V×R)∗

=
∥∥∥√2en+1

∥∥∥
V×R

=
√

2 > 1.

Let us present some examples in an infinite dimensional framework.
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Example 2.9 (Bishop-Phelps cone in a normed space). Consider a real normed space V . Then,
for a given y∗ ∈V ∗ (with ‖y∗‖V ∗ > 1), the Bishop-Phelps cone is defined by

C :=C(y∗) := {y ∈V | y∗(y)≥ ‖y‖V}.

According to Jahn [39], and Ha and Jahn [40], C(y∗) is a nontrivial, closed, pointed, solid,
reproducing, convex cone with

int(C(y∗)) = {y ∈V | y∗(y)> ‖y‖V},

bd(C(y∗)) = {y ∈V | y∗(y) = ‖y‖V}.

Example 2.10 (Standard cone in the space of real-valued continuous functions). Consider the
real normed space V = C[a,b] (with −∞ < a < b < ∞) of real-valued continuous functions.
Then, the standard cone in C[a,b] is given by

C :=C+[a,b] := {u ∈C[a,b] | ∀ t ∈ [a,b] : u(t)≥ 0},

while the interior and the boundary of C+[a,b] are given by

int(C+[a,b]) = {u ∈C[a,b] | ∀ t ∈ [a,b] : u(t)> 0},

bd(C+[a,b]) = {u ∈C+[a,b] | ∃ t ∈ [a,b] : u(t) = 0}.

Obviously, C+[a,b] is a nontrivial, closed, pointed, solid, reproducing, convex cone in C[a,b].

Example 2.11 (Standard cone in the space of Lebesgue-integrable / essentially bounded func-
tions). Consider the normed space V = Lp[a,b] with −∞ < a < b < ∞, where Lp[a,b] is for
p ∈ [1,∞) the space of all (equivalence classes of) real-valued p-th power Lebesgue-integrable
functions and for p = ∞ the space of all (equivalence classes of) essentially bounded functions
on [a,b] (i.e., L∞[a,b] consists of all measurable functions u : [a,b]→ R such that the essential
supremum (denoted by ess sup) of |u| is finite). The standard cone in Lp[a,b] for p ∈ [1,∞] is
given by

C := Lp
+[a,b] := {u ∈ Lp[a,b] | u(t)≥ 0 almost everywhere on [a,b]}.

It is known that Lp
+[a,b] is a nontrivial, pointed, closed, convex cone in Lp[a,b] which is solid

for p = ∞ but not solid for p ∈ [1,∞) (see Jahn [17, Ex. 1.51]).

Further interesting examples are given in the book by Jahn [17, Sec. 1.4].

Definition 2.12. Consider a real linear-topological space V , points x,y ∈V and a nonempty set
A⊆V . Then, we define the following binary relations

x≤A y :⇐⇒ y ∈ x+A, (2.2)

x�A y :⇐⇒ y ∈ x+A\{0V},
x <A y :⇐⇒ y ∈ x+ int(A).

In the topic of vector optimisation (see Section 2.3), we are interested in the case A := C ,
where C is a nontrivial, pointed, convex cone in V . In this case, the space V is partially ordered
by ≤C.
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2.3. Vector optimisation. Throughout the paper, under the following main assumptions
X ,Y real linear-topological spaces,
/0 6= D ⊆ X , f : D→ Y,
/0 6= C ⊆ Y nontrivial, pointed, convex cone,
/0 6= S ⊆ D,

(A)

we consider the general vector optimisation problem given by

argminC
x∈S

f (x) (PS )

Solutions of the vector optimisation problem (PS ) are defined according to the next definition
(see, e.g., Jahn [17]):

Definition 2.13. Assume that (A) is valid. We define the set of efficient points of problem (PS )
as

Eff( f ,S ,C) :=
{

x ∈ S
∣∣@x ∈ S : f (x)�C f (x )

}
,

the set of weakly efficient points of (PS ) as

WEff( f ,S ,C) :=
{

x ∈ S
∣∣@x ∈ S : f (x)<C f (x )

}
as well as the set of strictly efficient points of (PS ) as

SEff( f ,S ,C) :=
{

x ∈ S
∣∣@x ∈ S \{x } : f (x)≤C f (x )

}
.

It is easy to check that

SEff( f ,S ,C)⊆ Eff( f ,S ,C)⊆WEff( f ,S ,C).

Under the validity of (A) consider the assumptions
Z1,Z2 real linear-topological spaces,
g : D→ Z1, h : D→ Z2,

/0 6= K ( Z1 closed, convex cone,
/0 6= U ⊆ D.

(Ag,h)

Beside the general vector optimisation problem given in (PS ) with abstract feasible set S (as de-
fined in (A)) we are also interested in the case with explicit (generalised inequality and equality)
constraints, i.e.,

S := {x ∈U | g(x) ∈K , h(x) = 0Z2}.

Example 2.14 (Vectorial Approximation Problems). We assume that X ,Y and Z are real Banach
spaces, C is a nontrivial, pointed, closed, convex cone in Y . In order to formulate the vectorial
approximation problem, let us introduce a vector-valued norm (see [17, Def. 1.35] ) ||| · ||| : Z→ C
which for all z,z1,z2 ∈ Z and for all λ ∈ R satisfies:

(1) |||z|||= 0Y ⇐⇒ z = 0Z;
(2) |||λ z |||=| λ | ·|||z|||;
(3) |||z1 + z2||| ∈ |||z1|||+ |||z2|||− C .
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Suppose now that the cost function u : D→ Y is locally Lipschitz continuous, Li ∈L (X ,Z)
(L (X ,Z) denotes the set of linear continuous mappings from X to Z) and αi ≥ 0 (i = 1, . . . ,n).
Then, we consider for x ∈ S ⊆ D and ai ∈ Z (i = 1, . . . ,n) the vectorial approximation problem

argminC
x∈S

f (x), (2.3)

where the objective function f : D→ Y is given by

f (x) := u(x)+
n

∑
i=1

αi|||Lix−ai||| for all x ∈ D,

see the books [17, Ch. 9] and [41, Sec. 4.1].

Example 2.15. We consider the following problem where a dilating cone is involved. Suppose
that X and Z are Banach spaces, Z is equipped with a nontrivial, pointed, closed, convex cone
C.

argmin
x∈S

f (x) where S := {x ∈ X | Gx≤C w}, (CP)

where G : X → Z is a linear and bounded map, w ∈ Z, the objective map f : X → R is con-
tinuous, coercive and strictly convex. This problem (CP) is a prototype of a PDE-constrained
optimal control problem where the constraint represents the solution map applied to the control
variable in linear PDEs. The constraints are described by the cone C ⊆ Z. In [42] and [43], a
regularisation framework is developed which consists of replacing the ordering cone C by an
approximating family of dilating cones, i.e., this conical regularisation approach for problem
(CP) consists of constructing a family of approximate optimisation problems. This family of
approximating dilating cones {Cε}ε∈(0,1) ⊆ Z is a family of pointed, closed, convex cones with
nonempty interior such that C \ {0Z} ⊆ int(Cε) for all ε ∈ (0,1), Cε1 ⊆ Cε2 for ε1 ≤ ε2 and
C =

⋂
0<ε<1 Cε . The family of regularised problems is then given by replacing the ordering

cone C in the optimal control problem (CP) by the dilating cone Cε :

argmin
x∈Sε

f (x) where Sε := {x ∈ X | Gx≤Cε
w}. (CPε )

For ε ∈ (0,1), the (Henig) dilating cone is defined by

Cε := cl [R≥ · conv(BC + εBZ)] , (2.4)

where BC := {z ∈ C | z∗(z) = 1}, z∗ ∈ C#, ‖z∗‖Z∗ = 1. It is well known that Cε in (2.4) is a
pointed, closed, solid, reproducing, convex cone with C =

⋂
0<ε<1 Cε and C \ {0Z} ⊆ int(Cε)

for every ε ∈ (0,1) (see [44, Th. 1.1] and [43]). In the case Z = L2[0,1] with the natural
ordering cone L2

+[0,1], for each ε ∈ (0,1), Cε = (L2
+[0,1])ε = cl [R≥ · conv(BC + εBZ)] is a

(Henig) dilating cone associated to C = L2
+[0,1] with the base

BC =

{
ϕ ∈ L2

+[0,1]
∣∣∣∣∫ 1

0
ϕ(s)ds = 1

}
,

see [43, Sec. 4.2].
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2.4. Generalised convex vector functions. In order to derive strong relationships between
constrained and unconstrained vector optimisation (in Section 3), we will impose generalised
convexity assumptions on the vector objective function f . Concepts of generalised convexity
for vector functions are studied by several authors in the literature, for instance by Bagdasar
and Popovici [18], Borwein [19], Flores-Bazán [20], Flores-Bazán and Vera [21], Günther and
Popovici [22, 23], Jahn [17], Jahn and Sachs [24], Luc [25], Luc and Schaible [26], Popovici
[27]. Moreover, we refer the reader to the book by Cambini and Martein [28] for an overview on
generalised convexity concepts for scalar functions and corresponding interesting applications
in economics.

In our work, we focus on a generalised convexity concept for vector functions proposed by
Jahn [17, Def. 7.11], which we recall in the following definition.

Definition 2.16. Assume (A) and let S be convex and A ⊆ Y be a set. Then, the function f is
called A-quasiconvex on S (in the sense of Jahn [17]) if

∀x1,x2 ∈ S , x1 6= x2, f (x1)≤A f (x2), ∃x0 ∈ S \{x2}, ∀x ∈ [x0,x2) : f (x)≤A f (x2).

Remark 2.17. The case A ∈ {C , C \{0Y}, int(C)} will be of special interest. Besides Jahn [17,
Ch. 7] also Bagdasar and Popovici [18] studied the A-quasiconvexity concept and its impor-
tance in vector optimisation. In particular, the class of A-quasiconvex functions in the sense
of Borwein [19]/Luc [25] is for A = C contained in the class of semistrictly (A)-quasiconvex
functions in the sense of Flores-Bazán [20, Def. 2.1], Flores-Bazán and Vera [21, Def. 4.1] (see
[18, Def. 3]), which again is contained in our class of A-quasiconvex functions for any of the
above mentioned A. It is therefore for A = C natural to name the concept of Borwein/Luc as
strong C -quasiconvexity and the concept by Jahn (from our Definition 2.16 with A = C ) as weak
C -quasiconvexity. All in all the concept from Jahn is relatively weak and in the case A = int(C)
(and for A = C if C closed) further contains the class of explicitly C -quasiconvex functions in
the sense of Popovici [27] and for A = C the classes of naturally C -quasiconvex and scalarly
C -quasiconvex functions in the sense of Flores-Bazán [20, Def. 2.4]. For a thorough analysis of
the relationships of some generalised convexity concepts for vector functions and their impor-
tance in the derivation of local-global type properties in vector optimisation, we refer the reader
to the recent paper by Bagdasar and Popovici [18].

Definition 2.18. Assume (A) and consider a scalar function ν : D→ R. For any r ∈ R and any
binary relation ∼∈ {<,≤,=,≥,>} on R, the set

lev∼(S ,ν ,r) := {x ∈ S | ν(x)∼ r}

is called ∼-level set of the scalar function ν w.r.t. the set S and the level r.

Definition 2.19. Assume (A) and consider a set A ⊆ Y . For any y ∈ Y and any binary relation
∼∈ {<A,≤A,�A,=} on Y (see Definition 2.12), the set

lev∼(S , f ,y) := {x ∈ S | f (x)∼ y}

is called (generalised) ∼-level set of the vector function f w.r.t. the set S and the level y.

For the class of A-quasiconvex vector functions introduced in Definition 2.16 we state a
characterisation in terms of generalised ≤A-level sets of the vector function f .
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Lemma 2.20. Assume (A) and let S be convex. Then, the function f is A-quasiconvex on S if
and only if

∀x2 ∈ S , ∀x1 ∈ lev≤A(S \{x
2}, f , f (x2)), ∃x0 ∈ S \{x2} : [x0,x2)⊆ lev≤A(S , f , f (x2)).

3. RELATIONSHIPS BETWEEN CONSTRAINED AND UNCONSTRAINED VECTOR

OPTIMISATION PROBLEMS

In this section, we analyse important relationships between constrained and unconstrained
vector optimisation problems using generalised convexity concepts for vector functions (from
our Definition 2.16). Consider the constrained vector optimisation problem

argminC
x∈S

f (x) (PS )

as given in Section 2.3 under the assumption (A). Beside the vector problem (PS ) we are also
interested in the corresponding unconstrained vector problem

argminC
x∈D

f (x) (PD)

From the definitions of the efficiency concepts (Definition 2.13) we immediately get the
following simple relationships between the unconstrained problem (PD) and the constrained
problem (PS ).

Theorem 3.1. Assume (A). Then, for every set U ⊆ X with S ⊆U ⊆ D, we have

S ∩Eff( f ,D,C)⊆ Eff( f ,U,C), (3.1)

S ∩WEff( f ,D,C)⊆WEff( f ,U,C), (3.2)

S ∩SEff( f ,D,C)⊆ SEff( f ,U,C). (3.3)

The following lemma states useful geometrical characterisations of (weakly, strictly) efficient
solutions in terms of generalised ≤A-level sets of the vector function f (see also Ehrgott [45,
Th. 2.30]).

Lemma 3.2. Assume (A) and take any x ∈ S . Then we have the following equivalences:

x ∈ Eff( f ,S ,C) ⇐⇒ lev≤C

(
S , f , f (x )

)
⊆ lev=

(
S , f , f (x )

)
, (3.4)

x ∈WEff( f ,S ,C) ⇐⇒ lev<C

(
S , f , f (x )

)
= /0, (3.5)

x ∈ SEff( f ,S ,C) ⇐⇒ lev≤C

(
S , f , f (x )

)
= {x }. (3.6)

Proof. x ∈ Eff( f ,S ,C) by definition is the same as saying that there does not exist a y ∈ S with
f (y) �C f (x ). This again is the same as saying that for every y ∈ S with f (y) ≤C f (x ), so
y ∈ lev≤C

(
S , f , f (x )

)
, we have y 6∈ lev�C

(
S , f , f (x )

)
and therefore y ∈ lev=

(
S , f , f (x )

)
.

The equivalency of x ∈WEff( f ,S ,C) and lev<C

(
S , f , f (x )

)
is evident.

Even though the last equivalency (3.6) is also evident, we can easily prove it by using that
x ∈ SEff( f ,S ,C) is the same as x ∈ Eff( f ,S ,C) and lev=

(
S , f , f (x )

)
= {x } together with

(3.4). �

Using the generalised convexity concept for vector functions from Definition 2.16 (in the
sense of Jahn [17]), we are able to derive relationships between the sets of efficient solutions of
the constrained vector problem (PS ) and the corresponding unconstrained vector problem (PD).
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Notice, by dealing with the generalised convexity concept for vector functions f : D→Y (from
Definition 2.16) we have to impose that the domain D is a convex set.

Theorem 3.3. Assume (A), let D be convex and let one of the following conditions be satisfied
(1) f is C -quasiconvex on D and non-constant on proper line segments in S , i.e.

∀x1,x2 ∈ S , x1 6= x2, f (x1) = f (x2) ∃x ∈ (x1,x2) : f (x) 6= f (x1). (3.7)

(2) f is C \{0Y}-quasiconvex on D.
Then,

int(S)∩Eff( f ,S ,C)⊆ int(S)∩Eff( f ,D,C), (3.8)

S ∩Eff( f ,D,C)⊆ Eff( f ,S ,C)⊆
(

int(S)∩Eff( f ,D,C)
)
∪
(

S ∩bd(S)
)
, (3.9)

Eff( f ,S ,C)\Eff( f ,D,C)⊆ S ∩bd(S). (3.10)

If additionally S is open, then S ∩Eff( f ,D,C) = Eff( f ,S ,C).

Proof. For x ∈ int(S)∩Eff( f ,S ,C), on the contrary we assume x 6∈ Eff( f ,D,C) and therefore
get the existence of x0 ∈ D such that f (x0) �C f (x ). From the efficiency of x it follows that
x0 ∈ D \ S .

Under condition (1) from the C -quasiconvexity of f we get the existence of x̄ ∈ D \{x } such
that f (x) ≤C f (x ) for all x ∈ [x̄,x ). Due to x ∈ int(S) we have [x̄,x )∩ S 6= /0. Hence, for any
x ∈ [x̄,x )∩ S we either have f (x) �C f (x ) or the condition (3.7) yields the existence of an
x̂ ∈ [x,x ) with this property. In case of (2) we get the existence of x̄ ∈ D \{x } such that for all
x ∈ [x̄,x ) we have f (x) �C f (x ). Then, for any x ∈ [x̄,x )∩ S we get f (x) �C f (x ) and x ∈ S ,
where again because of x ∈ int(S) we have [x̄,x )∩ S 6= /0. Both cases lead to a contradiction to
x ∈ Eff( f ,S ,C), which proves (3.8).

From this we immediately get (3.9) by (3.1) and the fact that S = int(S)∪
(

S ∩bd(S)
)
:

Eff( f ,S ,C) =
(

int(S)∪
(

S ∩bd(S)
))
∩Eff( f ,S ,C)

⊆
(

int(S)∩Eff( f ,D,C)
)
∪
(

S ∩bd(S)
)
.

The second inclusion of (3.9) then gives (3.10). The last statement also follows directly from
(3.9). �

We also derive a counterpart to Theorem 3.3 for the concept of weak efficiency.

Theorem 3.4. Assume (A), let D be convex and let f be int(C)-quasiconvex on D. Then,

int(S)∩WEff( f ,S ,C)⊆ int(S)∩WEff( f ,D,C), (3.11)

S ∩WEff( f ,D,C)⊆WEff( f ,S ,C)⊆
(

int(S)∩WEff( f ,D,C)
)
∪
(

S ∩bd(S)
)
, (3.12)

WEff( f ,S ,C)\WEff( f ,D,C)⊆ S ∩bd(S). (3.13)

If additionally S is open, then S ∩WEff( f ,D,C) = WEff( f ,S ,C).

Proof. Since the proof is similar to the proof of Theorem 3.3, we will make the explanations a
bit shorter.

For x ∈ int(S)∩WEff( f ,S ,C) we contrarily assume x 6∈WEff( f ,D,C), so that there exists
x0 ∈ D \ S with f (x0) <C f (x ). Because of x ∈ int(S) there exists λ ∈ R> such that for xλ :=
x +λ (x0− x ) we have [x ,xλ ]⊆ S .
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From the int(C)-quasiconvexity of f we get the existence of x̄ ∈ D \ {x } such that for all
x ∈ [x̄,x )∩ S 6= /0 we have f (x) <C f (x ), which contradicts x ∈WEff( f ,S ,C) and therefore
proves (3.11).

As in Theorem 3.3 the other statements follow from there. �

For the concept of strict efficiency we get the following result.

Theorem 3.5. Assume (A), let D be convex and f be C -quasiconvex on D. Then,

int(S)∩SEff( f ,S ,C)⊆ int(S)∩SEff( f ,D,C), (3.14)

S ∩SEff( f ,D,C)⊆ SEff( f ,S ,C)⊆
(

int(S)∩SEff( f ,D,C)
)
∪
(

S ∩bd(S)
)
, (3.15)

SEff( f ,S ,C)\SEff( f ,D,C)⊆ S ∩bd(S). (3.16)

If additionally S is open, then S ∩SEff( f ,D,C) = SEff( f ,S ,C).

Proof. Also here the proof is similar to the proof of Theorem 3.3.
For x ∈ int(S)∩SEff( f ,S ,C) we in contrast assume x 6∈ SEff( f ,D,C), so that there exists

x0 ∈ D \ S , x0 6= x , with f (x0) ≤C f (x ). From the C -quasiconvexity of f on D we get the
existence of x̄ ∈ D \ {x } such that for all x ∈ [x̄,x )∩ S 6= /0 we have f (x) ≤C f (x ). That is a
contradiction to x ∈ SEff( f ,S ,C), so we get (3.14).

Again, from this we get the other statements. �

Remark 3.6. Similar results to our Theorems 3.3, 3.4 and 3.5 are derived by Günther [10, 11],
and Günther and Tammer [12, 13] for the case Y = Rm and C = Rm

≥ by using componentwise
generalised convexity concepts for vector functions f : X → Rm. Our Theorems 3.3, 3.4 and
3.5 show that by imposing appropriate generalised convexity assumptions on vector functions
f : X → Y we are able to extend/generalise these results to the case where Y is a real linear-
topological space and C is a nontrivial, pointed, convex cone in Y .

Remark 3.7. Notice that Theorems 3.3, 3.4 and 3.5 provide sufficient conditions (including
generalised convexity assumptions on the vector function f ) for the validity of the inclusions
given in (3.10), (3.13) and (3.16), respectively. Of course, int(S) = /0 is sufficient for all three
inclusions as well. Later in our main theorems in Section 4.3 we will simply assume that the
inclusions (3.10), (3.13) and (3.16) are valid, and thus do not require any further generalised
convexity assumptions for the vector function f .

4. VECTORIAL PENALISATION APPROACH

This section contains the vectorial penalisation approach for general vector optimisation
problems. Given a vector function f : D → Y (as considered in assumption (A)) and a scalar
function ν : D→ R, we are interested in the extended (penalised) vector function

f⊗ : D→ Y ×R, f⊗ := ( f ,ν)

and the extended (penalised) vector optimisation problem

argminC×R≥
x∈D

f⊗(x). (P⊗D )

In our approach, the function ν : D→R can be seen as a penalisation term w.r.t. the feasible
set S of the vector problem (PS ), which is given in (A).
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After studying basic properties of the penalisation function ν , we investigate special types of
penalisation functions for vector problems involving abstract constraints as well as for problems
involving explicit generalised inequality and equality constraints. In particular, for the cone-
constraint case we are able to construct appropriate penalisation functions for some popular
cones given in spaces of finite and infinite dimension (as given in Section 2.2). Furthermore, we
analyse the effects of adding/removing a penalisation term to/from the original vector objective
function on the nature of the solution sets of the vector optimisation problems (in the spirit of
Fliege [29]). We end this section by stating our main results related to our vectorial penalisation
approach for general vector optimisation problems, which show profound relationships between
the solution sets of the vector problems (PS ), (PD) and (P⊗D ).

Throughout this section, it is convenient to introduce the following assumptions:
Assume (A),
ν : D→ R,
f⊗ := ( f ,ν).

(A⊗)

4.1. Penalisation functions. Assume (A⊗) and consider a set U ⊆ D with /0 6= S ⊆ U. For the
penalisation function ν : D→ R, we are interested in properties of the following type:

∀x0 ∈ bd(S) : lev≤
(

U,ν ,ν(x0)
)
= S (A1)

∀x0 ∈ bd(S) : lev=
(

U,ν ,ν(x0)
)
= bd(S) (A2)

∀x0 ∈ S : lev=
(

U,ν ,ν(x0)
)
= lev≤

(
U,ν ,ν(x0)

)
= S (A3)

∀x0 ∈ S : lev≤
(

U,ν ,ν(x0)
)
⊆ S (A4)

lev≤(U,ν ,0) = S (A5)

lev=(U,ν ,0) = bd(S) (A6)

∀x1 ∈ bd(S) ∃x2 ∈ int(S) : [x2,x1)⊆ lev<
(

U,ν ,ν(x1)
)

(A7)

Dealing with the properties (A1), (A2), (A6) and (A7) we impose the condition bd(S) ⊆ U
and when considering (A7) we assume U to be convex.

For simplicity, if ν satisfies one of the properties (A1) - (A7) based on some sets U and S , we
briefly use the notation

ν ∈ Ai(S ,U) (for i ∈ {1, . . . ,7}).

Proposition 4.1. For any set U ⊆ D with /0 6= S ⊆U, the following assertions hold true:
(1) If bd(S)⊆U and ν ∈ A1(S ,U), then S is closed and

∀x0 ∈ bd(S) : bd(S)⊆ lev=
(

U,ν ,ν(x0)
)
. (4.1)

(2) If ν ∈ A1(S ,U)∩A2(S ,U), then

∀x0 ∈ bd(S) : lev<
(

U,ν ,ν(x0)
)
= int(S), (4.2)

(3) If ν ∈ A3(S ,U), then

∀x0 ∈ S : lev<
(

U,ν ,ν(x0)
)
= /0. (4.3)

(4) ν ∈ A3(S ,U) is equivalent to

∀x0 ∈ S : lev≤
(

U,ν ,ν(x0)
)
= S .
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(5) If S is closed, then A3(S ,U) = A1(S ,U)∩A2(S ,U) is equivalent to int(S) = /0.

Proof. For (1) consider any x1,x2 ∈ bd(S). Because of xi ∈ lev≤
(

U,ν ,ν(xi)
)

for i ∈ {1,2} by
(A1) these satisfy x1,x2 ∈ S , which proves the closedness of S , and therefore for j ∈ {1,2}\{i}
we get x j ∈ lev≤

(
U,ν ,ν(xi)

)
, which proves (4.1). (2) and (3) are obvious. (4) follows by the

fact that for any x0,x1 ∈ S the conditions x1 ∈ lev≤
(

U,ν ,ν(x0)
)

and x0 ∈ lev≤
(

U,ν ,ν(x1)
)

imply x1 ∈ lev=
(

U,ν ,ν(x0)
)
. Let us prove (5). Under int(S) = /0 and the closedness of S , the

equality A3(S ,U) = A1(S ,U)∩A2(S ,U) follows immediately. Assume now that A3(S ,U) =
A1(S ,U)∩A2(S ,U). It is easy to check that A3(S ,U) 6= /0 (put ν ≡ 0 in S and ν ≡ 1 in U \ S).
Thus, (2) and (3) yield /0 = lev<

(
U,ν ,ν(x0)

)
= int(S) for x0 ∈ bd(S). �

Now, we study some relationships between some of the properties (A1) - (A7).

Proposition 4.2. For any set U ⊆ D with /0 6= S ⊆ U and bd(S) ⊆ U, the following assertions
hold true:

(1)
⋃

i∈{1,3,5}Ai(S ,U)⊆ A4(S ,U).
(2) A5(S ,U)∩A6(S ,U)⊆ A1(S ,U)∩A2(S ,U).
(3) If ν ∈ A1(S ,U)∩A2(S ,U), then ν−ν(x0) ∈ A5(S ,U)∩A6(S ,U) for all x0 ∈ bd(S).

Proof. All three assertions follow immediately from the definitions of Ai(S ,U), i∈ {1,2, . . . ,6}.
�

We are primarily interested in a penalisation function ν : U→R that satisfies ν ∈ A1(S ,U)∩
A2(S ,U) (called type 1 representation for simplicity) or ν ∈ A3(S ,U) (called type 2 repre-
sentation), which is most often used with the concrete value ν

∣∣
S ≡ 0.

Remark 4.3. Notice, for a given function ν : D → R with /0 6= S ⊆ U ⊆ D, the following
assertions are equivalent:

• ν ∈ A3(S ,U) and ν
∣∣

S ≡ 0.
• lev≤(U,ν ,0) = lev=(U,ν ,0) = S .
• ν is nonnegative on U and satisfies ν ∈ A5(S ,U).

If additionally S = bd(S) (e.g., sets of isolated points), then also the following statement is
equivalent:

• ν ∈ A5(S ,U)∩A6(S ,U).
We will use these alternative formulations of the type 2 representation in the upcoming examples
in Section 4.1.1 and throughout Section 4.1.2.

4.1.1. Abstract constraints. In this section, let us assume that the feasible set S of the vector
optimisation problem (PS ) (as defined in (A)) is given by an abstract set in X , which satisfies
certain properties (e.g., closedness, convexity, solidness, polyhedrality). Our aim is to provide
some popular functions that satisfy a type 1/type 2 representation.

Example 4.4 (Minkowski functional). Given a nonempty, closed set S in a real linear-topological
space X , the Minkowski functional pS : X → [0,+∞] associated to the set S is defined by

pS(x) := inf
{

t ∈ R>
∣∣ x ∈ tS

}
for all x ∈ X .

Assume that S ⊆ X is convex with 0X ∈ int(S) and s ∈ S . Then, the following properties of pS
are valid:
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• pS is a real-valued, continuous and sublinear function.
• If ν : X → R is given by ν(x) := pS−s(x− s) for all x ∈ X , then ν ∈ Ai(S ,U) for all

i ∈ {1,2,4}.
• If ν : X → R is given by ν(x) := pS−s(x− s)−1 for all x ∈ X , then ν ∈ Ai(S ,U) for all

i ∈ {1,2,4,5,6}.

Example 4.5 (Distance function). For any nonempty, closed set S in a normed space (X ,‖·‖),
we consider the distance to the set S given by the function dS : X → R, where

dS(x) := inf{‖x− s‖ | s ∈ S} for all x ∈ X .

The following properties of dS are important:

• dS is Lipschitz continuous with constant 1.
• dS is convex if and only if S is convex.
• If S is a convex cone, then dS is sublinear.
• dS satisfies the property dS ∈ Ai(S ,U) for all i ∈ {3,4,5} and dS

∣∣
S ≡ 0.

Example 4.6 (Oriented/signed distance function). Let S be a nonempty, proper, closed set in a
normed space (X ,‖·‖). Then, the oriented/signed distance function (by Hiriart-Urruty [46])
4S : X → R is given by

4S(x) := dS(x)−dX\S(x) =

{
dS(x) for x ∈ X \ S ,
−dX\S(x) for x ∈ S .

Let us recall some well-known properties of4S (see Hiriart-Urruty [46] and Zaffaroni [47]):

• 4S is real-valued and Lipschitz continuous with constant 1.
• S is convex if and only if4S is convex.
• If S is a convex cone, then4S is sublinear.
• 4S fulfills the property4S ∈ Ai(S ,U) for all i ∈ {1,2,4,5,6}.

Example 4.7 (Gerstewitz functional). Suppose that S ( X is a nonempty, proper, closed sub-
set of a linear-topological space X and C ( X is a proper, closed, convex cone such that the
free-disposal assumption S −C = S . Let k ∈ C \ (−C) be a direction. Then, the Gerstewitz
functional φS ,k : X → R associated to the pair (S ,k) is defined by

φS ,k(x) := inf
{

t ∈ R
∣∣ x ∈ S + tk

}
for all x ∈ X .

For the case that C is solid and k ∈ int(C), let us recall some well-known properties of the
Gerstewitz functional φS ,k (see Gerstewitz [48], Göpfert, Riahi, Tammer and Zălinescu [41,
Sec. 2.3]) and Khan, Tammer and Zălinescu [49, Sec. 5.2]:

• φS ,k is real-valued and continuous.
• φS ,k is convex if and only if S is convex.
• If S =−C, then φS ,k is sublinear.
• φS ,k fulfills the property φS ,k ∈ Ai(S ,U) for all i ∈ {1,2,4,5,6}.

If S is given by a polyhedral set, then some more specific formulations for the values of φS ,k are
known (see, e.g., Günther and Popovici [22, 34], and Tammer and Winkler [50]).
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4.1.2. Explicit generalised inequality and equality constraints. Consider the vector optimisa-
tion problem (PS ) with explicit generalised inequality and equality constraints (i.e., the feasible
set S is given by

S = {x ∈U | g(x) ∈K , h(x) = 0Z2}) (4.4)

and assume that (Ag,h) is valid. As already mentioned, we are primarily interested in a penali-
sation function ν : U→ R that satisfies a type 1 representation (i.e., ν ∈ A1(S ,U)∩A2(S ,U))
or a type 2 representation (i.e., ν ∈ A3(S ,U)).

In a first step, we focus on the construction of a function φ : Z1 → R that possesses the
(cone representation; K -representing) property φ ∈ A5(K ,Z1)∩A6(K ,Z1) or the property
φ ∈ A3(K ,Z1).

Remark 4.8. It is easy to see that some abstract functions from Section 4.1.1 enjoy such proper-
ties. More precisely, the distance function dK (as given in Example 4.5 with S := K ) satisfies
dK ∈ A3(K ,Z1) while the oriented/signed distance function 4K (as given in Example 4.6
with S := K ) and the Gerstewitz functional φK ,k with k ∈ − int(K ) (as given in Example 4.7
with S :=K and C :=−K ) satisfy the property4K , φK ,k ∈A5(K ,Z1)∩A6(K ,Z1). By Jahn
[39, Prop 3.6] we know that any sublinear, upper semi-continuous function φ ∈ A5(K ,Z1) with
{z ∈ Z1 | φ(z) < 0} 6= /0 belongs to A6(K ,Z1). Thus, also for other functions such properties
are valid (see the references Eichfelder and Jahn [51], Jahn [39], and our upcoming Example
4.10).

The next theorem shows us a general way to construct a function φ satisfying the K -
representing property φ ∈ A5(K ,Z1)∩A6(K ,Z1) or φ ∈ A3(K ,Z1) with φ

∣∣
K
≡ 0 (see Re-

mark 4.3).

Theorem 4.9. Consider a real linear-topological space Z, a finite-dimensional Euclidean space
V = Rn, a nonempty set Q⊆V , a function η : R≥→ R≥ that satisfies η ∈ A5({0},R≥), and a
function ψ : Z×Q→ R. Define the set

C := {z ∈ Z | ∀s ∈ Q : ψ(z,s)≤ 0}=
⋂
s∈Q

lev≤(Z,ψ(·,s),0).

Then, the following assertions hold true:

(1) If ψ(·,s) is positively homogeneous for all s ∈ Q, and ψ(0Z, ·)≡ 0, then C is a cone.
(2) If ψ(·,s) is lower semi-continuous (respectively, quasiconvex) for all s ∈ Q, then C is

closed (respectively, convex).
(3) If any of the following assumptions is satisfied

• Q is compact and ψ(z, ·) : Q→ R is upper semi-continuous for all z ∈ Z;
• Q is bounded and ψ(z, ·) : Q→ R is uniformly continuous for all z ∈ Z;
• Q is bounded, ψ is defined on Z× cl(Q), and ψ(z, ·) : cl(Q)→ R is upper semi-

continuous for all z ∈ Z,
then the supremum of {ψ(z,s) | s ∈ Q} (for a given z ∈ Z) exists, and so φ : Z → R,
defined by

φ(z) := sup{ψ(z,s) | s ∈ Q} for all z ∈ Z,

satisfies the property φ ∈ A5(C,Z). If, in addition, for any c ∈ C there is s ∈ Q with
ψ(c,s) = 0, then φ ∈ A3(C,Z).
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(4) If
int(C) = {z ∈ Z | ∀s ∈ Q : ψ(z,s)< 0}=

⋂
s∈Q

lev<(Z,ψ(·,s),0), (4.5)

Q is compact, and ψ(z, ·) is upper semi-continuous for all z∈ Z, then φ : Z→R, defined
by

φ(z) := max{ψ(z,s) | s ∈ Q} for all z ∈ Z,

satisfies the property φ ∈ A5(C,Z)∩A6(C,Z).
(5) If Q is finite, then φ : Z→ R, defined by

φ(z) := ∑
s∈Q

η(max{ψ(z,s),0}) for all z ∈ Z,

satisfies the property φ ∈ A3(C,Z)∩A5(C,Z)
(6) If Q is compact and solid with cl(int(Q)) = cl(Q) (e.g., if Q is convex), ψ(z, ·) is contin-

uous for all z ∈ Z, and η is continuous on R≥, then φ : Z→ R, defined by

φ(z) :=
∫

s∈Q
η(max{ψ(z,s),0})ds for all z ∈ Z,

satisfies the property φ ∈ A3(C,Z)∩A5(C,Z).
(7) Let K ⊆V be the cone generated by Q, i.e., K = R≥ ·Q. If ψ(c, ·) is positively homoge-

neous for all c ∈C, ψ is defined on Z×K, and ψ(c,0V )≤ 0 for all c ∈C, then

C = {z ∈ Z | ∀k ∈ K : ψ(z,k)≤ 0}=
⋂

k∈K

lev≤(Z,ψ(·,k),0),

and if further (4.5) is valid and 0V /∈ Q, then

int(C) = {z ∈ Z | ∀k ∈ K \{0V} : ψ(z,k)< 0}=
⋂

k∈K\{0V }
lev<(Z,ψ(·,k),0).

Proof. Assertions (1) and (2) are easy to check.
(3) The existence of the supremum of {ψ(z,s) | s ∈ Q} (for a given z ∈ Z) under one of the

first two assumptions is well-known.
If Q is bounded, then cl(Q) is bounded as well, hence cl(Q) is compact (in the finite

dimensional setting). Therefore, the upper semi-continuous function ψ(z, ·) : cl(Q)→R
attains its maximum by the Weierstrass theorem. Consequently, for all z ∈ Z

sup{ψ(z,s) | s ∈ Q} ≤max{ψ(z,s) | s ∈ cl(Q)}< ∞.

Since
C =

⋂
s∈Q

lev≤(Z,ψ(·,s),0) = lev≤(Z,φ ,0),

we infer φ ∈ A5(C,Z). If, in addition, for any c ∈C there is s ∈Q with ψ(c,s) = 0, then
φ(c) = sup{ψ(c,s) | s ∈ Q}= 0 for all c ∈C, hence φ ∈ A3(C,Z).

(4) By (3) we get that φ ∈A5(C,Z), where the supremum is actually a maximum. Moreover,
since (4.5) is valid, we get

int(C) =
⋂
s∈Q

lev<(Z,ψ(·,s),0) = lev<(Z,φ ,0),

i.e., φ ∈ A6(C,Z).
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(5) If Q is finite, then φ is well-defined and nonnegative, and we have φ(z) = 0 if and only
if z ∈C (i.e., ψ(z,s)≤ 0 for all s ∈ Q), taking into account that η ∈ A5({0},R≥). This
shows that φ ∈ A3(C,Z)∩A5(C,Z).

(6) Define the function h : Z×Q→ R by h(z,s) := η(max{ψ(z,s),0}) for all (z,s) ∈ Z×
Q. Under our assumptions, h(z, ·) is continuous and nonnegative for all z ∈ Z. By
the famous Weierstrass theorem, minimum and maximum of h(z, ·) are attained on the
compact set Q. Denote by µ(Q) the Lebesgue measure of Q. Clearly, µ(Q) ∈ [0,∞) by
the compactness of Q. Hence, for any z ∈ Z,

∞ > µ(Q)max
s∈Q

h(z,s)≥ φ(z) =
∫

s∈Q
h(z,s)ds≥ µ(Q)min

s∈Q
h(z,s)≥ 0.

In particular, we see that φ is well-defined. It remains to show that φ ∈ A3(C,Z)∩
A5(C,Z). It is easy to check that φ(c) = 0 for all c ∈C (i.e., ψ(c,s) ≤ 0 for all s ∈ Q).
Take now some z /∈C, i.e., ψ(z,s)> 0 for some s∈Q. Due to the (lower-semi)continuity
of ψ(z, ·) (i.e., all strict upper level sets of ψ(z, ·) are open in Q), there is ε > 0 such
that ψ(z,w) > 0 for all w ∈ Q∩Bε(s). By our assumption cl(int(Q)) = cl(Q), there
are s0 ∈ int(Q) and δ ∈ (0,ε) with B̄0 := Bδ (s0) ⊆ Q∩Bε(s). Clearly, ψ(z,w) > 0 for
all w ∈ B̄0, hence minw∈B̄0 h(z,w) = minw∈B̄0 η(ψ(z,w)) > 0, taking into account that
h(z, ·) is continuous on Q(⊇ B̄0) and B̄0 is compact. Moreover, since B̄0 is solid and
compact, we have µ(B̄0) ∈ (0,∞). Consequently, we conclude

φ(z) =
∫

s∈Q
h(z,s) ds≥

∫
w∈B̄0

h(z,w) dw≥ µ(B̄0) min
w∈B̄0

h(z,w)> 0.

The facts that φ(c) = 0 for all c ∈C and φ(z) > 0 for all z /∈C ensure φ ∈ A3(C,Z)∩
A5(C,Z).

(7) If K = R≥ ·Q, ψ(c, ·) is positively homogeneous for all c ∈C, and ψ(c,0V )≤ 0 for all
c ∈C, then

C = {z ∈ Z | ∀t ≥ 0,s ∈ Q : ψ(z, ts) = tψ(z,s)≤ 0}=
⋂

k∈K

lev≤(Z,ψ(·,k),0).

If further (4.5) is valid and 0V /∈ Q, then K \{0V}= R> ·Q. Hence

int(C) = {z ∈ Z | ∀t > 0,s ∈ Q : ψ(z, ts) = tψ(z,s)< 0}=
⋂

k∈K\{0V }
lev<(Z,ψ(·,k),0). �

Thanks to Theorem 4.9, we are able to construct functions φ : Z1 → R with the desired
cone representation properties for some important examples of spaces and cones considered in
Section 2.2.

Example 4.10. We list some important examples of spaces and cones:

• Standard cone in Rn: Consider Z :=V := Rn, C :=−Rn
≥, Q := {e1, . . . ,en}, ψ(z,s) :=

sT z. Then, the function φ , defined by

φ(z) := max{z1, . . . ,zn} for all z = (z1, . . . ,zn) ∈ Z,

satisfies the property φ ∈ A5(C,Z)∩A6(C,Z). Notice that the function φ is continuous
but nonsmooth.
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In contrast, the function φ , defined by

φ(z) :=
n

∑
i=1

(max{zi,0})2 for all z = (z1, . . . ,zn) ∈ Z,

satisfies the property φ ∈ A3(C,Z)∩A5(C,Z) and is continuously differentiable so that
φ
∣∣
C ≡ 0. From numerical optimisation, it is well-known that φ is a penalty function

w.r.t. −Rn
≥ (see the recent paper by Jahn [39]).

Due to Theorem 4.9 (4) (applied for Q := {e1}, ψ(z,s) = max{z1, . . . ,zn}), the func-
tion φ , defined by

φ(z) := (max{max{z1, . . . ,zn},0})2 = (max{z1, . . . ,zn,0})2 for all z = (z1, . . . ,zn) ∈ Z,

also possesses the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

• Polyhedral cone in Rn: Consider Z := V := Rn, a nonempty finite set P ⊆ Z \ {0Z}
with 0Z /∈ conv(P), and a polyhedral cone C :=CP ⊆ Z given by

CP := {z ∈ Z | ∀p ∈ P : pT z≤ 0}.

Let ψ : Z×P→ R be defined by ψ(z, p) = pT z. Then, the function φ , defined by

φ(z) := max{pT z | p ∈ P} for all z ∈ Z,

satisfies the property φ ∈ A5(C,Z)∩A6(C,Z).
Moreover, the function φ , defined by

φ(z) := (max{pT z | p ∈ P∪{0Z}})2 for all z ∈ Z,

respectively, by

φ(z) := ∑
p∈P

(max{pT z,0})2 for all z ∈ Z,

satisfies the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

• K-semidefinite cone (Löwner cone, copositive cone) in Sn: Consider the space Z =
Sn of all real symmetric n×n matrices, V =Rn, a nontrivial, closed, convex cone K⊆V
(for instance K = Rn or K = Rn

≥), and the negative K-semidefinite cone C := −Sn
K in

Z. Let ψ : Z×Q→ R be defined by ψ(M,s) = sT Ms.
(a) For the compact set Q := K∩SV , the function φ , defined by

φ(M) := max{sT Ms | s ∈ Q} for all M ∈ Z, (4.6)

satisfies the property φ ∈ A5(C,Z)∩A6(C,Z).
(b) For the compact, convex set Q := cl(conv(K ∩SV )), if K# 6= /0, then the function

φ , defined by (4.6), satisfies φ ∈ A5(C,Z)∩A6(C,Z) as well. Notice, in view of
Section 2.2 we have K# 6= /0 if and only if 0V /∈ cl(conv(K∩SV )).
Furthermore, assuming Q is solid, then the function φ , defined by

φ(M) :=
∫

s∈Q
(max{sT Ms,0})2 ds for all M ∈ Z, (4.7)

satisfies the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.
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(c) For the compact, convex set Q := K∩BV , it follows that the function φ , defined by
(4.6), possesses the property φ ∈ A3(C,Z) with φ

∣∣
C ≡ 0 (since 0V ∈ Q).

Moreover, assuming K is solid, then the function φ , defined by (4.7) satisfies the
property φ ∈ A3(C,Z) with φ

∣∣
C ≡ 0.

(d) For any choice Q ∈ {K∩SV , cl(conv(K∩SV ))} one has that φ , defined by

φ(M) := (max{sT Ms | s ∈ Q∪{0V}})2 for all M ∈ Z,

has the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

• Löwner cone in Sn: Consider the space Z =Sn of all real symmetric n×n matrices,
V = Rn, the finite set Q := {1, . . . ,n}, and the negative Löwner cone C := −Sn

+. Let
ψ : Z×Q→ R be defined by ψ(M,s) = eigs(M) (where eig(M) is a vector of the n
eigenvalues of M and eigs(M) is its sth component). Then, the function φ , defined by

φ(M) := max{eigs(M) | s ∈ Q} for all M ∈ Z

satisfies the property φ ∈ A5(C,Z)∩A6(C,Z). Notice, by the famous Rayleigh-Ritz
theorem we have (for M ∈ Z)

φ(M) = max{eigs(M) | s ∈ Q}= max{sT Ms | s ∈ SV},

i.e., φ is exactly the function (4.6) from the previous example (case (a) with K = Rn).
Moreover, the function φ , defined by

φ(M) := ∑
s∈Q

(max{eigs(M),0})2 for all M ∈ Z

satisfies the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

• Second-order cone (Lorentz cone) in Rn×R: Consider a real normed space V = Rn,
the space Z =V×R, and the negative second-order cone C := {(y, t)∈ Z | t+‖y‖V ≤ 0}.
Then, the function φ , defined by

φ(y, t) := t +‖y‖V for all (y, t) ∈ Z,

satisfies the property φ ∈ A5(C,Z)∩A6(C,Z).
Moreover, the function φ , defined by

φ(y, t) := (max{t +‖y‖V , 0})2 for all (y, t) ∈ Z,

possesses the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

Consider the space (V,‖·‖2). According to Section 2.2, the negative Lorentz cone
admits the representation

C =
⋂
s∈Q

{(y, t) ∈V ×R | sT y≥ t},

where Q ∈ {BV ,SV}. Then, the function φ , defined by

φ(y, t) := max{t− sT y | s ∈ Q} for all (y, t) ∈ Z,

ensures φ ∈ A5(C,Z), and since

int(C) =
⋂
s∈Q

{(y, t) ∈V ×R | sT y > t},
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we have φ ∈ A6(C,Z). In contrast, the function φ , defined by

φ(y, t) :=
∫

s∈BV

(max{t− sT y,0})2 ds for all (y, t) ∈ Z,

has the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

• Bishop-Phelps cone in a normed space: Consider a real normed space Z, and the
Bishop-Phelps cone C := −C(y∗) = C(−y∗) for some y∗ ∈ Z∗ with ‖y∗‖Z∗ > 1. Then,
the function φ , defined by

φ(y) := y∗(y)+‖y‖Z for all y ∈ Z,

satisfies the property φ ∈ A5(C,Z)∩A6(C,Z). Notice that functions of this type are
known as Bishop-Phelps type (normlinear) functionals (see, e.g., Jahn [39]).

Moreover, the function φ , defined by

φ(y) := (max{y∗(y)+‖y‖Z , 0})2 for all y ∈ Z,

possesses the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

• Standard cone in C[a,b]: Consider the space Z = C[a,b] (with −∞ < a < b < ∞) of
real-valued continuous functions, V =R, the solid, compact, convex set Q = [a,b]⊆V ,
and the negative standard cone C := −C+[a,b] in Z. Let ψ : Z×Q→ R be defined by
ψ(u,s) = u(s). Then, the function φ , defined by

φ(u) := max{u(s) | s ∈ Q} for all u ∈ Z,

owns the property φ ∈ A5(C,Z)∩A6(C,Z).
Moreover, the function φ , defined by

φ(u) := (max{max{u(s) | s ∈ Q},0})2 for all u ∈ Z,

respectively, by

φ(u) :=
∫

s∈Q
(max{u(s),0})2 ds for all u ∈ Z,

satisfies the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

• Standard cone in Lp[a,b]: Consider the space Z = Lp[a,b] (with −∞ < a < b < ∞

and p ∈ [1,∞]) of all real-valued p-th power Lebesgue-integrable functions (essentially
bounded functions, respectively), the negative standard cone C :=−Lp

+[a,b] in Z, and a
positive real number δ . Then, the function φ , defined by

φ(u) := φδ (u) := min{ess sup{u(s) | s ∈ [a,b]},δ} for all u ∈ Z,

owns the property φ ∈ A5(C,Z), while the function φ , defined by

φ(u) := (max{φδ (u),0})2 for all u ∈ Z,

satisfies the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0. Notice that for u ∈ Lp[a,b] \L∞[a,b]

with p ∈ [1,∞) one may has ess sup{u(s) | s ∈ [a,b]} = ∞ but φδ (u) = δ < ∞. For
p = ∞ it is allowed to put δ = ∞ such that the minimum given in the function φδ is
always attained in the first argument.
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• Closed convex cone in Rn (construction based on the dual cone): Consider Z =V =
Rn (hence V ∗ =V ), a nontrivial, closed, convex cone C ⊆V , and a compact set Q⊆V
such that C+ = R≥ ·Q (for instance

Q ∈ {C+∩BV ∗ ,C+∩SV ∗ , cl(conv(C+∩SV ∗))}).

Let ψ : Z×Q→ R be defined by ψ(z,s) = sT z. By Section 2.2, we have

C = {z ∈ Z | ∀c ∈C+ : cT z≥ 0},

and
int(C) = {z ∈ Z | ∀c ∈C+ \{0V} : cT z > 0}.

(a) The function φ , defined by

φ(z) := max{−sT z | s ∈ Q} for all z ∈ Z,

owns the property φ ∈A5(C,Z). If C is solid and 0V /∈Q, then φ ∈A6(C,Z). If 0V ∈
Q, then φ ∈ A3(C,Z) with φ

∣∣
C ≡ 0. Notice, the function φ is used by Drummond

and Svaiter [52] for deriving a steepest decent method in vector optimisation.
(b) The function φ , defined by

φ(z) := (max{−sT z | s ∈ Q∪{0V}})2 for all z ∈ Z,

satisfies the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0.

(c) If Q is solid and convex, then the function φ , defined by

φ(z) :=
∫

s∈Q
(max{−sT z,0})2 ds for all z ∈ Z,

satisfies the property φ ∈ A3(C,Z) with φ
∣∣
C ≡ 0 as well.

Finally under the validity of assumption (Ag,h), we are able to show a way to construct a
penalisation function ν : U→ R that satisfies either the type 1 representation (Remark 4.11) or
the type 2 representation (Remark 4.12).

Remark 4.11 (Type 1 representation). Given functions φ ∈ A5(K ,Z1)∩A6(K ,Z1) and ζ ∈
A5({0Z2},Z2)∩A6({0Z2},Z2), the penalisation function

ν := max{φ ◦g,ζ ◦h}

satisfies

S = {x ∈U | φ(g(x))≤ 0, ζ (h(x))≤ 0}
= {x ∈U | ν(x) = max{φ(g(x)),ζ (h(x))} ≤ 0}
= lev≤(U,ν ,0),

i.e., ν ∈ A5(S ,U) is valid. If h≡ 0Z2 (i.e., only a cone constraint is considered) and

int(S) = {x ∈U | ν(x) = φ(g(x))< 0}= lev<(U,ν ,0),

then ν ∈ A6(S ,U) is valid. Conditions for ensuring int(S) = lev<(U,ν ,0) are studied by
Günther [10, 11], and Günther and Tammer [12, 13] (see also Zălinescu [33, p.147]).
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Remark 4.12 (Type 2 representation). Given functions φ ∈ A3(K ,Z1) and ζ ∈ A5({0Z2},Z2)∩
A6({0Z2},Z2), the penalisation function

ν := φ ◦g+ζ ◦h

satisfies

S = {x ∈U | ν(x) = φ(g(x))+ζ (h(x)) = 0}= lev=(U,ν ,0) = lev≤(U,ν ,0),

i.e., ν ∈ A3(S ,U) with ν
∣∣

S ≡ 0.

Let us pick out two examples in which we fully describe the structure of the penalisation
function for the feasible set given in (4.4).

Example 4.13. Consider the Euclidean spaces Z1 :=Rn and Z2 :=Rm, and the negative standard
cone K :=−Rn

≥. As we know from Example 4.10, the function φ : Z1→ R, defined by

φ(y) :=
n

∑
i=1

(max{yi,0})2 for all y = (y1, . . . ,yn) ∈ Z1,

satisfies the property φ ∈ A3(K ,Z1) with φ
∣∣
K
≡ 0. Moreover, the function ζ (·) := ‖·‖2

Z2
has

the property ζ ∈ A5({0Z2},Z2)∩A6({0Z2},Z2). Hence, the penalisation function ν : U → R,
given by

ν(x) =
n

∑
i=1

(max{gi(x),0})2 +
m

∑
i=1

(hi(x))2 for all x ∈U,

possesses the property ν ∈ A3(S ,U) and also ν
∣∣

S ≡ 0. Notice that such a type of penalisation
function is also used by Han and Mangasarian [4] in the framework of the exact penalty principle
for scalar optimisation problems with inequality and equality constraints.

Example 4.14. Consider the data given in Example 2.15. Using the given nontrivial, pointed,
closed, (possibly not solid) convex cone C ⊆ Z and the family of approximating dilating cones
{Cε}ε∈(0,1) ⊆ Z (which contains only pointed, closed, solid, convex cones), the feasible sets of
problems (CP) and (CPε ) are given by

S = {x ∈ X | Gx≤C w}= {x ∈ X | Gx−w ∈ −C}

and
Sε = {x ∈ X | Gx≤Cε

w}= {x ∈ X | Gx−w ∈ −Cε}.
Define C0 :=C. For any ε ∈ [0,1),

• the distance function φε := d−Cε
satisfies φε ∈ A3(−Cε ,Z) with φε

∣∣
−Cε
≡ 0,

• the oriented/signed distance φε :=4−Cε
satisfies the property φε ∈ A5(−Cε ,Z)∩

A6(−Cε ,Z),
• the Gerstewitz functional φε := φ−Cε ,k with k ∈C\{0Z}(⊆ int(Cε) for every ε ∈ (0,1))

satisfies the property φε ∈ A5(−Cε ,Z)∩A6(−Cε ,Z) if ε > 0.
Hence, for any ε ∈ [0,1), the penalisation function νε : X → R, given by

• νε(x) := d−Cε
(Gx−w), satisfies νε ∈ A3(Sε ,X) with ν

∣∣
Sε
≡ 0.

• νε(x) :=4−Cε
(Gx−w), satisfies νε ∈ A5(Sε ,X).

• νε(x) := φ−Cε ,k(Gx−w), satisfies νε ∈ A5(Sε ,X) if ε > 0.
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Consider a convex function φε ∈ A5(−Cε ,Z)∩A6(−Cε ,Z) and define x 7→ νε(x) := φε(Gx−w).
Under νε ∈ A5(Sε ,X), i.e.,

Sε = {x ∈ X | Gx−w ∈ −Cε}= {x ∈ X | φε(Gx−w)≤ 0},

the condition νε ∈ A6(Sε ,X) means

int(Sε) = {x ∈ X | Gx−w ∈ − int(Cε)}= {x ∈ X | φε(Gx−w)< 0}.

The function x 7→ νε(x) = φε(Gx−w) is convex (as a composition of the convex function φε

with the affine linear function x 7→Gx−w). Thus, if there is x∈ X with νε(x) = φε(Gx−w)< 0
(which is a Slater-type condition), then νε ∈ A6(Sε ,X) is valid (see Zălinescu [33, p.147]).
Notice that this Slater-type condition implies that both int(Cε) and int(Sε) are nonempty. Due
to int(Cε1) ⊆ int(Cε2) for ε1 ≤ ε2, if the Slater-type condition for ε1 ≥ 0 is valid, then it holds
true also for ε2 ≥ ε1.

4.2. The effects of adding/removing a penalisation term. In this section, we analyse the
effects of adding/removing a penalisation term to/from the original vector objective function on
the nature of the solution sets of the vector optimisation problems.

Remark 4.15. Notice that Fliege [29] (see also Mäkelä and Nikulin [53]) initiated an analysis of
the effects of adding/removing objectives to/from a multiobjective optimisation problem (based
on the standard ordering cone) on the solution sets. Our upcoming results generalise some
results derived by Fliege [29] and Mäkelä and Nikulin [53].

Consider the (not-penalised) vector optimisation problem

argminC
x∈S

f (x) (PS )

as given in Section 2.3 under the assumption (A). Beside the vector optimisation problem (PS )
we are interested in the extended (penalised) vector optimisation problem

argminC×R≥
x∈S

f⊗(x). (P⊗S )

In the following part of the section, we will look at relationships between the solution sets of
the non-penalised and the penalised vector problem. Although we will use S as the feasible set,
we want to point out, that S can be any arbitrary set with S ⊆ D.

For the concept of weak efficiency, we have the following results (cf. [29, Sec. 2]), [53,
Sec. 3.2], and [54, Cor. 3.3]).

Proposition 4.16. Assume (A). Then,

WEff( f ,S ,C)⊆WEff( f⊗,S ,C ×R≥), (4.8)

and
WEff( f⊗,S ,C ×R≥)\WEff( f ,S ,C)

=
{

x ∈WEff( f⊗,S ,C ×R≥)
∣∣∃y ∈ S : f (y)<C f (x ), ν(y)≥ ν(x )

}
.

(4.9)

If WEff( f ,S ,C) = WEff( f⊗,S ,C ×R≥), then argmin
x∈S

ν(x)⊆WEff( f ,S ,C).
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Proof. From Lemma 2.1 we have int(C ×R≥) = int(C)×R>, which gives (4.8).
Because of

WEff( f⊗,S ,C ×R≥)\WEff( f ,S ,C)

=
{

x ∈ S
∣∣∀x ∈ S : f⊗(x) 6<C×R≥ f⊗(x ), ∃y ∈ S : f (y)<C f (x )

}
we get (4.9). Lastly, for x ∈ argmin

x∈S
ν(x), we have ν(x) 6∈ ν(x )−R> for every x∈ S . Therefore,

we have f⊗(x) 6∈ f⊗(x )− int(C ×R≥) and with WEff( f ,S ,C) = WEff( f⊗,S ,C ×R≥) we get
the claim. �

Similar relationships are also valid for the concept of strict efficiency (cf. [53, Cor. 2]).

Proposition 4.17. Assume (A). Then,

SEff( f ,S ,C)⊆ SEff( f⊗,S ,C ×R≥) (4.10)

and

SEff( f⊗,S ,C ×R≥)\SEff( f ,S ,C)

=
{

x ∈ SEff( f⊗,S ,C ×R≥)
∣∣∃y ∈ S : f (y)≤C f (x ), ν(y)> ν(x )

}
.

(4.11)

Proof. For x ∈ SEff( f ,S ,C) and every x∈ S \{x }we have f (x) 6∈ f (x )−C from which directly
follows f⊗(x) 6∈ f⊗(x )−C ×R≥ and with this it is x ∈ SEff( f⊗,S ,C ×R≥).

The other claim follows from

SEff( f⊗,S ,C ×R≥)\SEff( f ,S ,C)

=
{

x ∈ S
∣∣∀x ∈ S \{x } : f⊗(x) 6≤C×R≥ f⊗(x ), ∃y ∈ S \{x } : f (y)≤C f (x )

}
. �

In contrast, for the concept of efficiency we have in general

Eff( f ,S ,C) 6⊆ Eff( f⊗,S ,C ×R≥) and Eff( f⊗,S ,C ×R≥) 6⊆ Eff( f ,S ,C). (4.12)

The following theorem characterises the intersection and both relative complements (set dif-
ferences) of the sets of efficient solutions of (PS ) and (P⊗S ).

Theorem 4.18. Under condition (A) we have

Eff( f ,S ,C)\Eff( f⊗,S ,C ×R≥)
=
{

x ∈ Eff( f ,S ,C)
∣∣∃y ∈ S : f (y) = f (x ), ν(y)< ν(x )

}
,

(4.13)

Eff( f⊗,S ,C ×R≥)\Eff( f ,S ,C)

=
{

x ∈ Eff( f⊗,S ,C ×R≥)
∣∣∃y ∈ S : f (y)�C f (x ), ν(y)> ν(x )

}
,

(4.14)

Eff( f ,S ,C)∩Eff( f⊗,S ,C ×R≥)
=
{

x ∈ S
∣∣∀x ∈ S :

(
f (x) = f (x ) and ν(x)≥ ν(x )

)
or f (x)�C f (x )

}
.

(4.15)

Proof. Under condition (A), it is easy to check that

(C ×R≥)\{0Y ×0}=
((

C \{0Y}
)
×R≥

)
∪ (C ×R>). (4.16)
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Hence,

Eff( f ,S ,C)\Eff( f⊗,S ,C ×R≥)

(4.16)
=

x ∈ S

∣∣∣∣∣∣
∀x ∈ S : f (x) 6∈ f (x )−C \{0Y},
∃y ∈ S : f⊗(y) ∈ f⊗(x )− (C \{0Y})×R≥ or

f⊗(y) ∈ f⊗(x )−C ×R>


=

{
x ∈ S

∣∣∣∣ ∀x ∈ S : f (x) 6∈ f (x )−C \{0Y},
∃y ∈ S : f⊗(y) ∈ f⊗(x )−C ×R>

}
=

{
x ∈ S

∣∣∣∣ ∀x ∈ S : f (x) 6∈ f (x )−C \{0Y},
∃y ∈ S : f (y) = f (x ), ν(y) ∈ ν(x )−R>

}
=
{

x ∈ Eff( f ,S ,C)
∣∣∃y ∈ S : f (y) = f (x ), ν(y)< ν(x )

}
.

Similarly, for (4.14), we get

Eff( f⊗,S ,C ×R≥)\Eff( f ,S ,C)

=

{
x ∈ S

∣∣∣∣ ∀x ∈ S : f⊗(x) 6∈ f⊗(x )− (C ×R≥)\{0Y ×0},
∃y ∈ S : f (y) ∈ f (x )−C \{0Y}

}
(4.16)
=

x ∈ S

∣∣∣∣∣∣
∀x ∈ S : f⊗(x) 6∈ f⊗(x )−

(
C \{0Y}

)
×R≥ and

f⊗(x) 6∈ f⊗(x )−C ×R>,
∃y ∈ S : f (y) ∈ f (x )−C \{0Y}


=
{

x ∈ Eff( f⊗,S ,C ×R≥)
∣∣∃y ∈ S : f (y) ∈ f (x )−C \{0Y} and ν(y) 6∈ ν(x )−R≥

}
.

Lastly, for (4.15), we have

Eff( f ,S ,C)∩Eff( f⊗,S ,C ×R≥)

(4.16)
=

x ∈ S

∣∣∣∣∣∣
∀x ∈ S : f (x) 6∈ f (x )−C \{0Y},
∀x ∈ S : f⊗(x) 6∈ f⊗(x )− (C \{0Y})×R≥,
∀x ∈ S : f⊗(x) 6∈ f⊗(x )−C ×R>


=

{
x ∈ S

∣∣∣∣ ∀x ∈ S : f (x) 6∈ f (x )−C or f (x) = f (x ),
∀x ∈ S : f (x) 6∈ f (x )−C or ν(x) 6∈ ν(x )−R>

}
=

{
x ∈ S

∣∣∣∣ ∀x ∈ S : f (x) 6∈ f (x )−C or(
f (x) = f (x ), ν(x)≥ ν(x )

) },
where the second equivalency follows from the fact that because of f (x) 6∈ f (x )−C \{0Y} the
statement f⊗(x) 6∈ f⊗(x )− (C \{0Y})×R≥ is superfluous. �

We are primarily interested in the case that the contrary statement of (4.12) is valid, i.e., all
efficient solutions of (PS ) are efficient for (P⊗S ) as well, or vice versa. The following result
characterises such inclusion properties for the sets of efficient solutions (cf. [29, Cor. 3], [53,
Th. 1 and 2]).

Corollary 4.19. Assume condition (A). Then the following statements are equivalent
(1) Eff( f ,S ,C)⊆ Eff( f⊗,S ,C ×R≥)
(2) ∀x ∈ Eff( f ,S ,C), ∀x ∈ S : f (x) 6= f (x ) or ν(x)≥ ν(x )
(3) ∀x ∈ Eff( f ,S ,C), ∀x ∈ S : f (x) 6= f (x ) or ν(x) = ν(x ).

Moreover, we have the following equivalencies
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(4) Eff( f⊗,S ,C ×R≥)⊆ Eff( f ,S ,C)
(5) ∀x ∈ Eff( f⊗,S ,C ×R≥), ∀x ∈ S : f (x) = f (x ) or f (x)�C f (x ) or ν(x)≤ ν(x )
(6) ∀x ∈ Eff( f⊗,S ,C ×R≥), ∀x ∈ S : f (x) = f (x ) or f (x)�C f (x ).

Proof. For the first part, Eff( f ,S ,C) ⊆ Eff( f⊗,S ,C ×R≥) and Eff( f ,S ,C) \ Eff( f⊗,S ,C ×
R≥) = /0 are equivalent, which by (4.13) from Theorem 4.18 is equivalent to statement (2).
For x ∈ Eff( f ,S ,C) and x ∈ S with f (x) = f (x ), we have x ∈ Eff( f ,S ,C), so that by (2) we
actually get ν(x) ≤ ν(x ) ≤ ν(x) and therefore ν(x) = ν(x ), which proves the equivalency to
(3).

Similarly, Eff( f⊗,S ,C×R≥)⊆Eff( f ,S ,C) is equivalent to Eff( f⊗,S ,C×R≥)\Eff( f ,S ,C)=
/0, which by (4.14) is the same as

∀x ∈ Eff( f⊗,S ,C ×R≥), ∀x ∈ S : f (x) 6�C f (x ) or ν(x)≤ ν(x ).

It is f (x) 6�C f (x ) exactly then, when f (x) = f (x ) or f (x) �C f (x ), which shows (5). For
x ∈ Eff( f⊗,S ,C ×R≥) and x ∈ S with f (x) 6= f (x ) we get f⊗(x) 6≤C×R≥ f (x ). Therefore,
f (x)�C f (x ) implies ν(x)> ν(x ), which makes the condition ν(x)≤ ν(x ) in (5) obsolete and
gives (6). �

Remark 4.20. Mäkelä and Nikulin [53] and Malinowska [54] pointed out some disagreements
in the paper [29] from Fliege by providing counterexamples to certain statements, corrected
these and improved some results. By comparing our results to the ones by Fliege these differ-
ences can be seen in Corollary 4.19.

4.3. Vectorial penalisation - relationships between the solution sets. We end Section 4 by
stating our main results related to our vectorial penalisation approach for general vector opti-
misation problems, which show profound relationships between the solution sets of the vector
problems (PS ), (PD) and (P⊗D ). These results (in combination with our results from Section 3)
extend/generalise known results from the literature in the topic of vectorial penalisation in mul-
tiobjective/vector optimisation. Let us take a more detailed look at this in the following remark:

Remark 4.21. Günther and Tammer [12, 13] (see also Günther [10, 11]) proposed a vectorial
penalisation approach for multiobjective optimisation problems (X is a real linear-topological
space, Y = Rm, and C = Rm

≥), where the main results are derived for componentwise gener-
alised convex vector functions and the concepts of (strict, weak) efficiency. In the same setting,
Günther, Tammer and Yao [55] derived necessary optimality conditions for constrained multi-
objective optimisation problems.

Durea, Strugariu and Tammer [15] studied a vectorial penalisation approach to derive nec-
essary optimality conditions for constrained vector optimisation problems (X is a real normed
space, Y is a linear-topological space, and C is a nontrivial, closed, pointed, convex cone). The
authors considered only penalisation functions satisfying a (A3)-property and did not involve
any generalised convexity assumptions on the vector objective function.

Recently Schmölling [16] extended/generalised the vectorial penalisation approach (X and Y
are linear spaces, and C is a convex cone in Y ).

4.3.1. Efficiency. In this section, we derive our main relationships between the sets of efficient
solutions of the vector problems (PS ), (PD) and (P⊗D ).
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Theorem 4.22. Assume (A).

(1) If ν ∈ A4(S ,D) and for some x ∈ Eff( f ,S ,C) it is

lev=
(

S , f , f (x )
)
⊆ lev=

(
D,ν ,ν(x )

)
, (4.17)

then we have x ∈ S ∩Eff( f⊗,D,C ×R≥).
(2) Let S be closed and suppose ν ∈ A1(S ,D). Then we have(

S ∩Eff( f ,D,C)
)
∪
(

bd(S)∩Eff( f⊗,D,C ×R≥)
)
⊆ Eff( f ,S ,C). (4.18)

Furthermore, assume ν ∈ A2(S ,D) and (3.10) in the form

Eff( f ,S ,C)\Eff( f ,D,C)⊆ bd(S). (4.19)

Then we get the equality(
S ∩Eff( f ,D,C)

)
∪
(

bd(S)∩Eff( f⊗,D,C ×R≥)
)
= Eff( f ,S ,C). (4.20)

(3) Assume ν ∈ A3(S ,D). Then we have

Eff( f ,S ,C) = S ∩Eff( f⊗,D,C ×R≥). (4.21)

Furthermore, let S be closed. Then we have(
S ∩Eff( f ,D,C)

)
∪
(

bd(S)∩Eff( f⊗,D,C ×R≥)
)
⊆ Eff( f ,S ,C). (4.18)

If additionally (4.19) is valid then we get (4.20), more precisely we have

Eff( f ,S ,C) =
(

S ∩Eff( f ,D,C)
)
∪
(

bd(S)∩Eff( f⊗,D,C ×R≥)
)

=
(

int(S)∩Eff( f ,D,C)
)
∪
(

bd(S)∩Eff( f⊗,D,C ×R≥)
)
.

Proof. (1) Assume x ∈ Eff( f ,S ,C)\Eff( f⊗,D,C ×R≥). Then by (4.16) we get

∃x ∈ D : ( f ,ν)(x) ∈ ( f ,ν)(x )−
(
(C \{0Y})×R≥

)
∪ (C ×R>).

Now (A4) gives x ∈ S , so that from the efficiency of x we get f (x) = f (x ) and ν(x)<
ν(x ), which contradicts (4.17).

(2) By (3.1) we have S∩Eff( f ,D,C)⊆Eff( f ,S ,C). Now consider x ∈ bd(S)∩Eff( f⊗,D,C×
R≥). For any x∈ S from (A1) we get ν(x)≤ ν(x ) whereof (4.14) implies x ∈Eff( f ,S ,C),
so we have (4.18).

For the other inclusion consider x ∈ Eff( f ,S ,C). If not already x ∈ Eff( f ,D,C) by
(4.19) we get x ∈ bd(S). Assume x 6∈ Eff( f⊗,D,C ×R≥). Then we get

∃x ∈ D : ( f (x)≤C f (x ), ν(x)< ν(x )) or ( f (x)�C f (x ), ν(x)≤ ν(x )). (4.22)

Reminding that x ∈ bd(S), condition (A1) implies x ∈ S , such that from x ∈ Eff( f ,S ,C)
the second case in (4.22) can be ruled out. As in (4.13) we get f (x) = f (x ) and ν(x)<
ν(x ). From the first one we can deduce x ∈ Eff( f ,S ,C) and as with x we get x ∈ bd(S)
whereas together with (4.2) the second one gives x ∈ int(S). Therefore, we have (4.20).
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(3) By (4.3) we get the following equivalences, which prove (4.21)

x ∈ Eff( f ,S ,C)

⇐⇒ @x ∈ S : f (x)�C f (x )
(A3)⇐⇒ @x ∈ D :

(
f (x)�C f (x ), ν(x)≤ ν(x )

)
or ν(x)< ν(x )

⇐⇒ x ∈ S ∩Eff( f⊗,D,C ×R≥).

By (3.1) we have S ∩Eff( f ,D,C)⊆ Eff( f ,S ,C) and with (4.21) from bd(S)⊆ S we get
(4.18).

For (4.20) we consider x ∈ Eff( f ,S ,C). If x ∈ S ∩Eff( f ,D,C), we are done. Other-
wise by (4.19) we get x ∈ bd(S) where (4.21) proves the claim. The last claim follows
from the fact that bd(S)∩Eff( f ,D,C)⊆ Eff( f⊗,D,C ×R≥) by (4.21). �

4.3.2. Weak efficiency. Next, we derive similar relationships between the sets of weakly effi-
cient solutions of the vector problems (PS ), (PD) and (P⊗D ). In order to prepare our upcoming
theorem, we recall an appropriate upper semicontinuity concept for vector functions (see [41,
Def. 2.5.25]).

Definition 4.23. Assume (A) and let x0 ∈ S . The function f is called C -upper semicontinuous
in x0 if for any neighbourhood V ⊆ Y of f (x0) there exists a neighbourhood U ⊆ X of x0 such
that f [U ∩ S ]⊆V −C . Moreover, f is called C -upper semicontinuous on S if it is so in every
x0 ∈ S .

Now, we are able to state our main relationships between the sets of weakly efficient solutions
of (PS ), (PD) and (P⊗D ).

Theorem 4.24. Assume (A⊗). Then we have

S ∩bd(S)∩WEff( f ,D,C)⊆ S ∩bd(S)∩WEff( f⊗,D,C ×R≥), (4.23)(
int(S)∩WEff( f ,D,C)

)
∪
(

S ∩bd(S)∩WEff( f⊗,D,C ×R≥)
)

=
(

S ∩WEff( f ,D,C)
)
∪
(

S ∩bd(S)∩WEff( f⊗,D,C ×R≥)
)
.

(4.24)

(1) If ν additionally satisfies (A4) with ν ∈ A4(S ,D), we have the barrier

S ∩WEff( f ,D,C)⊆WEff( f ,S ,C)⊆ S ∩WEff( f⊗,D,C ×R≥). (4.25)

(2) Now consider the case that bd(S)⊆D and ν ∈ A1(S ,D)∩A2(S ,D)∩A7(S ,D) and let f be
C -upper semicontinuous on S . Then we have (4.25) and

WEff( f ,S ,C)

⊇
(

int(S)∩WEff( f ,D,C)
)
∪
(

S ∩bd(S)∩WEff( f⊗,D,C ×R≥)
)

(4.26)

=
(

S ∩WEff( f ,D,C)
)
∪
(

S ∩bd(S)∩WEff( f⊗,D,C ×R≥)
)
. (4.27)

(3) If we instead assume ν ∈ A3(S ,D), we have

S ∩WEff( f⊗,D,C ×R≥) = S .

(4) If besides ν ∈ A4(S ,D) we further assume (3.13), so

WEff( f ,S ,C)\WEff( f ,D,C)⊆ S ∩bd(S), (3.13)
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then we also get

WEff( f ,S ,C)

⊆
(

int(S)∩WEff( f ,D,C)
)
∪
(

S ∩bd(S)∩WEff( f⊗,D,C ×R≥)
)

(4.28)

=
(

S ∩WEff( f ,D,C)
)
∪
(

S ∩bd(S)∩WEff( f⊗,D,C ×R≥)
)
. (4.29)

Proof. By Proposition 4.16 (4.8), we have (4.23) and with this also (4.24).

(1) By (3.2), we obtain the first inclusion of (4.25) and for any x ∈ WEff( f ,S ,C) by
Lemma 2.1 we get

lev<C×R≥

(
D, f⊗, f⊗(x )

)
= lev<C

(
D, f , f (x )

)
∩ lev<

(
D,ν ,ν(x )

)
(A4)
⊆ lev<C

(
D, f , f (x )

)
∩ S = /0,

which proves x ∈WEff( f⊗,D,C ×R≥) and therefore completes (4.25).
(2) Due to Proposition 4.2 (1) we get (4.25) from point (1). If int(C) = /0 we immediately

get WEff( f ,D,C) = WEff( f⊗,D,C ×R≥) = D and with this the claim. Therefore,
from now on we assume int(C) 6= /0. Because of (4.24) we only need to prove (4.26).
From (3.2) we get the inclusion int(S)∩WEff( f ,D,C)⊆WEff( f ,S ,C) and for any x ∈
S ∩bd(S)∩WEff( f⊗,D,C ×R≥) we get x ∈WEff( f⊗,S ,C ×R≥). If we assume x /∈
WEff( f ,S ,C) by (4.9) we get the existence of y∈ S with f (y)<C f (x ) and ν(y)≥ ν(x ).
From (A1) we now get ν(y) = ν(x ) and (A2) gives y ∈ bd(S) wherefore (A7) yields the
existence of z ∈ int(S) such that [z,y) ⊆ lev<

(
D,ν ,ν(x )

)
. Since f (x )− f (y) ∈ int(C)

there exists a neighbourhood V of f (x )− f (y) such that all v ∈ V satisfy v ∈ int(C).
Then, f (x )−V is a neighbourhood of f (y). By the C -upper semicontinuity of f we
find a neighbourhood U of y such that for all x ∈ U with the help of (2.1) we have
f (x) ∈ f (x )−V −C ⊆ f (x )− int(C), so f (x)<C f (x ). For any x ∈U ∩ [z,y) 6= /0 this
gives f⊗(x)<C×R≥ f⊗(x ) which contradicts the weak efficiency of x .

(3) For any x ∈ S because of (A3) by (4.3) we have lev<(D,ν ,ν(x )) = /0. Now we get the
claim with the help of Lemma 2.1.

(4) For any x ∈WEff( f ,S ,C) we either have x ∈WEff( f ,D,C) or by (3.13) and (4.25) get
x ∈ S ∩bd(S)∩WEff( f⊗,D,C ×R≥). �

4.3.3. Strict efficiency. Finally, we state our main relationships between the sets of strictly
efficient solutions of the vector problems (PS ), (PD) and (P⊗D ).

Theorem 4.25. Assume (A⊗). Then we have

S ∩bd(S)∩SEff( f ,D,C)⊆ S ∩bd(S)∩SEff( f⊗,D,C ×R≥), (4.30)(
int(S)∩SEff( f ,D,C)

)
∪
(

S ∩bd(S)∩SEff( f⊗,D,C ×R≥)
)

=
(

S ∩SEff( f ,D,C)
)
∪
(

S ∩bd(S)∩SEff( f⊗,D,C ×R≥)
)
.

(4.31)

(1) If ν additionally satisfies (A4) with ν ∈ A4(S ,D), we get the barrier

S ∩SEff( f ,D,C)⊆ SEff( f ,S ,C)⊆ S ∩SEff( f⊗,D,C ×R≥). (4.32)
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(2) Moreover, assume now bd(S)⊆ D and ν ∈ A1(S ,D). Then we have (4.32) and

SEff( f ,S ,C)

⊇
(

int(S)∩SEff( f ,D,C)
)
∪
(

S ∩bd(S)∩SEff( f⊗,D,C ×R≥)
)

(4.33)

=
(

S ∩SEff( f ,D,C)
)
∪
(

S ∩bd(S)∩SEff( f⊗,D,C ×R≥)
)
. (4.34)

(3) If we instead assume ν ∈ A3(S ,D) we also get (4.32), (4.33) and (4.34). Furthermore,
we get

S ∩SEff( f⊗,D,C ×R≥)⊆ SEff( f ,S ,C) (4.35)
and with this also

S ∩SEff( f⊗,D,C ×R≥) = SEff( f ,S ,C). (4.36)

(4) If besides ν ∈ A4(S ,D) we further assume (3.16), so

SEff( f ,S ,C)\SEff( f ,D,C)⊆ S ∩bd(S), (3.16)

then we also get

SEff( f ,S ,C)

⊆
(

int(S)∩SEff( f ,D,C)
)
∪
(

S ∩bd(S)∩SEff( f⊗,D,C ×R≥)
)

(4.37)

=
(

S ∩SEff( f ,D,C)
)
∪
(

S ∩bd(S)∩SEff( f⊗,D,C ×R≥)
)
. (4.38)

Proof. By Proposition 4.17 (4.10) we immediately get (4.30) and with this we get (4.31).
(1) From (3.3) we get the first inclusion of (4.32). For any x ∈ SEff( f ,S ,C) by (3.3) and (A4)

we get the second one through

x ∈ lev≤
(

D,ν ,ν(x )
)
∩SEff( f ,S ,C)

⊆ SEff
(

f ,D ∩ lev≤
(

D,ν ,ν(x )
)
,C
)

⊆ S ∩SEff( f⊗,D,C ×R≥).
(2) Due to Proposition 4.2 (1) we get (4.32). By proving the inclusion of (4.34) we also get

(4.33), (4.31) even gives the equality of the right sides. Because of (3.3) we have S ∩
SEff( f ,D,C) ⊆ SEff( f ,S ,C). For x ∈ S ∩ bd(S)∩SEff( f⊗,D,C ×R≥) from (3.3) we get
x ∈ SEff( f⊗,S ,C ×R≥) and by (A1) and (4.11) we get x ∈ SEff( f ,S ,C) and with this
(4.34).

(3) Again, by Proposition 4.2 (1) we get (4.32). Now, (3.3) gives S ∩SEff( f⊗,D,C ×R≥) ⊆
SEff( f⊗,S ,C×R≥) and by (A3) and (4.11) we get (4.35). With (4.32) we get (4.36). Lastly,
from (3.3) and (4.35) we get (4.33) and by (4.31) also (4.34).

(4) For any x ∈ SEff( f ,S ,C) we either have x ∈ SEff( f ,D,C) or by (3.16) get x ∈ bd(S) and
again with (4.32) and (4.31) acquire the desired result. �

5. CONCLUSIONS

In this paper, we presented a vectorial penalisation approach for general vector optimisation
problems in real linear-topological spaces where the involved ordering cone C is assumed to
be a pointed, convex cone. With the aid of a generalised convexity concept (C -quasiconvexity)
by Jahn [17], some generalisations of results by Günther and Tammer [12, 13] (see Section
3) as well as by Fliege [29] and Mäkelä and Nikulin [53] (see Section 4.2), we were able to
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extend/generalise the vectorial penalisation approach for multiobjective (vector) optimisation
problems studied in [10, 11, 12, 13, 15]. More precisely, in our main Theorems 4.22, 4.24 and
4.25 we derived profound relationships between the solution sets of the original constrained
vector optimisation problem (with not necessarily convex feasible set) and two unconstrained
vector optimisation problems, where in one of the two problems a penalisation term w.r.t. the
original feasible set is added to the vector objective function.

In Section 4.1.2, we put a special emphasis on the construction of appropriate penalisa-
tion functions for several popular classes of (vector) optimisation problems (e.g., semidefi-
nite/copositive programming, second-order cone programming, optimisation in function spaces).

Beside the solution concepts studied in this paper, one can also consider so-called proper
efficiency solution concepts for the vector optimisation problem (PS ), which are known to be
relevant in practice. The set of properly efficient points (in the sense of Henig [56]) can be
defined as follows

PEff( f ,S ,C) :=
⋃

D∈F (C)

WEff( f ,S ,D),

where F (C) is a family of (nontrivial, pointed, solid, convex) Henig-type dilating cones (see,
e.g., [42, 43, 57]). For the set WEff( f ,S ,D) (⊆ Eff( f ,S ,C)) with D ∈ F (C) one can apply
our derived penalisation results in the paper. As far as we know, in the literature on vectorial
penalisation techniques, no results are known for the set PEff( f ,S ,C) (in particular, for Y =Rm

and the standard cone C = Rm
≥).

The topic of penalisation in vector optimisation in real linear spaces based on algebraic no-
tions (such as algebraic/vectorial closure, algebraic interior, relative algebraic interior) could be
interesting for further extensions of our results (see, e.g., Günther, Khazayel and Tammer [57],
Novo and Zălinescu [58], and Schmölling [16]).

Our derived results can be used to establish (necessary, sufficient) optimality conditions for
general vector optimisation problems (extending the results derived for multiobjective optimi-
sation problems by Günther, Tammer and Yao [55]). The advantage is that such optimality
conditions will have a simple structure because the normal cone w.r.t. the constraints S is not
involved. This is due to the fact that one exploits the inclusion (respectively, the corresponding
equality)

WEff( f ,S ,C)⊆
(

int(S)∩WEff( f ,X ,C)
)
∪
(

S ∩bd(S)∩WEff( f⊗,X ,C ×R≥)
)
,

which is ensured by our Theorem 4.24.
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