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Abstract. This work focuses on quasi efficient solutions of a vector optimization problem. Namely,
it is assumed the objective function to map values between finite dimensional spaces and the ordering
in the final space is defined by a pointed convex cone. In this setting, several new concepts of quasi
efficient solutions are introduced and their basic properties are obtained. After that, it is studied their
limit behavior in order to deduce when they approximate well other kind of efficient solutions of the
problem. Finally, in convex problems, linear scalarization results are stated that relate the introduced
quasi efficient solutions with solutions of scalar optimization problems. The concepts and results of the
paper extend and clarify several ones of the recent literature.
Keywords. Generalized convexity; Linear scalarization; Multiobjective optimization; Quasi efficient
solution.

1. INTRODUCTION

To the best of our knowledge, the concept of quasi solution of an optimization problem
was introduced by Loridan in [32]. These solutions, whose existence can be guarantied by
the Ekeland variational principle [8], are important as they can be identified as approximate
stationary points (see [1, 6, 9, 24, 32]). In other words, they are in the core of many numerical
algorithms to solve optimization problems.

Loridan [31] extended this type of solutions to multiobjective optimization problems and the
Pareto order. After that, Gupta and Mehra [14], Gutiérrez et al. [23] and Gao et al. [13] gen-
eralized Loridan’s concept to vector optimization problems and orderings defined by pointed
convex cones, and Gutiérrez et al. [20] to vector optimization problems whose objective func-
tion is set-valued and the ordering is provided by a free-disposal set. Since then, other authors
have introduced some refinements of these seminal generalizations (see [15, 26, 27]). Recently,
the notion of quasi solution has been defined for set optimization problems [22].

In the setting of vector optimization, the study of quasi efficient solutions is meaningful
since not only concern feasible points that are close to be stationary, but also they encom-
pass many different types of nondominated solutions of the problem, as efficient solutions,
weak/proper/approximate efficient solutions and others (see [23]). By this unifying reason,
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authors are interested to characterize quasi efficient solutions by linear and nonlinear scalariza-
tions (see [13, 20, 26, 31]) and multiplier rules (see [3, 10, 13, 15, 20, 23, 27, 29, 30]), to study
their limit behavior when the precision tends to zero (see [23, 26, 27]) and to state existence
results (see [13, 14, 23]) and duality assertions (see [3, 10, 14, 29, 30]).

The aim of this work is to introduce new concepts of quasi efficiency and by them to derive
further results on quasi solutions of a multiobjective optimization problem whose final space is
ordered by a pointed convex cone. Namely, in Section 2, the basic notations and mathematical
tools of the paper are introduced. In addition, the main quasi efficient solution concepts of the
literature are recalled. After that, in Section 3, new concepts of quasi efficient solution of a
vector optimization problem are defined and related with the ones given up to now in the liter-
ature. Moreover, their basic properties are stated. In Section 4, the limit behavior of the quasi
efficient solution sets obtained by the new definitions is studied. It is proved that they allow
approximating well the sets of efficient and weak efficient solutions of the problem. As a result,
a notion of proper quasi efficiency is introduced and its basic properties are obtained. Finally, in
Section 5, linear scalarization results are derived in convex problems, which characterize weak
and proper quasi efficient solutions as solutions of scalar optimization problems. The obtained
results generalize and clarify many others of the recent literature.

2. PRELIMINARIES

Throughout, intM, bdM, Mc and coneM denote the topological interior, the boundary, the
complement and the generated cone by a set M ⊂ Rp, respectively. We say that M is solid
whenever intM 6= /0. Moreover, Bp denotes the open Euclidean unit ball of Rp, Rp

+ refers to the
nonnegative orthant of Rp and R+ :=R1

+. Recall that M is said to be a coradiant set if αM⊂M,
for all α > 1 (see [17]). The shadow generated by M is the set shwM :=

⋃
α>1 αM (see [36]).

Clearly, M is coradiant if and only if shwM ⊂M. In addition, M ⊂ shwM whenever M is open
and so, in this case, M is coradiant if and only if shwM = M. Recall that M is free-disposal
with respect to a convex cone K ⊂ Rp if M+K = M (see [5]). If additionally 0 /∈M, then M is
called an improvement set (see [2]). Moreover, M is said to be K-convex if M+K is convex.

The inner and outer limits of a sequence (Mm) of nonempty subsets of Rp are the sets

liminf
m→∞

Mm :={y ∈ Rp : ∃Mm 3 ym→ y},

limsup
m→∞

Mm :={y ∈ Rp : ∃Mmk 3 ymk → y}.

Consider a set-valued mapping F : Rn ⇒ Rp and /0 6= Q⊂ Rn. The domain and the graph of
F are the sets

domF := {x ∈ Rn : F(x) 6= /0},
gphF := {(x,y) ∈ Rn×Rp : y ∈ F(x)}.

Moreover, F |Q : Rn ⇒ Rp stands for the mapping F |Q(x) = F(x) if x ∈ Q and F |Q(x) = /0
otherwise. Clearly, domF |Q = (domF)∩Q. Given F1,F2 : Rn ⇒ Rp, we denote F1 ⊂ F2 if
gphF1 ⊂ gphF2, i.e., F1(x) ⊂ F2(x), for all x ∈ Rn. Moreover, we say that F1 ⊂ F2 in Q if
F1|Q ⊂ F2|Q, and F1 = F2 in Q whenever F1 ⊂ F2 and F2 ⊂ F1 in Q. In addition, αF1, Fc

1 ,F1∩
F2, intF1,shwF1 : Rn ⇒ Rp stand for the set-valued mappings (αF1)(x) := αF1(x), Fc

1 (x) :=
F1(x)c, (F1∩F2)(x) := F1(x)∩F2(x), intF1(x) := int(F1(x)) and shwF1(x) := shw(F1(x)), for
all α ∈ R and x ∈ Rn. Notice that gph(F1∩F2) = gphF1∩gphF2.
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The inner and outer limits of F : Rn ⇒ Rp at a point x0 ∈ Rn are, respectively, the sets

Liminf
x→x0

F(x) := {y ∈ Rp : ∀xm→ x0∃ym→ y, (xm,ym) ∈ gphF ∀m},

Limsup
x→x0

F(x) := {y ∈ Rp : ∃((xm,ym))⊂ gphF,(xm,ym)→ (x0,y)}.

Recall that F is said to be open (resp. closed, graph-convex) if gphF is an open (resp. closed,
convex) set, and F is said to be inner (resp. outer) semicontinuous at x0 if

F(x0)⊂ Liminf
x→x0

F(x) (resp. Limsup
x→x0

F(x)⊂ F(x0)).

One has that F is outer semicontinuous everywhere if and only if F is closed (see [33, Theorem
5.7]). In particular, if F is closed, then F is closed-valued. Moreover, if F is solid-valued and
convex-valued, then the set-valued mapping intF is open if and only F is inner semicontinuous
everywhere (see [33, Theorem 5.9]). Notice that F is graph-convex if and only if

αF(x)+(1−α)F(u)⊂ F(αx+(1−α)u), ∀x,u ∈ Rn,∀α ∈ (0,1).

In particular, F is convex-valued whenever it is graph-convex.
Given a sequence of set-valued mappings Fm : Rn ⇒ Rp, where domFm = Rn for all m ∈ N,

its graphical inner and outer limits g-liminf
m→∞

Fm,g-limsup
m→∞

Fm : Rn ⇒ Rp are, respectively, the

set-valued mappings

g-liminf
m→∞

Fm(x) :={y ∈ Rp : ∃ gphFm 3 (xm,ym)→ (x,y)},

g-limsup
m→∞

Fm(x) :={y ∈ Rp : ∃ gphFmk 3 (xmk ,ymk)→ (x,y)}.

This paper addresses the constrained vector optimization problem

Min{ f (x) : x ∈ S}, (PD)

where f : Rn → Rp, /0 6= S ⊂ Rn and D ⊂ Rp stands for a pointed (D∩ (−D) = {0}) closed
convex cone that models the practitioner’s preferences in the objective space Rp through the
following partial order:

y1,y2 ∈ Rp, y1 ≤D y2 :⇐⇒ y2− y1 ∈ D.

Problem (PD) in the trivial case where D = {0} is denoted by (P). It means that there is not any
fixed preference structure in the final space. As a result, every feasible point x ∈ S is a solution
of the problem as its value f (x) cannot be improved.

Roughly speaking, solutions of problem (PD) are defined by considering notions of minimal
point with respect to the partial order ≤D or more generally, with respect to another binary
relation in Rp, which is related with ≤D in some sense. For instance, the following concept is a
reformulation of [23, Definition 3.1]. Let /0 6= G⊂ Rp, ϕ : Rn→ R and denote D := (D,G,ϕ)
if D 6= {0} and D := (G,ϕ) otherwise.

Definition 2.1. A feasible point x0 ∈ S is said to be a quasi minimizer of problem (PD) with
respect to D = (D,G,ϕ), denoted by x0 ∈ E( f ,S,D), if

f (x)+ϕ(x− x0)e− f (x0) /∈ −D, ∀x ∈ S\{x0},∀e ∈ G. (2.1)
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Remark 2.1. (i) Condition (2.1) can be extended to x = x0 whenever ϕ(0)G∩(−D) = /0; other-
wise, it never could be satisfied for all x ∈ S. In other words, if that extension is not considered,
then additional assumptions that relate the elements of D are not needed a priory.

(ii) Notice that (2.1) can be replaced with the condition

f (x)+h(x,x0)e− f (x0) /∈ −D, ∀x ∈ S\{x0},∀e ∈ G, (2.2)

where h : Rn×Rn→ R. However, both conditions provide the same notion by considering the
functions ϕ and h are “parameters”. Indeed, if (2.1) is true, then (2.2) is satisfied by taking
the function h(x,u) = ϕ(x− u), for all x,u ∈ Rn. Conversely, if (2.2) holds true, then (2.1) is
fulfilled by defining ϕ(x) = h(x+ x0,x0), for all x ∈ Rn. This reformulation was introduced in
[13, 20] and it has recently been studied in [26, 27].

(iii) Definition 2.1 encompasses many concepts of solution of problem (PD). Let us show
some examples, where the function ϕ(x) = 1, for all x ∈ Rn, is denoted by 1:

(a) If ϕ = 1, then quasi minimizers of problem (PD) correspond to efficient solutions with
respect to the domination set G+D. Then, one can recover the sets of efficient, weak
efficient and Henig proper efficient solutions (see [34, Definition 3.1.1 and Remark
3.1.1] and [25, Definition 2.1]) by considering G = D\{0}, G = intD and G = intK
for a dilating cone K of D (i.e., K ( Rp is a convex cone such that D\{0} ⊂ intK),
respectively. These relations are direct consequences of the equalities D\{0}+D =
D\{0}, intD+D = intD and intK +D = intK. The corresponding sets of efficient,
weak efficient and Henig proper efficient solutions of problem (PD) will be denoted in
the sequel by E( f ,S,D), WE( f ,S,D) and HPE( f ,S,D), respectively.

This case also covers the efficiency concepts defined by a free-disposal ordering set
G with respect to D (in particular, an improvement set, see [16, Definition 3.1] or [19,
Definition 4.1]).

(b) More generally, the trivial case D = {0} along with the function ϕ = 1 lead to the usual
condition of nondomination with respect to the ordering set G:

( f (S\{x0})− f (x0))∩ (−G) = /0. (2.3)

Examples of this setting are the concept of approximate efficiency with respect to a
coradiant set (see [17, Definition 3.2]) or a set-valued mapping G : R+ ⇒ Rp (see [18,
Definition 7]) and the notion of global S-minimizer due to Flores-Bazán and Hernández
(see [12]).

Let us underline that in this case, the partial order ≤D obviously does not play any
role and the preference structure that is being considered in the solution concept depends
only on the set G. Moreover, if one expects obtaining any relationships of the set of quasi
minimizers of problem (P) with respect to D = (G,1) and the set of efficient solutions
with respect to a partial order ≤K defined by an ordering convex cone K ⊂ Rp, then
some properties linking the sets G and K must be required.

(c) In [26, Definition 2(i)], the notion of (G,h)-quasi efficient solution is introduced. Namely,
for a set G⊂ Rp (denoted by C in [26, Definition 2]) and a function h : Rn×Rn→ R+

such that h(x,z)> 0 whenever x 6= z, a point x0 ∈ S is said to be a (G,h)-quasi efficient
solution of problem (PD) if there is not x ∈ S\{x0} such that f (x0) ∈ f (x)+ h(x,x0)G,
i.e.,

f (x)+h(x,x0)e− f (x0) 6= 0, ∀x ∈ S\{x0},∀e ∈ G. (2.4)
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Clearly, Definition 2.1 reduces to this concept in the trivial case D = {0} (see part (ii)
above). Therefore, as in the previous part (b), the preference structure that is being
considered in condition (2.4) depends only on the set G and the function h, and problem
(P) is analyzed. Namely, since function h ranges in R+, the values of (G,h)-quasi
efficient solutions are nondominated with respect to certain directions in coneG.

3. A NEW QUASI EFFICIENCY NOTION

Next, we define a new concept of quasi efficiency for problem (P), which is motivated by
the general quasi order introduced in [11, Definition 3.1]. For this aim, a set-valued mapping
C : Rn×Rn ⇒Rp is considered and assumed to fulfill domC =Rn×Rn. Moreover, we denote
∆n :=

⋃
x∈Rn

{(x,x)} ⊂ Rn×Rn and S2\∆n := (S×S)\∆n.

Definition 3.1. A point x0 ∈ S is said to be a quasi efficient solution of problem (P), and it is
denoted by x0 ∈ QE( f ,S,C), if

f (x0) /∈ f (x)+C(x,x0), ∀x ∈ S\{x0}. (3.1)

Remark 3.1. (i) Obviously, QE( f ,S,C1) = QE( f ,S,C2) whenever C1 =C2 in S2\∆n.
(ii) The notion of quasi efficient solution of problem (P) reduces to the concept of quasi

minimizer of problem (PD) with respect to D =(D,G,ϕ) by considering the set-valued mapping
C(x,u) = ϕ(x−u)G+D, for all x,u ∈Rn (notice that the set-valued map C is related to D as its
values are free-disposal sets with respect to D). Therefore, it generalizes all solution concepts
involved in Remark 2.1(iii).

In particular, notice by part (c) of Remark 2.1(iii) that Definition 3.1 encompasses [26, Defi-
nition 2] through the set-valued mapping C : Rn×Rn ⇒Rp, C(x,u) = h(x,u)G, for all x,u∈Rn

(set G is referred to C in [26, Definition 2]). In addition, Definition 3.1 is more general. For
instance, consider p = 2, µ(x,y) := ‖x− y‖/(1+‖x− y‖) and the set-valued mapping

C(x,y) = ({1}× [−µ(x,y),µ(x,y)])+ cone{(1,0)}, ∀x,y ∈ Rn. (3.2)

It is easy to check that there is not any nonempty set G⊂Rp and any function h :Rn×Rn→R+,
h(x,y)> 0 whenever x 6= y, such that C = hG.

(iii) Moreover, Definition 3.1 covers some notions of efficient solution with respect to a
variable ordering structure (see [7]). Indeed, consider a cone convex-valued mapping D : Rp ⇒
Rp. Then, Definition 3.1 applied to the set-valued mappings C(x,u) = D( f (x))\{0}, C(x,u) =
intD( f (x)) and C(x,u) = intK( f (x)) for a dilating cone K( f (x)) of D( f (x)) (resp. C(x,u) =
D( f (u))\{0}, C(x,u) = intD( f (u)) and C(x,u) = intK( f (u))) correspond to the feasible point
x0 being a nondominated, weak nondominated and Henig proper nondominated (resp. minimal,
weak minimal and Henig proper minimal) solution of problem (P) with respect to the variable
ordering structure D (see [7, Definition 2.33]).

(iv) Finally, let us notice the particular case where 0 ∈ C(x,x0), for all x ∈ S\{x0}, which
implies that f (x0) 6= f (x), for all x ∈ S\{x0} whenever x0 ∈ QE( f ,S,C). This is a sort of strict
efficient solution. In other words, condition 0 /∈C(x,x0) as long as x 6= x0 seems to be a natural
assumption to deal with a more general kind of efficiency concept.

The following theorem shows basic properties of the quasi solutions of problem (P). For
each u ∈ S, Cc|S(u, ·) : Rn×Rn ⇒ Rp refers to the mapping Cc|S(u,x) = Cc(u,x) if x ∈ S and
Cc|S(u,x) = /0 otherwise.
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Theorem 3.1. The next statements are true.

(i) Consider C1,C2 : Rn×Rn ⇒Rp. If C1 ⊂C2 in S2\∆n, then QE( f ,S,C2)⊂QE( f ,S,C1).
(ii) Let (Ci)i∈I,C be a collection of set-valued mappings, where Ci,C : Rn×Rn ⇒ Rp for

all i ∈ I, and C =
⋃

i∈I Ci in S2\∆n. Then, QE( f ,S,C) =
⋂

i∈I QE( f ,S,Ci).
(iii) Let (Ci)i∈I,C be a collection of set-valued mappings, where Ci,C : Rn×Rn ⇒ Rp for

all i ∈ I, and C =
⋂

i∈I Ci in S2\∆n. Then, QE( f ,S,C)⊃
⋃

i∈I QE( f ,S,Ci).
(iv) Consider C : Rn×Rn ⇒ Rp. Suppose that the feasible set S is closed, the set-valued

mapping Cc|S(u, ·) : Rn ⇒ Rp is outer semicontinuous at x ∈ S\{u}, for all (x,u) ∈
S2\∆n, and f is continuous. Then the set QE( f ,S,C) is closed.

(v) Suppose that the feasible set S is closed, f is continuous and C(u, ·) : Rn ⇒ Rp is open,
for all u ∈ S. Then the set QE( f ,S,C) is closed.

Proof. (i) Let x ∈ S be such that x /∈ QE( f ,S,C1). Then, there exists u ∈ S\{x} such that
f (x) ∈ f (u)+C1(u,x). Therefore, (u,x, f (x)− f (u)) ∈ gphC1|S2\∆n

. As C1 ⊂C2 in S2\∆n, we
have that (u,x, f (x)− f (u))∈ gphC2|S2\∆n

and so f (x)∈ f (u)+C2(u,x). Thus, x /∈QE( f ,S,C2)
and part (i) is proved.

(ii) Clearly, gphC|S2\∆n
=
⋃

i∈I gphCi|S2\∆n
. Therefore, Ci ⊂ C in S2\∆n for all i ∈ I and

part (i) implies that QE( f ,S,C) ⊂
⋂

i∈I QE( f ,S,Ci). Conversely, we claim that QE( f ,S,C)c ⊂
(
⋂

i∈I QE( f ,S,Ci))
c. Indeed, if x ∈ S and x /∈ QE( f ,S,C), then there exists u ∈ S\{x} such that

(u,x, f (x)− f (u))∈ gphC|S2\∆n
. Thus, there exists i0 ∈ I such (u,x, f (x)− f (u))∈ gphCi0|S2\∆n

and so x /∈ QE( f ,S,Ci0), i.e., x ∈ (
⋂

i∈I QE( f ,S,Ci))
c and the proof of part (ii) is completed.

(iii) Since C ⊂Ci in S2\∆n for all i ∈ I, part (i) implies that
⋃

i∈I QE( f ,S,Ci) ⊂ QE( f ,S,C)
and the result is stated.

(iv) Consider a sequence (xm)⊂QE( f ,S,C) such that xm→ x0. We have that x0 ∈ S since the
feasible set S is assumed to be closed. Fix a point u∈ S\{x0}. Clearly, xm 6= u eventually. As xm
is a quasi efficient solution of problem (P) with respect to C we have that (xm, f (xm)− f (u)) ∈
gphC|cS(u, ·) eventually. By the continuity of f we see that f (xm)→ f (x0). In addition, the
set-valued mapping Cc|S(u, ·) is outer semicontinuous at x0. Therefore,

f (x0)− f (u) ∈ Limsup
x→x0

Cc|S(u,x)⊂Cc|S(u,x0),

i.e., f (x0) /∈ f (u) +C(u,x0). Since u was arbitrarily chosen in S\{x0} we deduce that x0 ∈
QE( f ,S,C) and the proof of part (iv) finishes.

(v) Clearly, gphCc|S(u, ·) = (gphC(u, ·))c ∩ (S×Rp), for all u ∈ Rn. As the graph of the
set-valued mapping C(u, ·) is assumed to be an open set, for all u∈ S, and S is closed we deduce
that gphCc|S(u, ·) is closed, and the result follows by applying part (iv). �

Remark 3.2. In order to apply part (v) of Theorem 3.1, let us recall that the set-valued map-
ping intC(u, ·) is open whenever C(u, ·) is inner semicontinuous everywhere, solid-valued and
convex-valued. Consider, for instance, a continuous function ϕ : Rn→ R+ and two nonempty
sets G,D ⊂ Rp such that D is a solid convex cone and G is D-convex. Define the set-valued
mapping Aϕ

G,D : Rn×Rn ⇒ Rp given by Aϕ

G,D(u,x) := ϕ(u− x)G+D. It is easy to check that
Aϕ

G,D(u, ·) is inner semicontinuous everywhere, solid-valued and convex-valued. Therefore, the
set-valued mapping intAϕ

G,D(u, ·) is open and so QE( f ,S, intAϕ

G,D) is closed provided that f is
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continuous and S is closed. Notice that

intAϕ

G,D(u,x) = int(Aϕ

G,D(u,x)) = int(ϕ(u− x)G+D) = ϕ(u− x)G+ intD, ∀x,u ∈ Rn.

Parts (i) and (iii) of Theorem 3.1 suggest a way to derive inner and outer approximations to the
set QE( f ,S,C). Specifically, the following sandwich type rule holds true whenever C1⊂C⊂C2
in S2\∆n:

QE( f ,S,C2)⊂ QE( f ,S,C)⊂ QE( f ,S,C1). (3.3)

Therefore, if C is solid-valued in S2\∆n (i.e., the set C(x,u) is solid, for all x,u ∈ S2\∆n), then
a good outer approximation to QE( f ,S,C) could be obtained by considering the set-valued
mapping C1(x,u) = intC(x,u), for all x,u∈Rn (notice that C1(x,u) and C(x,u) are very close to
each other as C(x,u)\C1(x,u)⊂ bdC(x,u)). Concerning the inner approximation to QE( f ,S,C),
one could consider any collection Ci : Rn×Rn ⇒ R such that C ⊂Ci in S2\∆n, for all i. In this
case, the set-valued mapping given by C2(x,u) =

⋂
iCi(x,u), for all x,u ∈ Rn, satisfies⋃

i

QE( f ,S,Ci)⊂ QE( f ,S,C2)⊂ QE( f ,S,C).

Clearly, the closer
⋂

iCi is to C, the better
⋃

i QE( f ,S,Ci) is as inner approximation to QE( f ,S,C).
In addition, one could deal with set-valued mappings Ci such that the corresponding quasi ef-
ficient set QE( f ,S,Ci) satisfies good properties; for instance, it is a closed set. All the above
remarks motivate the additional concepts of quasi efficient solution of problem (P) introduced
in Definitions 3.2 and 4.2.

Definition 3.2. Consider x0 ∈ S and let C :Rn×Rn ⇒Rp be a solid-valued mapping in (S\{x0})×
{x0}. The point x0 is said to be a weak quasi efficient solution of problem (P), and it is denoted
by x0 ∈WQE( f ,S,C), if x0 ∈ QE( f ,S, intC), i.e., if

f (x0) /∈ f (x)+ intC(x,x0), ∀x ∈ S\{x0}. (3.4)

Remark 3.3. (i) Obviously, WQE( f ,S,C1) =WQE( f ,S,C2) whenever intC1 = intC2 in S2\∆n.
Namely, if we have intC1(·,x0) = intC2(·,x0) in S\{x0}, then x0 ∈WQE( f ,S,C1) if and only if
x0 ∈WQE( f ,S,C2).

(ii) In [26, Definition 2(ii)], the notion of (G,h)-quasi weak efficient solution is defined.
Specifically, for a solid set G⊂ Rp (denoted by C in [26, Definition 2]) and a function h : Rn×
Rn→ R+ such that h(x,z)> 0 whenever x 6= z, a point x0 ∈ S is said to be a (G,h)-quasi weak
efficient solution of problem (P) if there is not x∈ S\{x0} such that f (x0)∈ f (x)+h(x,x0) intG.
Clearly, (G,h)-quasi weak efficient solutions are weak quasi efficient solutions with respect to
the set-valued mapping C(u,x) = h(u,x)G, for all u,x ∈ Rn, since intC = h intG in S2\∆n.

(iii) Definition 3.2 also encompasses the notion of weak generalized ε-quasi-minimizer of
problem (PD) due to Gutiérrez et al. [23, Definition 3.1(b)], which corresponds to the set-valued
mapping C = Aεϕ

G,D (see Remark 3.2).

The following result shows basic properties concerning quasi efficient solutions with respect
to mapping shwC, which will be useful to derive relationships between efficient solutions and
quasi efficient solutions of problem (PD).

Proposition 3.1. We have that
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(i) QE( f ,S,shwC)=
⋂

α>1 QE( f ,S,αC) and if C is coradiant-valued in the set S2\∆n, then
QE( f ,S,C) ⊂ QE( f ,S,shwC); if C is open-valued in S2\∆n, then QE( f ,S,shwC) =⋂

α≥1 QE( f ,S,αC); if, in addition, C is coradiant-valued in S2\∆n, then QE( f ,S,C) =⋂
α>1 QE( f ,S,αC).

(ii)
⋂

α>1 WQE( f ,S,αC) ⊂ WQE( f ,S,C) and the equality is true provided that intC is
coradiant-valued in S2\∆n.

Proof. (i) The first equality and the inclusion are obvious consequences of the definition of
the set-valued mapping shwC and parts (i) and (ii) of Theorem 3.1. For the second equality,
notice from the openness assumption that C(u,x) ⊂ shwC(u,x), for all (u,x) ∈ S2\∆n. Thus,
shwC =

⋃
α≥1 αC in S2\∆n and the equality follows again by Theorem 3.1(ii). Finally, the last

equality also is a direct consequence of Theorem 3.1(ii) as C =
⋃

α>1 αC in S2\∆n.
(ii) Clearly, the open-valued mapping intC satisfies that intC ⊂ shwintC in S2\∆n. Thus, the

inclusion is a result of parts (i) and (ii) of Theorem 3.1, and the equality follows by the last
claim of part (i). �

Let us observe that parts (a) and (b) of [26, Proposition 3] are particular cases of Proposition
3.1. Specifically, they can be deduced by taking C = hG in Proposition 3.1 and noticing that
intC = h intG in S2\∆n (see Remarks 3.1 and 3.3).

4. RELATIONSHIPS WITH EFFICIENT SOLUTIONS

Theorem 3.1 allows us to derive basic assertions concerning the approximation to efficient
and weak efficient solutions of problem (P) through quasi efficient and weak quasi efficient
solutions. Next two results illustrate this claim. Recall that a point x0 ∈ S is said to be an
efficient solution (resp. weak efficient solution) of problem (PD), denoted by x0 ∈ E( f ,S,D)
(resp. x0 ∈WE( f ,S,D)), if there is not a feasible point u ∈ S such that f (x0) ∈ f (u)+D\{0}
(resp. f (x0) ∈ f (u) + intD, see part (iii)(a) of Remark 2.1). In dealing with weak efficient
solutions we assume that D is solid.

Proposition 4.1. Consider a nonempty set G ⊂ Rp\{0} and a sequence ϕm : Rn → R+ such
that ϕm(x)> 0 for all x 6= 0 and pointwisely converges to zero in Rn\{0}. Define the set-valued
mapping Aϕm

G : Rn×Rn ⇒ Rp given by Aϕm
G (u,x) := ϕm(u− x)G. If G is coradiant (resp. G is

solid and intG is coradiant), then⋂
m

QE( f ,S,Aϕm
G ) = E( f ,S,coneG) (4.1)

(resp.
⋂
m

WQE( f ,S,Aϕm
G ) = E( f ,S,coneintG)). (4.2)

Proof. Assume that G is coradiant. In this case we claim that⋃
m

ϕm(x)G = (coneG)\{0}, ∀x ∈ Rn\{0}. (4.3)

As a result we have that
⋃

m Aϕm
G (u,x) = (coneG)\{0} for all (u,x) ∈ S2\∆n and assertion (4.1)

follows by Theorem 3.1(ii). In order to check claim (4.3), notice that ϕm(x)G ⊂ (coneG)\{0}
for all x ∈ Rn\{0} and m ∈ N since ϕ(x) > 0 and 0 /∈ G. Conversely, for each α > 0 and
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x ∈ Rm\{0} there exists m ∈ N such that ϕm(x)< α as the sequence ϕm pointwisely converges
to zero in Rn\{0}. Since G is coradiant we see that αG⊂ ϕm(x)G. Therefore,

(coneG)\{0}=
⋃

α>0

αG⊂
⋃
m

ϕm(x)G

and assertion (4.3) is proved.
Equality (4.2) is an obvious consequence of (4.1) by replacing G with intG. �

Remark 4.1. (i) By Remark 2.1(ii) we see that Proposition 4.1 reduces to part (a) of [26,
Theorem 2]. In addition, statement (4.2) corrects part (b) of [26, Theorem 2], which does not
work. For instance, consider problem (PD) with the next data: n = p = 2, f (x1,x2) = (x1,0),
S = R2, D = {(y1,y2) ∈ R2 : y1 ≥ |y2|}, hn(x1,x2) = 1/n and

G = {(y1,y2) ∈ R2 : y1 ≥ 1,y1 ≥ |y2| ≥ 1/y1}∪ shw{(1,0)}.

Clearly, set G is solid and coradiant. In addition, G ⊂ D\{0}, coneG = D and the sequence
(hn) pointwisely converges to zero. Thus, all assumptions of [26, Theorem 2(b)] are satisfied.
However, it is easy to check

⋂
n

WQE( f ,S,hnG) = R2 and WE( f ,S,D) = /0.

(ii) As it has already been noticed in parts (b) and (c) of Remark 2.1(iii), some additional con-
ditions linking set G with the ordering cone D have to be considered in order to sets QE( f ,S,Aϕm

G )

and WQE( f ,S,Aϕm
G ) approximate the sets E( f ,S,D) and WE( f ,S,D) of efficient and weak ef-

ficient solutions of problem (PD). This assertion is clear from statements (4.1) and (4.2), where
condition G ⊂ D should be required to approximate efficient and weak efficient solutions of
problem (PD) via quasi efficient solutions in QE( f ,S,Aϕm

G ) and WQE( f ,S,Aϕm
G ).

Corollary 4.1. Let G⊂Rp\{0} be a nonempty open and coradiant set. Suppose hm :Rn×Rn→
R+ satisfies hm > 0 in S2\∆n, for all m ∈ N. Consider x0 ∈ S and a sequence (xm) ⊂ S such
that hm(·,xm) pointwisely converges to zero in S, f (xm)→ f (x0) and xm ∈QE( f ,S,hmG). Then
x0 ∈ E( f ,S,coneG).

Proof. In order to apply Proposition 4.1, let us define ϕm : Rn → R+, ϕm(x) := 1/m, for all
x ∈ Rn. It is obvious that ϕm pointwisely converges to zero in Rn.

We claim that x0 ∈ QE( f ,S,Aϕm
G ), for all m ∈ N. Otherwise, one can find m0 ∈ N and u ∈

S\{x0} such that f (x0)∈ f (u)+(1/m0)G. As G is open and f (xm)→ f (x0) there exists m1 ∈N
such that f (xm)− f (u)∈ (1/m0)G, for all m≥m1. As 0 /∈G it follows that xm 6= u for all m≥m1
and since hm(u,xm)→ 0 there exists N 3 m2 ≥ m1 such that 0 < hm2(u,xm2) < 1/m0. Clearly,
(1/m0)G⊂ hm2(u,xm2)G since G is coradiant, and so f (xm2)− f (u) ∈ hm2(u,xm2)G, which is a
contradiction as xm2 ∈ QE( f ,S,hm2G).

Finally, by Proposition 4.1 we see that

x0 ∈
⋂
m

QE( f ,S,Aϕm
G ) = E( f ,S,coneG)

and the result is proved. �

Remark 4.2. Corollary 4.1 reduces to [26, Theorem 3(b)] by considering the set G = q+ intD,
where q ∈ D\{0} and D is assumed to be solid. Notice that G is nonempty, open, coradiant,
0 /∈ G and E( f ,S,coneG) = WE( f ,S,D) as coneG = intD∪{0}.
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Next we provide more general results concerning the relationships of quasi efficient solu-
tions with efficient solutions of problem (PD). The notion of cone lower semicontinuity due to
Combari et al. [4] will be required. Some relationships with other cone lower semicontinuity
concepts can be seen in [23, Remark 3.2 and Proposition 3.3 ] and [21, Theorem 3.1].

Definition 4.1. [4, Definition 3.1 and Proposition 3.3] The function f : S ⊂ Rn → Rp is said
to be cone lower semicontinuos at x0 ∈ S with respect to a convex cone K ⊂ Rp (K-lsc at x0 in
short form) if for each sequence (xn)⊂ S, xn→ x0, there exists a sequence (bn)⊂ Rp such that
bn→ f (x0) and bn ≤K f (xn). If f is K-lsc at x, for all x ∈ S, then f is said to be K-lsc in S.

Theorem 4.1. Consider problem (PD) and a sequence Cm : Rn×Rn ⇒ Rp of set-valued map-
pings. Assume that f is D-lsc in S. We have that:

(i) If Cm(u,x) is free-disposal with respect to D, for all m ∈ N and for all (u,x) ∈ S2\∆n, S
is closed and C : Rn×Rn ⇒ Rp satisfies g-limsup

m→∞

Cc
m(u, ·) ⊂Cc(u, ·) in S\{u}, for all

u ∈ S, then
limsup

m→∞

QE( f ,S,Cm)⊂ QE( f ,S,C).

(ii) If Cm(u,x) is convex and free-disposal with respect to D, for all m ∈ N and for all
(u,x) ∈ S2\∆n, S is closed and C : Rn×Rn ⇒ Rp satisfies C(u, ·) is open-valued in
S\{u} and C(u,x)⊂ liminf

m→∞
Cm(u,xm) for all sequence (xm)⊂ S, xm→ x and x ∈ S\{u},

for all u ∈ S, then

limsup
m→∞

QE( f ,S,Cm)⊂ QE( f ,S,C).

(iii) If S is compact, x0 ∈ S, Cm(u,x0) is free-disposal with respect to D for all m ∈ N when-
ever u ∈ S\{x0} and C : Rn×Rn ⇒Rp satisfies g-limsup

m→∞

Cm(·,x0)⊂C(·,x0) in S\{x0}

and 0 /∈ g-limsup
m→∞

(Cm(·,x0)+D)(x0), then

x0 ∈ QE( f ,S,C)⇒ x0 ∈ QE( f ,S,Cm) eventually.

(iv) Consider a set-valued mapping C0 : Rn×Rn ⇒ Rp such that for each (u, x̄) ∈ S2\∆n,
C0(u, x̄) is open and there exists r > 0 and k ∈ N satisfying

C0(u, x̄)⊂
⋂

x∈x̄+rBn

Cm(u,x), ∀m≥ k. (4.4)

Assume that Cm(u,x) is free-disposal with respect to D, for all m∈N and for all (u,x)∈
S2\∆n and S is closed. Suppose C : Rn×Rn ⇒ Rp satisfies C =

⋃
m

Cm in S2\∆n. Then,

QE( f ,S,C) =
⋂

m∈N
QE( f ,S,Cm)⊂ liminf

m→∞
QE( f ,S,Cm)

⊂ limsup
m→∞

QE( f ,S,Cm)⊂ QE( f ,S,C0). (4.5)

Proof. (i) Consider a point x ∈ limsup
m→∞

QE( f ,S,Cm). Then there exists a sequence (xmk) ⊂ S

such that xmk ∈ QE( f ,S,Cmk) for all mk and xmk → x. We have that x ∈ S since S is closed. In
addition, for each u ∈ S\{x}, we may assume that xmk 6= u, for all mk. As xmk ∈ QE( f ,S,Cmk)
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we have that f (xmk) /∈ f (u)+Cmk(u,xmk), for each u ∈ S\{x}. As f is D-lsc at x, there exists a
sequence (bmk)⊂ Rp such that bmk → f (x) and bmk ≤D f (xmk), for all mk. We claim that

bmk /∈ f (u)+Cmk(u,xmk), ∀mk. (4.6)

Indeed, if there exists mk such that (4.6) is false, then

f (xmk) = bmk +( f (xmk)−bmk) ∈ bmk +D⊂ f (u)+Cmk(u,xmk)+D = f (u)+Cmk(u,xmk),

that is a contradiction. Therefore, gphCc
mk
(u, ·) 3 (xmk ,bmk − f (u))→ (x, f (x)− f (u)), and we

deduce taking into account the hypothesis that

f (x)− f (u) ∈ g-limsup
m→∞

[Cc
m(u, ·)](x)⊂Cc(u,x).

As u is an arbitrary feasible point different from x, we conclude that x ∈ QE( f ,S,C) and the
proof is completed.

(ii) The assumptions on the set-valued mappings Cm and C imply that g-limsup
m→∞

Cc
m(u, ·) ⊂

Cc(u, ·) in S\{u}, for all u ∈ S, and the result follows by part (i). Indeed, consider (u,x) ∈
S2\∆n and gphCc

mk
(u, ·) 3 (xmk ,ymk)→ (x,y) and suppose by contradiction that y ∈C(u,x). As

ymk /∈ Cmk(u,xmk) and Cmk(u,xmk) is convex, by the separation theorem there exists λmk ∈ Rp

such that ‖λmk‖ = 1 and 〈λmk ,zmk〉 ≤ 〈λmk ,ymk〉, for all zmk ∈ Cmk(u,xmk). We can suppose
λmk → λ ∈ Rp\{0}. Therefore,

〈λ ,z〉 ≤ 〈λ ,y〉, ∀z ∈ liminf
k→∞

Cmk(u,xmk). (4.7)

As C(u,x) is open and y ∈ C(u,x), there exists α > 0 such that y + αλ ∈ C(u,x). By the
assumptions we see that C(u,x)⊂ liminf

k→∞
Cmk(u,xmk) and statement (4.7) implies

〈λ ,y〉+α‖λ‖2 = 〈λ ,y+αλ 〉 ≤ 〈λ ,y〉,
that is a contradiction.

(iii) Consider x0 ∈ QE( f ,S,C) and suppose on the contrary that there exists a subsequence
(Cmk) such that x0 /∈ QE( f ,S,Cmk), for all mk. Therefore, there exists umk ∈ S\{x0} such that
f (x0) ∈ f (umk)+Cmk(umk ,x0). Since S is assumed to be compact we can suppose without loss
of generality that umk → u ∈ S. In addition, as f is D-lsc at u there exists a sequence (bmk)⊂Rp

satisfying bmk ≤D f (umk) and bmk → f (u).
If u 6= x0, then we can suppose umk 6= x0 and so

f (x0) ∈ f (umk)+Cmk(umk ,x0)⊂ bmk +Cmk(umk ,x0)+D = bmk +Cmk(umk ,x0).

Therefore, (umk , f (x0)−bmk) ∈ gphCmk(·,x0) and clearly,

f (x0)− f (u) ∈ g-limsup
m→∞

Cm(·,x0)(u).

It follows that f (x0) ∈ f (u)+C(u,x0), which is a contradiction since x0 ∈ QE( f ,S,C).
Therefore u= x0, and by the same reasonings as above we deduce that 0∈ g-limsup

m→∞

(Cm(·,x0)+

D)(x0), that is also a contradiction.
(iv) The equality in (4.5) follows by Theorem 3.1(ii) and the first and second inclusions are

obvious. Finally, we claim that g-limsup
m→∞

Cc
m(u, ·)⊂Cc

0(u, ·) in S\{u}, for all u ∈ S and the last

inclusion in (4.5) is true by part (i). Indeed, consider (u, x̄)∈ S2\∆n and y∈ g-limsup
m→∞

Cc
m(u, ·)(x̄).
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Then, there exists a sequence ((xmk ,ymk))mk ⊂ Rn×Rp such that gphCc
mk
(u, ·) 3 (xmk ,ymk)→

(x̄,y). Suppose by contradiction that y ∈ C0(u, x̄). As the set C0(u, x̄) is open, we have that
(xmk ,ymk) ∈ (x̄ + rBn)×C0(u, x̄) eventually, and by condition (4.4) we see that there exists
ymk ∈Cmk(u,xmk), that is a contradiction. �

Remark 4.3. (i) Concerning assumption (4.4), which supports the last inclusion in (4.5), notice
it implies that C0(u,x) ⊂ liminf

m→∞
Cm(u,xm) for all (u,x) ∈ S2\∆n and for all sequence (xm) ⊂ S,

xm→ x. This condition is supposed in part (ii) of Theorem 4.1, along with the convexity of the
sets Cm(u,x), for all m ∈ N and for all (u,x) ∈ S2\∆n. However, this convexity assumption is
not required in part (iv) of Theorem 4.1.

(ii) Assumption C(u,x)⊂ liminf
m→∞

Cm(u,xm) for all (u,x) ∈ S2\∆n and for all sequence (xm)⊂
S, xm→ x, concerns the “inner part” of the so-called continuous limit of the set-valued mappings
Cm(u, ·) : Rn→ Rp (see [33, Definition 5.41]).

Theorem 4.2. Consider problem (PD) and a set G⊂ Rp such that G+D is coradiant. Assume
that f is D-lsc in S. We have that:

(i) Assume a nonempty set H ⊂G+D, r∈R+ and hm :Rn×Rn→R+ satisfying hm(u,x)>
0 for all m ∈ N and liminf

k→∞
hmk(u,xmk) ≤ r, for all (u,x) ∈ S2\∆n and for all sequence

(xmk) in S, xmk → x. Let C : Rn×Rn ⇒ Rp be C(x,u) =
⋃
t>r

t(cl(Hc))c, for all (u,x) ∈

S2\∆n. If S is closed we have that

limsup
m→∞

QE( f ,S,hmG+D)⊂ QE( f ,S,C).

(ii) Let x0 ∈ S, r ∈ R+ and hm : Rn×Rn → R+ satisfy liminf
m→∞

hm(um,x0) > r for all con-

vergent sequence (um) in S. Suppose 0 /∈ cl(G+D) and define C : Rn×Rn ⇒ Rp,
C(x,u) =

⋃
α>r

α cl(G+D). If S is compact, we have that

x0 ∈ QE( f ,S,C)⇒ x0 ∈ QE( f ,S,hmG+D) eventually. (4.8)

(iii) Consider x0 ∈ S, hm : Rn×Rn → R+ and a sequence (rm) ⊂ R+\{0}, rm → r and
rm > r for all m ∈ N. Suppose 0 /∈ cl(G+D) and define C : Rn×Rn ⇒ Rp, C(x,u) =⋃
α>r

α cl(G+D). If S is compact, then there exists a subsequence (hmk) such that

x0 ∈ QE( f ,S,C)⇒ x0 ∈
⋂
k

QE( f ,S,(hmk + rk)G+D). (4.9)

Proof. (i) We state this part as a consequence of Theorem 4.1(i). Then, let us check that its
assumptions are fulfilled.

Clearly, the values of the mapping hmG+D : Rn×Rn ⇒Rp are free-disposal with respect to
D, for all m ∈ N. Consider (u,x) ∈ S2\∆n and y ∈ g-limsup

m→∞

(hm(u, ·)G+D)c(x). There exists

a sequence (xmk ,ymk) ∈ Rn×Rp such that xmk → x and (hmk(u,xmk)G+D)c 3 ymk → y. As
we have liminf

k→∞
hmk(u,xmk) ≤ r, for each α > 0 we can suppose by passing a subsequence if

necessary that 0 < hmk(u,xmk)< r+α for all mk, and so

(r+α)H ⊂ (r+α)(G+D)⊂ hmk(u,xmk)(G+D) = hmk(u,xmk)G+D,
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since G+D is coradiant. Therefore, ymk ∈ ((r+α)H)c for all mk and it follows that y ∈ (r+
α)cl(Hc). As α > 0 is arbitrary we deduce

y ∈
⋂
t>r

t cl(Hc) =

(⋃
t>r

t(cl(Hc))c

)c

=C(u,x)c.

We have that g-limsup
m→∞

(hm(u, ·)G+D)c(x)⊂C(u,x)c and the result follows by applying Theo-

rem 4.1(i).
(ii) This result is a particular case of Theorem 4.1(iii). Indeed, let (um) ⊂ S be a convergent

sequence to u. By the assumptions we see that there exists α > r such that hm(um,x0)> α even-
tually. In addition, as the set G+D is coradiant it follows that α2G+D ⊂ α1G+D whenever
0 < α1 < α2. Thus,

limsup
m→∞

(hm(um,x0)G+D)⊂ α cl(G+D)

and so, for each u ∈ S, we have that

[g-limsup
m→∞

(hm(·,x0)G+D)](u)⊂
⋃

α>r
α cl(G+D).

Therefore, the hypotheses of Theorem 4.1(iii) hold true and the proof finishes.
(iii) Consider an arbitrary element rk of the sequence (rm) and define the sequence h′m : Rn×

Rn→ R+, h′m = hm + rk, for all m ∈ N. Clearly, liminf
m→∞

h′m(um,x0) ≥ rk > r for all convergent

sequence (um) in S, and by part (ii) we see that x0 ∈ QE( f ,S,h′mG+D) eventually provided
that x0 ∈ QE( f ,S,C). Therefore it is possible to choose a subsequence (hmk) such that x0 ∈
QE( f ,S,(hmk + rk)G+D), for all k ∈ N and the proof finishes. �

Next we illustrate the previous theorem in a setting where the calculations are easy to obtain.

Corollary 4.2. Consider problem (PD) and a coradiant and free-disposal set G⊂Rp\{0} with
respect to the cone D. Assume that f is D-lsc in S. We have that:

(i) Let hm : Rn×Rn→R+ be satisfying hm(u,x)> 0 for all m∈N and liminf
k→∞

hmk(u,xmk) =

0, for all (u,x) ∈ S2\∆n and for all sequence (xmk) in S, xmk → x. If G is solid and S is
closed, then

E( f ,S,coneG)⊂
⋂

m∈N
QE( f ,S,hmG)⊂ liminf

m→∞
QE( f ,S,hmG) (4.10)

⊂ limsup
m→∞

QE( f ,S,hmG)⊂ E( f ,S,cone(intG)),

E( f ,S,cone(intG)) =
⋂

m∈N
QE( f ,S,hm intG) = lim

m→∞
QE( f ,S,hm intG). (4.11)

In particular, the set E( f ,S,cone(intG)) is closed.
(ii) Let x0 ∈ S, hm : Rn×Rn → R+ be satisfying liminf

m→∞
hm(um,x0) > 0 for all convergent

sequence (um) in S. If 0 /∈ clG and S is compact, we have that

x0 ∈ E( f ,S,cone(clG))⇒ x0 ∈ QE( f ,S,hmG+D) eventually. (4.12)
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(iii) Consider x0 ∈ S, hm : Rn×Rn→ R+ and a sequence (εk)⊂ R+\{0} such that εk→ 0.
If 0 /∈ clG and S is compact, then there exists a subsequence (hmk) fulfilling

x0 ∈ E( f ,S,cone(clG))⇒ x0 ∈
⋂
k

QE( f ,S,(hmk + εk)G). (4.13)

Proof. (i) In order to apply Theorem 4.2(i) with H := intG and r = 0, notice that

C(x,u) =
⋃
t>0

t(cl(Hc))c = cone([cl(Hc)]c)\{0}= cone(intG)\{0}, ∀(u,x) ∈ S2\∆n.

Thus, QE( f ,S,C) = E( f ,S,cone(intG)) and we have

limsup
m→∞

QE( f ,S,hmG) = limsup
m→∞

QE( f ,S,hmG+D)⊂ E( f ,S,cone(intG)),

since the set-valued mappings hmG+D and hmG coincide in S2\∆n. In order to state (4.10),
notice that E( f ,S,coneG) ⊂ QE( f ,S,hmG), for all m ∈ N. Indeed, suppose by contradiction
that x ∈ E( f ,S,coneG) and there exist m ∈N and u ∈ S\{x} such that f (x) ∈ f (u)+hm(u,x)G.
As hm(u,x)> 0 and 0 /∈ G we have that

f (u)− f (x) ∈ −hm(u,x)G⊂−(coneG)\{0}
that is a contradiction since x ∈ E( f ,S,coneG).

Clearly, (4.11) results by applying (4.10) to intG instead of G, which is also a solid coradiant
and free-disposal set with respect to the cone D. As a simple result of assertion (4.11) we say
that set E( f ,S,cone(intG)) is closed as it is the limit of a sequence of sets.

(ii)-(iii) By applying parts (ii) and (iii) of Theorem 4.2 we see that QE( f ,S,C)=E( f ,S,cone(clG))
since

C(x,u) =
⋃

α>0

α clG = cone(clG)\{0}, ∀(x,u) ∈ Rn×Rn.

Then statement (4.8) (resp. (4.9))) reduces to (4.12) (resp. (4.13)) and parts (ii) and (iii) are
proved. �

Remark 4.4. Part (i) of Corollary 4.2 reduces to [23, Theorem 3.1(b)] in the case ε = 0
by considering a nonincreasing sequence (εn) ⊂ R+\{0} such that εn → 0 and by defining
hn(x,u) = εnϕ(x−u), for all (x,u) ∈ Rn×Rn (see also [23, Corollary 3.1]).

Let us illustrate Corollary 4.2 with a simple example.

Example 4.1. Consider problem (PD) with the next data: f : Rn → Rn+1, f (x) = (x,‖x‖2),
for all x ∈ Rn, where ‖x‖ denotes the Euclidean norm of x ∈ Rn, S = Rn

+, D = Rn+1
+ , q =

(0,0, . . . ,0,1) ∈Rn+1, G = q+Rn+1
+ and hm : Rn×Rn→R+, hm(u,x) = (1/m)(‖u−x‖2 +1),

for all u,x ∈ Rn, for all m ∈ N, m≥ 2. Clearly, all assumptions of Corollary 4.2(i) are fulfilled.
In addition, cone(intG) = intRn+1

+ ∪{0} and it is easy to check that

E( f ,S,cone(intG)) = WE( f ,S,Rn+1
+ ) = bdRn

+.

Let us obtain the set QE( f ,S,hm intG). Consider x ∈ Rn
+. We have that

f (x) /∈ f (u)+hm(u,x) intG ⇐⇒ (x,‖x‖2) /∈ (u,‖u‖2)+(1/m)(‖u− x‖2 +1)q+ intRn+1
+

⇐⇒
{

x /∈ u+ intRn
+ or

‖x‖2 ≤ ‖u‖2 +(1/m)‖u− x‖2 +1/m,
∀u ∈ Rn

+\{x}.

(4.14)
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Obviously, condition (4.14) holds true whenever x ∈ bdRn
+. Therefore, if x ∈ intRn

+, condition
(4.14) is fulfilled if and only if

‖x‖2 ≤ ‖u‖2 +(1/m)‖u− x‖2 +1/m, ∀u ∈ x− intRn
+, (4.15)

that is equivalent to the next statement

‖x‖2 ≤ inf
d∈Rn

+

(‖x−d‖2 +(1/m)‖d‖2 +1/m).

It is not hard to obtain that

inf
d∈Rn

+

(‖x−d‖2 +(1/m)‖d‖2 +1/m) =
1

m+1
‖x‖2 +1/m (4.16)

and so, for each x∈ intRn
+, inequality (4.15) holds true if and only ‖x‖≤

√
m+1
m . Thus, it follows

that

QE( f ,S,hm intG) = bdRn
+∪
√

m+1
m

(clBn∩Rn
+).

Notice that ⋂
m∈N

QE( f ,S,hm intG) = lim
m→∞

QE( f ,S,hm intG)

= lim
m→∞

(
bdRn

+∪
√

m+1
m

(clBn∩Rn
+)

)
= bdRn

+ = WE( f ,S,Rn+1
+ ).

The previous results show that quasi efficient solutions exhibit a good behavior as inner and
outer approximation of efficient solutions of problem (PD) whenever the set-valued mapping C
is free-disposal-valued with respect to the ordering cone D. This fact and the claims previous
to Definition 3.2 motivate the next notion of proper quasi efficiency. For this aim, the family of
dilating cones of D is required:

F (D) := {K (Rp : K is a convex cone s.t. D\{0} ⊂ intK}.

Definition 4.2. Consider problem (PD) and let C : Rn×Rn ⇒ Rp be free-disposal-valued with
respect to D in S2\∆n. A point x0 ∈ S is said to be a Henig proper quasi efficient solution of
problem (PD), and it is denoted by x0 ∈ HQE( f ,S,C,D), if there exists K ∈F (D) such that
x0 ∈WQE( f ,S,C+K), i.e.,

HQE( f ,S,C,D) :=
⋃

K∈F (D)

WQE( f ,S,C+K). (4.17)

Remark 4.5. (i) The convenience to define Henig proper quasi efficiency whenever the set-
valued mapping C is free-disposal-valued with respect to D has already been noticed in the
literature (see, for instance, the last paragraph in [26, page 384]).

(ii) Clearly, for each K ∈ F (D), it follows that int(C(x,u)+K) = C(x,u) + intK, for all
x,u ∈ Rn, since K is a solid convex cone. Thus, we have that

HQE( f ,S,C,D) =
⋃

K∈F (D)

QE( f ,S,C+ intK)⊂ QE( f ,S,C+(D\{0})). (4.18)

In particular, the set-valued mapping C(x,u) = D, for all x,u ∈ Rn, which leads to the so-called
Henig proper solutions of problem (PD), satisfies QE( f ,S,C +(D\{0})) = E( f ,S,D) and so
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Henig proper quasi efficient solutions are efficient solutions too. In general, if the set-valued
mapping C fulfills C(x,u) + (D\{0}) = C(x,u), for all x,u ∈ S2\∆n, which is free-disposal-
valued with respect to D in S2\∆n, then the set of Henig proper quasi efficient solutions of
problem (P) is useful as an inner approximation of the set of quasi efficient solutions of problem
(P).

(iii) In the case where C is free-disposal-valued with respect to D in S2\∆n and D is solid,
we have that intC =C+ intD⊂C+(D\{0}) in S2\∆n. Thus, by Theorem 3.1(i) and statement
(4.18) we see that HQE( f ,S,C,D)⊂WQE( f ,S,C).

(iv) Definition 4.2 reduces to [26, Definition 3] by the set-valued mapping C = hG+D (recall
that set G is referred to C in [26, Definition 3]). In other words, [26, Definition 3] can be equiv-
alently formulated by assuming G to be free-disposal with respect to D. Analogously, claim
(4.18) generalizes [26, assertion (4)] and along with Proposition 3.1(ii) extends [26, Proposi-
tion 3(c)].

The next concept is useful not only to better understanding the concept of Henig proper quasi
efficiency, but also to obtain this kind of solutions in practical problems.

Definition 4.3. We say that B ⊂ F (D) generates F (D) if for each K ∈ F (D) there exists
K′ ∈B such that K′\{0} ⊂ intK.

Notice F (D) generates F (D) as intK∪{0} ∈F (D) as long as K ∈F (D). Next it is stated
that all Henig proper quasi efficient solutions can be obtained by considering the cones in a
generating family B.

Proposition 4.2. Suppose that B generates F (D). Then,

HQE( f ,S,C,D) =
⋃

K∈B
QE( f ,S,C+(K\{0})) =

⋃
K∈B

QE( f ,S,C+ intK) (4.19)

=
⋃

K∈F (D)

QE( f ,S,C+(K\{0})). (4.20)

Proof. As B ⊂F (D) and C+ intK ⊂C+(K\{0}) whenever K ( Rp is a cone, by Theorem
3.1(i) we have that⋃

K∈B
QE( f ,S,C+(K\{0}))⊂

⋃
K∈B

QE( f ,S,C+ intK)⊂ HQE( f ,S,C,D).

Since B generates F (D), for each K ∈F (D) there exists K′ ∈B satisfying K′\{0} ⊂ intK.
Thus, by Theorem 3.1(i) we deduce that QE( f ,S,C+ intK)⊂ QE( f ,S,C+(K′\{0})). Thus,

HQE( f ,S,C,D) =
⋃

K∈F (D)

QE( f ,S,C+ intK)⊂
⋃

K∈B
QE( f ,S,C+(K\{0}))

and (4.19) is stated. Finally, equality (4.20) results from (4.19) since F (D) generates F (D).
�

The notion of Henig proper quasi efficiency is useless as long as D\{0} is open since it
coincides with the concepts of quasi efficiency and weak quasi efficiency. The same assertion
holds true when one considers Henig proper quasi efficient solutions with respect to the dilating
set-valued mapping C+ intK, K ∈F (D), instead of C. Both claims are showed in the next two
results.
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Proposition 4.3. Suppose that D\{0} is open and let C : Rn×Rn ⇒Rp be free-disposal-valued
with respect to D in S2\∆n. Then,

HQE( f ,S,C,D) = QE( f ,S,C+(D\{0})) = WQE( f ,S,C).

Proof. Clearly, D\{0} is open if and only if D= intD∪{0}. Thus, D\{0}= intD and B = {D}
generates F (D). Then by (4.19) we have

HQE( f ,S,C,D) = QE( f ,S,C+(D\{0})) = QE( f ,S,C+ intD).

As the set C(x,u) is free-disposal, for all (x,u)∈ S2\∆n, it follows that C+ intD = int(C+D) =
intC in S2\∆n. Therefore, by Remark 3.3(i) we see that QE( f ,S,C + intD) = WQE( f ,S,C),
which finishes the proof. �

Corollary 4.3. Let C : Rn×Rn ⇒Rp be free-disposal-valued with respect to D in S2\∆n. Then,

HQE( f ,S,C+ intK,D) = WQE( f ,S,C+K), ∀K ∈F (D).

Proof. Consider K̄ ∈F (D). It is easy to check that F (int K̄ ∪{0}) ⊂F (D) and C+ int K̄ is
free-disposal-valued with respect to int K̄∪{0} in S2\∆n. Thus, Proposition 4.3 implies that

WQE( f ,S,C+ K̄) = HQE( f ,S,C+ int K̄, int K̄∪{0})⊂ HQE( f ,S,C+ int K̄,D). (4.21)

In addition, as int K̄+(D\{0}) = int K̄ and C+ int K̄ = int(C+ K̄), by statement (4.18) we have
that

HQE( f ,S,C+ int K̄,D)⊂ QE( f ,S,C+ int K̄ +(D\{0})) = WQE( f ,S,C+ K̄) (4.22)

and the proof is completed. �

Corollary 4.3 reduces to [26, Proposition 1(iii)] by considering the set-valued mapping C =
hG+ intK, where G is a nonempty set in Rp –denoted by C in [26, Proposition 1(iii)]– and
K ∈F (D).

A key mathematical tool to deal with Henig proper quasi efficient solutions via a generating
family B is the concept of approximating family of cones (see [35, Definition 3.1]).

Definition 4.4. It is said that a sequence (Dm) ⊂ Rp of nonincreasing (with respect to the
inclusion) solid closed pointed convex cones approximates D if D\{0} ⊂ intDm and D =

⋂
m

Dm.

For a closed cone K ⊂ Rp, if in addition,

D∩K = {0}⇒ Dm∩K = {0} eventually, (4.23)

then it is said that (Dm) separates D from K. The sequence (Dm) is called approximating and
separating for D if it approximates D and separates D from K, for all closed cones K ⊂ Rp.

Remark 4.6. It is well-known the existence of approximating and separating sequences for D,
which have been explicitly built in the literature (see, for instance, [25, 28, 35]). The next result
shows these sequences of cones generate F (D).

Proposition 4.4. We have that each approximating and separating sequence of cones for D
generates F (D).
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Proof. Let (Dm) be an approximating and separating sequence of cones for D. By the definition
we see that (Dm)⊂F (D). In addition, for each K ∈F (D), it follows that D\{0} ⊂ intK, i.e.,
D∩ (intK)c = {0}. As (intK)c is a closed cone, by the separating property (4.23) we deduce
that Dm∩ (intK)c = {0} eventually. Thus, there exists m ∈N such that Dm\{0} ⊂ intK and the
result is proved. �

In the sequel we state that the sets in the sequence (QE( f ,S,C + intDm))m are good inner
approximations of the quasi efficient solutions of problem (PD) whenever C is free-disposal-
valued with respect to D in S2\∆n and (Dm) is an approximating and separating sequence of
cones for D. Recall that the recession cone of a nonempty set F ⊂ Rp is the cone

0+F := {y ∈ Rp : ∃(yn)⊂ F,∃(tn)⊂ R+, tn→ 0, s.t. tnyn→ y}.

Theorem 4.3. Let (Dm) be an approximating and separating sequence of cones for D, and
C : Rn×Rn ⇒ Rp be free-disposal-valued with respect to D in S2\∆n. We have that

HQE( f ,S,C,D) =
⋃
m

QE( f ,S,C+ intDm) (4.24)

⊂ QE( f ,S,
⋂
m
(C+ intDm)) (4.25)

⊂ QE( f ,S,C+D\{0}). (4.26)

If, in addition, C(x,u) is closed and 0+C(x,u) ∩ (−D) = {0}, for all (x,u) ∈ S2\∆n, then
QE( f ,S,C)⊂ QE( f ,S,

⋂
m
(C+ intDm)).

Proof. Equality (4.24) is a direct consequence of Proposition 4.4 and (4.19) and inclusions
(4.25) and (4.26) follow by Theorem 3.1(i), since

C+D\{0} ⊂
⋂
m
(C+ intDm)⊂C+ intDm, ∀m ∈ N.

Moreover, by considering the assumptions of the second part of the theorem to be fulfilled,
we claim that ⋂

m
(C(x,u)+ intDm)⊂C(x,u), ∀(x,u) ∈ S2\∆n, (4.27)

and the last statement of this theorem follows by part (i) of Theorem 3.1. Indeed, consider a
point ȳ ∈

⋂
m
(C(x,u)+ intDm). Therefore, there exist sequences (ym)⊂C(x,u) and (dm)⊂ Rp,

dm ∈ intDm such that ȳ = ym +dm, for all m ∈ N.
It follows that the sequence (dm) is bounded. On the contrary, suppose that tm := ‖dm‖→+∞.

Then we can assume that dm/tm → d ∈ Rp\{0}. As the sequence (Dm) approximates D we
deduce that d ∈ D\{0}. Thus, ym/tm→−d ∈ 0+C(x,u)∩ (−D\{0}), which is a contradiction.

By the boundedness of the sequence (dm), we can assume without loss of generality that dm
converges to a point d that belongs to D since the sequence (Dm) approximates D. Clearly,
ym → y = ȳ− d and as C(x,u) is assumed to be closed we have that y ∈ C(x,u). Therefore,
ȳ ∈C(x,u)+D =C(x,u) and the proof finishes. �

Remark 4.7. Theorem 4.3 extends the claims in [26, Remark 2], in the sense that the compu-
tation of Henig proper quasi efficient solutions taking into account only a sequence of known
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dilating cones (see Remark 4.6) is possible not only for polyhedral ordering cones, but also for
each closed pointed convex cone D.

Theorem 4.4. Let (Dm) be an approximating and separating sequence of cones for D and
consider h : Rn×Rn→ R+ and a nonempty set G⊂ Rp. The next assertions hold true:

(i) We have that

HQE( f ,S,hG+D,D) =
⋃
m

QE( f ,S,hG+ intDm)⊂ QE( f ,S,hG+D\{0}). (4.28)

(ii) If G+D is closed, h > 0 in S2\∆n and 0+(G+D)∩ (−D) = {0}, then

QE( f ,S,hG+D)⊂ QE( f ,S,
⋂
m
(hG+ intDm)).

(iii) If G⊂ D\{0}, then⋃
ε∈E (h)

QE( f ,S,(h− ε)G+D\{0})⊂ QE( f ,S,hG+D),

where E (h) := {ε : Rn×Rn→ R+ : 0 < ε(x,u)< h(x,u),∀(x,u) ∈ S2\∆n}.

Proof. (i) Clearly, the values of the mapping C := hG+D : Rn×Rn ⇒Rp are free-disposal sets
with respect to D, since D+D=D. In addition, C+ intDm = hG+ intDm as D+ intDm = intDm,
for all m∈N, and D+D\{0}=D\{0} since D is assumed to be pointed. Then, statement (4.28)
is obtained by applying statements (4.24) and (4.26) .

(ii) By assumptions, it is obvious that C(x,u) is closed and

0+C(x,u) = 0+(h(x,u)G+D) = 0+(h(x,u)(G+D)) = h(x,u)0+(G+D) = 0+(G+D)

in S2\∆n. Therefore,

0+C(x,u)∩ (−D) = 0+(G+D)∩ (−D) = {0}, (x,u) ∈ S2\∆n

and by the second part of Theorem 4.3 we deduce that QE( f ,S,hG+D) ⊂ QE( f ,S,
⋂
m
(hG+

intDm)).
(iii) Since G⊂ D\{0}, in S2\∆n we have that

hG+D⊂ (h− ε)G+ εG+D⊂ (h− ε)G+D\{0}+D = (h− ε)G+D\{0}, ∀ε ∈ E (h),

and by Theorem 3.1(i) we see that QE( f ,S,(h− ε)G + D\{0}) ⊂ QE( f ,S,hG + D), which
finishes the proof. �

5. LINEAR SCALARIZATION

In this last section, we are going to deduce linear scalarization results for weak quasi efficient
solutions of problem (P) and Henig proper quasi efficient solutions of problem (PD), i.e., neces-
sary and sufficient conditions that characterize this kind of efficient solutions by quasi solutions
of associated scalar optimization problems. As usual, the necessary conditions are deduced by
considering that the objective function f of the problem fulfils certain generalized cone con-
vexity assumptions. Recall that the positive (resp. strict positive) polar cone of a convex cone
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K ⊂ Rp is the set

K+ := {λ ∈ Rp : 〈λ ,y〉 ≥ 0,∀y ∈ K}
(resp. K+s := {λ ∈ Rp : 〈λ ,y〉> 0,∀y ∈ K\{0}}).

In addition, the epigraph of a set-valued mapping F : Rn ⇒Rp with respect to a convex cone
K ⊂ Rp is the set:

epiKF := {(x,z) ∈ Rn×Rp : z ∈ F(x)+K}.
For a nonempty set Q⊂ Rn, notice that

epiKF |Q := {(x,z) ∈ Q×Rp : z ∈ F(x)+K}
and so a point (x,z)∈Rn×Rp belongs to epiKF |Q if and only if x ∈Q and there exists y ∈ F(x)
such that y≤K z.

Definition 5.1. Let Q be a nonempty subset of Rn. The set-valued mapping F : Rn ⇒Rp is said
to be:

(i) Closely cone convex with respect to a convex cone K ⊂ Rp (closely K-convex in short
form) on Q, if the set clepiKF |Q is convex.

(ii) Nearly cone subconvexlike with respect to a convex cone K⊂Rp (nearly K-subconvexlike
in short form) on Q, if the set clcone(F(Q)+K) is convex.

(iii) Generalized cone subconvexlike with respect to a solid convex cone K ⊂Rp (generalized
K-subconvexlike in short form) on Q, if the set coneF(Q)+ intK is convex.

Remark 5.1. In [16] and the references therein, one can find several relationships and properties
of the above generalized convexity concepts. In particular, it is well-known that the notions of
nearly K-subconvexlikeness and generalized K-subconvexlikeness are equivalent as long as the
convex cone K is solid.

Theorem 5.1. Consider problem (P), a point x0 ∈ S and C : Rn×Rn ⇒Rp such that S\{x0} ⊂
domintC(·,x0). Assume the set-valued mapping intC(·,x0) : Rn ⇒ Rp is open, graph-convex
and free-disposal-valued with respect to a convex cone K ⊂ Rp in S, 0 /∈ intC(x0,x0) and f −
f (x0) is closely K-convex on S. In addition, suppose that intS 6= /0 or Rn\{x0}⊂ domintC(·,x0).

If x0 ∈WQE( f ,S,C), then there exists λ ∈ K+\{0} such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S\{x0}. (5.1)

In addition, if C(x0,x0) is solid, then (5.1) can be extended to x = x0 and it follows that λ ∈
(coneC(x0,x0)

+∩K+)\{0}.
Proof. As x0 is a weak quasi efficient solution of problem (P) and 0 /∈ intC(x0,x0), we have that

(x, f (x)− f (x0)) /∈ gph(− intC(·,x0)), ∀x ∈ S.

Therefore, ⋃
x∈S

{(x, f (x)− f (x0))}
⋂

gph(− intC(·,x0)) = /0. (5.2)

As the set-valued mapping intC(·,x0) is free-disposal-valued with respect to K in S, statement
(5.2) can be rewritten as follows:[(⋃

x∈S

{(x, f (x)− f (x0))}

)
+({0}×K)

]⋂
gph(− intC(·,x0)) = /0. (5.3)
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Notice that(⋃
x∈S

{(x, f (x)− f (x0))}

)
+({0}×K) =

⋃
x∈S

{x}× ( f (x)− f (x0)+K) = epiK( f |S− f (x0)),

where f |S− f (x0) denotes the set-valued mapping from Rn to Rp defined by ( f |S− f (x0))(x) =
{ f (x)− f (x0)} for all x ∈ S and ( f |S− f (x0))(x) = /0 otherwise.

Then, by (5.3) we have that

epiK( f |S− f (x0))⊂ (gph(− intC(·,x0)))
c.

Clearly, the right-hand side of the above inclusion is a closed set as the set-valued mapping
intC(·,x0) is open. Therefore, one can replace the left-hand side of the above inclusion by
clepiK( f |S− f (x0)) and we see that

clepiK( f |S− f (x0))
⋂

gph(− intC(·,x0)) = /0.

The set clepiK( f |S− f (x0)) is convex since f − f (x0) is closely K-convex on S. In addition,
gph(− intC(·,x0)) is solid and convex as the set-valued mapping intC(·,x0) is open and graph-
convex. Then, clepiK( f |S− f (x0)) and gph(− intC(·,x0)) can be properly separated (see [33,
Theorem 2.39]), i.e., there exists (µ,λ ) ∈ Rn×Rp\{(0,0)} such that

〈µ,x〉+ 〈λ , f (x)− f (x0)+ y〉 ≥ 〈µ,u〉+ 〈λ ,z〉, ∀x ∈ S,y ∈ K,u ∈ S\{x0},z ∈ −C(u,x0).
(5.4)

In addition, if intC(x0,x0) 6= /0, then (5.4) can be extended to u = x0.
We claim that λ 6= 0. Indeed, if λ = 0 and intS 6= /0, we have 〈µ,x−u〉 ≥ 0, for all x ∈ S and

u ∈ S\{x0}. Thus, by considering x̄ ∈ intS and a point y ∈ Rp\{0} there exists α > 0 such that
x̄±αy ∈ S\{x0} and so by taking x := x̄ and u := x̄±αy we deduce 〈µ,y〉 = 0. As point y is
arbitrary we obtain µ = 0, which is a contradiction.

Suppose that λ = 0 and Rn\{x0} ⊂ domintC(·,x0). Then condition u ∈ S\{x0} in (5.4) can
be extended to u ∈ Rn\{x0} and by taking x = x0 we see that 〈µ,x0〉 ≥ 〈µ,u〉, for all u ∈ Rn,
and so µ = 0, which is a contradiction.

In addition, from inequality (5.4) with u = x ∈ S\{x0} and y = 0 it follows that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S\{x0}, (5.5)

and statement (5.1) is proved. By statement (5.4), we see that infy∈K〈λ ,y〉 > −∞. There-
fore, λ ∈ K+, since λ 6= 0 and K is a cone. In addition, if C(x0,x0) is solid, then (5.4)
also holds true for u = x0. Thus, by considering u = x = x0 and y = 0 in (5.4) we deduce
λ ∈ coneC(x0,x0)

+\{0} and the proof finishes. �

Theorem 5.2. Consider problem (P), a point x0 ∈ S, C : Rn×Rn ⇒ Rp and let K ⊂ Rp be
a solid convex cone. Suppose C(x0,x0)∩ (− intK) = /0 and f − f (x0)+C(·,x0) is nearly P-
subconvexlike on the feasible set S, for a convex cone P⊂ K.

If x0 ∈WQE( f ,S,C+K), then there exists λ ∈ (coneC(x0,x0)
+∩K+)\{0} such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S. (5.6)

Proof. Since x0 ∈WQE( f ,S,C+K) and C(x0,x0)∩ (− intK) = /0, we have that

f (x)− f (x0) /∈ −(C(x,x0)+ intK), ∀x ∈ S.
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As P⊂ K is a convex cone, it is obtained that P+ intK = intK. Thus,

( f − f (x0)+C(·,x0))(S)+P⊂ (− intK)c

and as (− intK)c is a closed cone we deduce that

clcone(( f − f (x0)+C(·,x0))(S)+P)∩ (− intK) = /0. (5.7)

By the nearly P-subconvexlikeness of f − f (x0)+C(·,x0) on S we have that the left-hand side
set in the last intersection is convex. Therefore, as in the proof of the previous theorem, the
involved sets in (5.7) can be properly separated, i.e., there exists λ ∈ Rp\{0} such that

〈λ , f (x)− f (x0)+ z〉 ≥ 〈λ ,y〉, ∀x ∈ S,z ∈C(x,x0),y ∈ −K,

and the result follows by considering the same reasoning as in the proof of Theorem 5.1. �

Corollary 5.1. Consider problem (P), a point x0 ∈ S, C : Rn×Rn ⇒ Rp and let K ⊂ Rp be a
solid convex cone. Suppose that C(·,x0) : Rn ⇒ Rp is free-disposal-valued with respect to the
cone intK∪{0} in S, 0 /∈ intC(x0,x0) and f − f (x0)+C(·,x0) is nearly P-subconvexlike on the
feasible set S, for a convex cone P⊂ K.

If x0 ∈WQE( f ,S,C), then there exists λ ∈ (coneC(x0,x0)
+∩K+)\{0} such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S. (5.8)

Proof. Since C(x,x0) is free-disposal with respect to the cone intK∪{0}, we have that

intC(x,x0)= int(C(x,x0)+(intK∪{0}))=C(x,x0)+int(intK∪{0})=C(x,x0)+intK, ∀x∈ S.

Therefore, as x0 ∈WQE( f ,S,C) and 0 /∈ intC(x0,x0) it follows that x0 ∈WQE( f ,S,C +K)
and C(x0,x0)∩ (− intK) = /0. Then, all assumptions of Theorem 5.2 are fulfilled and, as a
consequence of this result, assertion (5.8) is obtained and the proof is completed. �

Given λ ∈ Rp\{0}, we denote

H≥
λ

:= {y ∈ Rp : 〈λ ,y〉 ≥ 0},
H>

λ
:= {y ∈ Rp : 〈λ ,y〉> 0}.

Proposition 5.1. Consider problem (P) and a point x0 ∈ S. If there exists λ ∈ Rp\{0} such
that inequality (5.1) holds true, then x0 ∈WQE( f ,S,C+H≥

λ
). In addition, if inequality (5.1) is

strict, then x0 ∈ QE( f ,S,C+H≥
λ
).

Proof. On the contrary, suppose that x0 /∈WQE( f ,S,C+H≥
λ
). Then there exist x ∈ S\{x0} and

y∈ int(C+H≥
λ
)(x,x0) such that f (x0) = f (x)+y. As int(C+H≥

λ
)(x,x0) =C(x,x0)+H>

λ
there

exist points v ∈C(x,x0) and h ∈ H>
λ

such that y = v+h. Thus,

〈λ , f (x0)〉= 〈λ , f (x)〉+ 〈λ ,v〉+ 〈λ ,h〉> 〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉,

which is contrary to inequality (5.1). Thus, x0 ∈WQE( f ,S,C+H≥
λ
).

The case where x0 ∈ QE( f ,S,C+H≥
λ
) along with inequality (5.1) holds true strictly can be

stated by the same way, and the proof finishes. �
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Proposition 5.2. Consider problem (PD) and a point x0 ∈ S. The next assertions hold true:
(i) If D is solid, S\{x0} ⊂ domintC(·,x0), intC(·,x0) : Rn ⇒ Rp is free-disposal-valued with

respect to intD∪{0} in S\{x0}, then

x0 ∈
⋃

λ∈D+\{0}
QE( f ,S,C+H>

λ
)⇒ x0 ∈WQE( f ,S,C).

(ii) If C(·,x0) : Rn ⇒ Rp is free-disposal-valued with respect to D in S\{x0}, then

x0 ∈
⋃

λ∈D+\{0}
QE( f ,S,C+H≥

λ
)⇒ x0 ∈ QE( f ,S,C), (5.9)

x0 ∈
⋃

λ∈D+s

QE( f ,S,C+H≥
λ
)⇒ x0 ∈ HQE( f ,S,C). (5.10)

Proof. (i) Let us recall that (see [22])

intD =
⋂

λ∈D+\{0}
{y ∈ Rp : 〈λ ,y〉> 0}. (5.11)

Since intC(·,x0) : Rn ⇒ Rp is free-disposal-valued with respect to intD∪{0} in S\{x0}, we
have that

intC(x,x0) = intC(x,x0)+
⋂

λ∈D+\{0}
{y ∈ Rp : 〈λ ,y〉> 0}

⊂
⋂

λ∈D+\{0}
(C(x,x0)+H>

λ
), ∀x ∈ S\{x0},

and by parts (i) and (iii) of Theorem 3.1 and Remark 3.4 we see that

x0 ∈
⋃

λ∈D+\{0}
QE( f ,S,C+H>

λ
)⇒ x0 ∈WQE( f ,S,C). (5.12)

(ii) The proof of implication (5.9) follows the same reasonings as the previous part. Finally,
statement (5.10) holds true by the definition, since H≥

λ
∈ F (D) whenever λ ∈ D+s, which

finishes the proof. �

The next sufficient conditions for quasi solutions of problem (PD) are a direct consequence
of Propositions 5.1 and 5.2.

Corollary 5.2. Consider problem (PD) and a point x0 ∈ S. The next assertions hold true:
(i) Assume D is solid, S\{x0} ⊂ domintC(·,x0) and intC(·,x0) : Rn ⇒ Rp is free-disposal-

valued with respect to intD∪{0} in S\{x0}. If there exists λ ∈ D+\{0} such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S\{x0}, (5.13)

then x0 ∈WQE( f ,S,C).
(ii) Suppose C(·,x0) : Rn ⇒ Rp is free-disposal-valued with respect to D in S\{x0}. We have

that
(a) If there exists λ ∈ D+\{0} such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉> 〈λ , f (x0)〉, ∀x ∈ S\{x0},

then x0 ∈ QE( f ,S,C).
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(b) If there exists λ ∈ D+s such that assertion (5.13) is fulfilled, then x0 ∈ HQE( f ,S,C).

Theorem 5.1 and Corollaries 5.1 and 5.2 allow us to characterize weak and Henig proper
quasi efficient solutions of problem (PD) in the convex case. Namely, we have the following
results.

Theorem 5.3. Consider problem (PD), a set-valued mapping C : Rn×Rn ⇒ Rp and a point
x0 ∈ S. Suppose D is solid, S\{x0} ⊂ domintC(·,x0) and one of the following conditions is
satisfied:
(A1) The set-valued mapping intC(·,x0) : Rn ⇒ Rp is open, graph-convex and free-disposal-
valued with respect to D in S, 0 /∈ intC(x0,x0) and f − f (x0) is closely D-convex on S. In
addition, intS 6= /0 or Rn\{x0} ⊂ domintC(·,x0).
(A2) The mapping C(·,x0) : Rn ⇒ Rp is free-disposal-valued with respect to intD∪{0} in S,
0 /∈ intC(x0,x0) and f − f (x0)+C(·,x0) is generalized D-subconvexlike on the feasible set S.

Then x0 ∈WQE( f ,S,C) if and only if there exists λ ∈ D+\{0} such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S\{x0}. (5.14)

If, in addition, C(x0,x0) is solid –this happens whenever condition (A2) holds true, then (5.14)
can be extended to x = x0 and λ ∈ (coneC(x0,x0)

+∩D+)\{0}.

Proof. The necessary condition is a direct application of Remark 5.1, Theorem 5.1 and Corol-
lary 5.1 by considering the cone D instead of K.

In order to deduce the sufficient condition, notice that both conditions (A1) and (A2) imply
that intC(·,x0) : Rn ⇒Rp is free-disposal-valued with respect to intD∪{0} in S\{x0}. Thus, it
is a direct consequence of Corollary 5.2(i) and the proof is finished. �

Theorem 5.4. Consider problem (PD) and a point x0 ∈ S. Assume the set-valued mapping
C(·,x0) : Rn×Rn ⇒ Rp to be free-disposal-valued with respect to D in S\{x0}, C(x0,x0)∩
(− intK) = /0, for all K in a family B that generates F (D), and f − f (x0) +C(·,x0) to be
nearly D-subconvexlike on the feasible set S.

Then x0 ∈ HQE( f ,S,C,D) if and only if there exists λ ∈ D+s such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S. (5.15)

Proof. Let x0 ∈HQE( f ,S,C,D). Then, there exists a cone K ∈B such that x0 ∈WQE( f ,S,C+
K). Clearly, assumptions of Theorem 5.2 are fulfilled and so there exists λ ∈ (coneC(x0,x0)

+∩
K+)\{0} such that

〈λ , f (x)〉+ inf
z∈C(x,x0)

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S.

In addition, as D\{0} ⊂ intK, by (5.11) we have that λ ∈ D+s and the necessary condition is
obtained. The sufficient one follows by part (ii)(b) of Corollary 5.2, and the proof is completed.

�

Remark 5.2. Notice that the assumption C(x0,x0)∩ (− intK) = /0, for all K ∈B, is satisfied as
long as C(x0,x0)⊂ D.

The next example illustrates Theorems 5.3 and 5.4.
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Example 5.1. Let us consider problem (PD) with the following data: n= 1, p= 2, f (t) = (t, t2),
S = R, D = R2

+, t0 = 0 and C(t,s) = |t− s|(−1,1)+R2
+. Clearly, all assumptions of Theorem

5.4 are fulfilled. Particularly, notice that

clcone(( f − f (0)+C(·,0))(R)+R2
+) = {(y1,y2) ∈ R2 : y2 ≥ 0,y1 +2y2 ≥ 0},

which is a convex set. By applying Theorem 5.4 we deduce that 0 ∈HQE( f ,S,C) if and only if
there exists λ = (λ1,λ2) ∈ intR2

+ such that

λ1t +λ2t2 + inf
d∈R2

+

〈λ , |t|(−1,1)+d〉 ≥ 0, ∀t ∈ R. (5.16)

Clearly,
inf

d∈R2
+

〈λ , |t|(−1,1)+d〉=−λ1|t|+λ2|t|

and so (5.16) is equivalent to the inequality

λ1t +λ2t2 + |t|(−λ1 +λ2)≥ 0, ∀t ∈ R.

that holds true, for instance, for λ = (1,2). Therefore, 0 ∈ HQE( f ,S,C). Notice that [26,
Theorem 6 and Corollary 2] cannot be applied to derive this claim, since the set G = (−1,1)+
R2
+ is not coradiant.
Since D is solid, Theorem 5.3 with assumption (A2) can be applied to deduce that 0 ∈

WQE( f ,S,C) (observe that the convexity assumptions in Theorem 5.4 and (A2) of Theorem
5.3 coincide, see Remark 5.1). This conclusion is also a result of Remark 4.5(iii). As in
the previous assertion, [20, Theorem 4.1] and [26, Theorem 5(a)] cannot be applied to obtain
0 ∈WQE( f ,S,C) since the set G = (−1,1)+R2

+ is not coradiant.

Theorems 5.3 and 5.4 reduce to the next results for the set-valued mapping C = hG+D. For
each nonempty set G⊂ Rp and λ ∈ Rp, we denote τG(λ ) = inf

z∈G
〈λ ,z〉.

Corollary 5.3. Consider problem (PD), a nonempty set G ⊂ Rp, a function h : Rn×Rn→ R+

such that h > 0 in S2\∆n and a point x0 ∈ S.
(i) Suppose D is solid, f − f (x0)+ h(·,x0)G is generalized D-subconvexlike on the feasible

set S and h(x0,x0) = 0 or G∩ (− intD) = /0. Then x0 ∈WQE( f ,S,hG+D) if and only if there
exists λ ∈ coneG+∩D+ if h(x0,x0)> 0 and λ ∈ D+ otherwise, such that

〈λ , f (x)〉+ kh,G(λ ,x)≥ 〈λ , f (x0)〉, ∀x ∈ S, (5.17)

where kh,G(λ ,x) = τG(λ )h(x,x0) if x 6= x0, or x = x0 and h(x0,x0) > 0, and kh,G(λ ,x0) = 0 if
h(x0,x0) = 0.

(ii) Assume f − f (x0)+h(·,x0)G is nearly D-subconvexlike on the feasible set S, h(x0,x0)G∩
(− intK) = /0, for all K in a family B that generates F (D). Then x0 ∈ HQE( f ,S,hG+D) if
and only if there exists λ ∈ D+s such that inequality (5.17) is fulfilled.

Proof. (i) Clearly, the set-valued mapping C : Rn ×Rn ⇒ Rp, C(x,u) := h(x,u)G + D, for
all (x,u) ∈ Rn ×Rn, is free-disposal-valued with respect to intD ∪ {0} in S. In addition,
intC(x0,x0) = h(x0,x0)G + intD and 0 /∈ intC(x0,x0) as h(x0,x0) = 0 or G∩ (− intD) = /0.
Moreover, f − f (x0) +C(·,x0) is generalized D-subconvexlike on the feasible set S, since
f − f (x0)+h(·,x0)G is generalized D-subconvexlike on S.
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Therefore, Theorem 5.3 can be applied and so we see that x0 ∈WQE( f ,S,hG+D) if and
only if there exists λ ∈ (coneC(x0,x0)

+∩D+)\{0} such that

〈λ , f (x)〉+ inf
z∈h(x,x0)G+D

〈λ ,z〉 ≥ 〈λ , f (x0)〉, ∀x ∈ S.

This statement coincides with (5.17) since inf
z∈h(x,x0)G+D

〈λ ,z〉= kh,G(λ ,x) and C(x0,x0)
+∩D+ =

coneG+∩D+ if h(x0,x0) > 0, and C(x0,x0)
+∩D+ = D+ otherwise, which finishes the proof

of part (i).
Part (ii) is obtained by applying Theorem 5.4 to C = hG+D, and the proof is finished. �

Remark 5.3. (i) Clearly, inequality (5.17) implies that λ ∈ coneG+ whenever S\{x0} 6= /0 and
G is coradiant. Therefore, in this case, kh,G(λ ,x) = h(x,x0)τG(λ ), for all x ∈ S. If, in addition,
G is free-disposal with respect to D, then coneG+ ⊂ D+ and so coneG+∩D+ = coneG+.

(ii) The necessary condition of Corollary 5.3(i) improves [20, Theorem 4.1] and [26, Theo-
rem 5(a)] since set G is not required to be coradiant (see part (i) above to make the comparison).
Moreover, the convexity assumption involves an equivalent formulation of the nearly cone con-
vexity, which is easier to check in some cases.

In addition, notice that [26, Theorem 5(b)] is superfluous as it coincides with [26, Theorem
5(a)] by replacing D with coneC. Indeed, as C is assumed to be coradiant it follows that C+
coneC = C and so [26, Theorem 5(b)] is the same as [26, Theorem 5(a)] by considering D =
coneC.

The same remarks as in the above paragraph can be observed regarding Corollary 5.3(i), [20,
Corollary 4.1] and [26, Corollary 1], and part (b) in [26, Corollary 1], which also coincides with
[26, Corollary 1(a)].

(iii) Corollary 5.3(ii) can be compared with [26, Theorem 6 and Corollary 2]. Indeed, on the
one hand, Definition 4.2 reduces to [26, Definition 3] by the set-valued mapping C = hG+D
(recall that set G is referred to C in [26, Definition 3], see Remark 4.5(iv)). On the other hand,
by a careful reading of the proof of [26, Theorem 6], one can see that it works only if condition
h(x0,x0)G∩ (− intK) = /0 is required, for all K ∈F (D). Therefore, Corollary 5.3(ii) improves
[26, Theorem 6 and Corollary 2] as set G is not required to be coradiant.
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