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Abstract. Deriving convergence rates constitutes a crucial and profound field of investigation, carrying
significant implications in both theoretical and practical contexts. This study focuses on establishing new
convergence rates for nonlinear inverse problems concerning the identification of variable parameters in
an abstract variational problem. We employ the energy least squares and output least squares methods to
study the inverse problem in an optimization framework. The convergence rates are given in terms of the
renowned Bregman distance associated with a convex regularizer. An intriguing aspect of the derived
convergence rates is that they do not necessitate any smallness condition, making them applicable to a
wide array of practical models.
Keywords. Energy least-squares; Output least-squares; Parameter identification; Regularization; Varia-
tional problems.

1. INTRODUCTION

A multitude of models in applied sciences result in partial differential equations (PDEs)
that incorporate variable parameters corresponding to distinct physical attributes of the un-
derlying model. In this context, the direct problem involves seeking a solution to the PDE.
On the other hand, the inverse problem revolves around determining the variable parameters
from a measurement of the solution of the underlying PDE. In recent years, the field of in-
verse problems has emerged as a dynamic and rapidly expanding branch of applied mathe-
matics. The driving force behind this growth is the increasing number of real-world scenarios
that can be effectively modeled and studied using the framework of inverse problems. The-
oretical aspects of inverse problems pose significant challenges, necessitating a seamless in-
tegration of various branches of mathematics. As a result, researchers and practitioners have
been motivated to explore and develop innovative techniques to tackle these complex prob-
lems, leading to exciting advancements in both theoretical and practical aspects of inverse
problems. This multidisciplinary nature of the field enhances its appeal and relevance to a
wide range of applications, including engineering, physics, medicine, and environmental sci-
ences, among others. As the complexities of real-world situations continue to grow, the field
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of inverse problems remains at the forefront of addressing these challenges and finding solu-
tions to a diverse array of problems. To get a glimpse of some of the recent developments, see
[2, 3, 4, 5, 6, 10, 11, 14, 15, 18, 22, 23, 31, 33, 35, 36, 37, 41] and the references therein.

Before elaborating on the primary objective and contributions of the present work, we will
provide a concise overview of the prototypic inverse problem involving the identification of a
variable parameter in the following elliptic boundary value problem (BVP):

−∇ · (q∇u) = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a suitable domain in R2 or R3 and ∂Ω is its boundary. The above BVP models
various interesting real-world problems and has been extensively studied. In (1.1), u = u(x)
can represent the steady-state temperature at a specific point x in a body. In this context, q
denotes the variable thermal conductivity coefficient, and f represents the external heat source.
Additionally, the same system (1.1) can also be applied to modelling underground steady-state
aquifers. In this case, the parameter q corresponds to the aquifer transmissivity coefficient, u
represents the hydraulic head, and f denotes the recharge. An important challenge in the context
of the above BVP is the inverse problem, which involves estimating the coefficient q from a
measurement z of the solution u. Solving this inverse problem is crucial for understanding and
predicting various phenomena in both thermal and aquifer systems, such as heat distribution in
materials or groundwater flow.

Numerous approaches to addressing the aforementioned inverse problem have been proposed
in the literature. Most of these approaches involve two main strategies: interpreting (1.1) as a
hyperbolic partial differential equation (PDE) with respect to the variable q, or formulating
an optimization problem where the solution yields an estimate of q. The optimization-based
approach to reformulating (1.1) can be categorized into two possibilities: formulating an un-
constrained optimization problem or treating it as a constrained optimization problem with the
PDE itself serving as the constraint. Among the optimization-based techniques, one of the most
widely used methods is the output least-squares (OLS) method that minimizes the discrepancy
between the model output and the observed data by employing a suitable norm. To be precise,
the OLS approach minimizes the functional

q→‖u(q)− z‖2
Z, (1.2)

where z is the data, which belongs to a Hilbert space Z with norm ‖ · ‖Z , and u(q) solves the
variational form of (1.1) given by∫

Ω

q∇u ·∇v =
∫

Ω

f v, for allv ∈ H1
0 (Ω). (1.3)

While the OLS functional is a prevalent choice for tackling inverse problems, its most significant
drawback is its nonconvex nature.

To address the challenges associated with the nonconvexity of the OLS objective, Knowles [32]
proposed minimizing a coefficient-dependent norm

q→
∫

q∇(u(q)− z) ·∇(u(q)− z), (1.4)

where z is the data (the measurement of u) and u(q) solves (1.3). Knowles [32] proved that the
above functional is convex. It is worth mentioning that Zou [42] independently proposed the
idea of minimizing the energy without dwelling on its convexity.
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Inverse problems are notorious for being ill-posed, which means that their solutions can be
highly sensitive to small changes in the input data. Various regularization methods have been
developed to address this issue in order to mitigate the adverse effects of ill-posedness. In the
context of the OLS method, the objective is to minimize the following regularized OLS loss
function:

q→‖u(q)− z‖2 + ε‖q‖2, (1.5)

where z represents the observed data, u(q) is the solution of (1.3), ‖q‖2 denotes a suitable
quadratic regularizer term, and ε > 0 serves as the regularization parameter.

The overall success of regularization methods hinges on carefully selecting the regularization
parameter. A crucial aspect of this selection process is finding a balance, as both overly large
and excessively small parameters can lead to suboptimal outcomes. This issue becomes more
pronounced, particularly when the data are contaminated with noise. When noise is present,
it becomes essential to tune the regularization parameter, considering the level of noise in the
data.

The investigation of convergence rates, a crucial and fundamental aspect in the realm of in-
verse problems, seeks to establish an asymptotic correlation between the noise level and the
regularization parameter. This correlation, in turn, enables an effective means of selecting the
appropriate regularization parameter by considering the level of data contamination. Investigat-
ing convergence rates represents a profound and essential area of research, with far-reaching
implications both in theory and practical applications.

Before presenting our main findings, we will provide a concise overview of the key results in
this particular field. One of the earlier works on convergence rates is the seminal paper by Engl,
Kunisch, and Neubauer [13], where, given Hilbert spaces X and Y , a map F : D(F) ⊂ X → Y ,
and y0 ∈ Y , the focus is on an ill-posed problem seeking x ∈ D(F) such that

F(x) = y0. (1.6)

As commonly done in the study of ill-posed problems, in [13], the operator equation (1.6) was
studied as the following OLS-based optimization problem:

min
x∈D(F)

‖F(x)− ȳ‖2
Y +α‖x− x̂‖2

X ,

where α > 0 and x̂ is an a priori estimate of the unknown solution. Let S be the solution set
of (1.6). We recall that x̄ ∈ S is called an x̂-minimal norm solution, if ‖x̄− x̂‖X ≤ ‖x− x̂‖X , for
every x ∈ S.

The following theorem is the main result established in [13].

Theorem 1.1. Let X and Y be Hilbert spaces, let F : D(F)⊂ X → Y be a nonlinear map with
a convex domain D(F). Let y0 ∈ Y and for δ > 0, let yδ be such that ‖yδ − y0‖Y ≤ δ . Let x̄ be
an x̂−minimal norm solution. Assume that the following conditions hold:

(A1): The map F is Fréchet differentiable with F ′ denoting the Fréchet derivative.
(A2): There exists L > 0 such that ‖F ′(x0)−F ′(z)‖Y ≤ L‖x0− z‖X , for every z ∈ D(F).
(A3): There exists w ∈ Y with x̄− x̂ = F ′(x0)

∗w, where F ′(x0)
∗ is the adjoint of F ′(x0).

(A4): L‖w‖Y < 1.
Let xδ ,α be a solution of the following optimization problem with contaminated data:

min‖F(x)− yδ‖2
Y +α‖x− x̂‖2

X .
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Then, for the choice α ∼ δ , we have

‖xδ ,α − x0‖X = O
(√

δ

)
.

In their research, Engl, Kunisch, and Neubauer [13] employed Theorem 1.1 to tackle the
inverse problem of estimating a variable coefficient in a two-point boundary value problem,
along with Hammerstein integral equations. However, the smallness condition presented as
L‖ω‖Y < 1 in Theorem 1.1 turned out to be excessively stringent and challenging to verify
in practical situations. Because of this constraint, Theorem 1.1 received significant attention,
leading to subsequent advancements focused on relaxing the smallness condition.

To mention one of the many extensions of Theorem 1.1, we note that Hào and Quyen [24]
considered the inverse problem of identifying the parameter q in (1.1) and employed the func-
tional (1.4) for the inverse problem. Hào and Quyen [24] proved convergence rates, completely
analogous to those given in Theorem 1.1, but without requiring the smallness condition.

Another noteworthy direction for extending Theorem 1.1 involves the introduction of con-
vergence rates using the Bregman distance, wherein the Tikhonov regularization term ‖ · ‖2

X
was replaced due to its tendency to induce over-smoothing effects that are unsuitable for nu-
merous applications. Subsequent research addressed this concern by employing nonsmooth
regularizers. Notable contributions in this direction include the works of Burger and Osher [8],
Kaltenbacher and Hofmann [30], Kügler and Sincich [34], Resmerita [39], and Resmerita and
Scherzer [40], along with other references cited therein.

To describe the key contribution by Resmerita and Scherzer [40], we first need to recall the
celebrated notion of the Bregman distance, proposed by Brègman [7]. Let X be a Banach space
and let X∗ be the dual of X . We denote the pairing between a Banach space X and its dual X∗ by
〈·, ·〉X . Let f : X→ (−∞,∞] be a proper convex functional with domain D( f ) := {q∈ X | f (q)<
+∞}, and let ∂ f (q) be the subdifferential of f at q ∈ D( f ) given by

∂ f (q) := {q∗ ∈ X∗| f (p)≥ f (q)+ 〈q∗, p−q〉X , for all p ∈ X}.
The set ∂ f (q) 6= /0, if f is continuous at q. Moreover, ∂ f (q) is convex and weak∗ compact.

The Bregman distance between two elements p,q ∈ X , with respect to f and q∗ ∈ ∂ f (q),
provided that ∂ f (q) 6= /0, is defined by

D f ,q∗(p,q) := f (p)− f (q)−〈q∗, p−q〉X .
The Bregman distance, in general, is not a metric on X . However, D f ,q∗(p,q)≥ 0 for each q∗ ∈
∂ f (q), and D f ,q∗(p, p) = 0. For a recent re-examination of various aspects related to Bregman
functions and distances, see the paper by Reem, Reich, and De Pierro [38].

Let X and Y be Banach spaces, let F : D(F)⊂ X→Y be a nonlinear map with domain D(F),
and let y0 ∈Y . Resmerita and Scherzer [40] studied an ill-posed problem seeking x∈D(F) such
that (1.6) holds. They posed this ill-posed problem as the following OLS-based optimization
problem:

min
x∈D(F)

‖F(x)− yδ‖2
Y +αR(x), (1.7)

where α > 0 is the regularization parameter, yδ ∈ Y is the noisy data such that ‖y0− yδ‖Y ≤ δ ,
and R : X →R is a proper convex functional. They made the following assumptions:

(B1): There exists an R-minimizing solution x̄ of (1.6) defined by

F(x̄) = y0, and R(x̄) = min{R(x)| F(x) = y0}.
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(B2): A solution xδ ,α of (1.7) exists.
(B3): F is Fréchet differentiable around x̄ with F ′(x̄) denoting the Fréchet derivative.
(B4): There is a constant γ > 0 such that for any x ∈ D(F)∩Br(x̄), we have

‖F(x)−F(x̄)−F ′(x̄)(x− x̄)‖Y ≤ γDR,s∗(x, x̄), for all s∗ ∈ ∂R(x̄).

(B5): There exists w ∈ Y ∗ with F ′(x̄)∗w ∈ ∂R(x̄), where F ′(x̄)∗ is the adjoint of F ′(x̄).
(B6): L‖w‖Y ∗ < 1.

Then, for α ∼ δ , Resmerita and Scherzer [40] showed that DR,F ′(x̄)∗w(xδ ,α , x̄) = O(δ ).
Hào and Quyên [25] continued their investigation of the inverse problem of identifying the

parameter q in (1.1), and by employing the functional (1.4) once more, demonstrated conver-
gence rates for a convex regularizer, which were entirely analogous to those given by Resmerit,a
and Scherzer [40]. However, Hào and Quyên’s usage of the energy functional eliminated the
requirement of imposing the smallness condition.

Based on the preceding discussion, the use of a convex objective functional has effectively
eliminated the necessity of the smallness condition in establishing convergence rates. This
achievement, however, is currently limited to identification in the scalar PDEs. Conversely, the
convergence rates attained using the smallness condition are applicable within a broader and
abstract framework.

Inspired by the aforementioned noticeable gap in the existing literature, our research aims to
address the convergence rates of the inverse problem of parameter identification in an abstract
variational problem without imposing any smallness conditions. To achieve this objective, we
leverage the convex energy least squares (ELS) functional, introduced in [20], in order to extend
the functional given in (1.4). Prior works on the ELS functional and its extensions have been
explored in [17, 19, 21, 27]. Furthermore, we demonstrate that these convergence rates also
apply to the OLS formulation.

2. OPTIMIZATION FORMULATIONS FOR THE INVERSE PROBLEMS

Let B be a Banach space, and let A⊂ B be nonempty, closed, and convex. Let V be a Hilbert
space continuously embedded into another Hilbert space Z, and let V ∗ be the dual of V . Let
T : B×V ×V → R be a trilinear form with T (a,u,v) symmetric in u, v. Let m ∈ V ∗. Assume
that for α > 0 and β > 0, the following continuity and ellipticity conditions hold:

T (a,u,v)≤ β‖a‖B‖u‖V‖v‖V , for all u,v ∈V, a ∈ B, (2.1)

T (a,u,u)≥ α‖u‖2
V , for all u ∈V, a ∈ A. (2.2)

We consider the following variational problem: Given a ∈ A, find u = u(a) ∈V such that

T (a,u,v) = m(v), for every v ∈V. (2.3)

In view of the symmetry, continuity, and ellipticity of T, the Riesz representation theorem
ensures that for every a ∈ A, the variational problem (2.3) admits a unique solution u(a).

In this work, we study the inverse problem related to the direct problem (2.3): Given a mea-
surement of u, say z ∈ Z, estimate the coefficient a which together with u makes (2.3) true.

This inverse problem is often posed as the OLS-based optimization problem

min
a∈A

Ĵ(a) :=
1
2
‖u(a)− z‖2

Z, (2.4)
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which minimizes the gap between the computed solution u(a) and the data z ∈ Z.
The output least-squares (OLS) functional Ĵ is generally non-convex, yielding only local

minimizers. This non-convexity also negatively affects stability and numerical aspects.
We also recall the following energy output least-squares (ELS) based formulation

min
a∈A

J(a) :=
1
2

T (a,u(a)− z,u(a)− z), (2.5)

which minimizes the energy of (2.3), where u(a) is the computed solution and z ∈V stands for
the data. It was shown in [20] that the ELS functional is convex in the set A.

We recall the following results concerning the smoothness of the parameter-to-solution map.

Lemma 2.1. [20] For each a ∈ A, u(a) satisfies ‖u(a)‖V ≤ α−1‖m‖V ∗. For a,b ∈ A, we have

‖u(a)−u(b)‖V ≤min
{

β

α
‖u(a)‖V ,

β

α
‖u(b)‖V ,

β

α2‖m‖V ∗
}
‖b−a‖B. (2.6)

For each a in the interior of A, u is infinitely differentiable at a. The first-order derivative of u(a)
at a in the direction δa, denoted by Du(a)δa is the unique solution of the variational equation

T (a,Du(a)δa,v) =−T (δa,u(a),v), for every v ∈V. (2.7)

Moreover, the following bounds hold:

‖Du(a)‖ ≤ β

α
‖u(a)‖V ≤

β

α2‖m‖V ∗ . (2.8)

We make the following assumptions regarding a non-quadratic regularization framework:
(C1): The Banach space B is continuously embedded in a Banach space L. There is another

Banach space B̂ that is compactly embedded in L. The set A is a subset of B∩ B̂, closed
and bounded in B and also closed in L.

(C2): For bounded sequences {uk} ⊂ V, and {ak} ⊂ B with ak → a in L, for any fixed
v ∈V , we have

T (ak−a,uk,v)→ 0. (2.9)
(C3): R : B̂→ R is a positive, convex, ‖ · ‖L-lower-semicontinuous functional satisfying

R(a)≥ τ1‖a‖B̂− τ2, for every a ∈ A, τ1 > 0, τ2 > 0. (2.10)

The illustrate the above abstract regularization framework, we recall some functional spaces.
Given the domain Ω, for 1≤ p < ∞, by Lp(Ω), we denote the space of pth Lebesgue integrable
(equivalence classes of) functions. The space L∞(Ω) consists of measurable functions that are
bounded almost everywhere (a.e.) on Ω. We also recall that the Sobolev spaces are given by

H1(Ω) =
{

y ∈ L2(Ω), ∂xiy ∈ L2(Ω), i = 1, . . . ,n
}
,

H1
0 (Ω) =

{
y ∈ H1(Ω), y|∂D = 0

}
,

and H−1(Ω) = (H1
0 (Ω))∗ is the topological dual of H1

0 (Ω). For m ∈ N, higher-order Sobolev
spaces Hm(Ω) consist of L2(Ω) functions with all their partial derivatives up to order m residing
in L2(Ω). In accordance, by Hm

0 (Ω), we represent the functions y in Hm(Ω) whose boundary
traces of the derivatives of up to order less than m are zero.

We recall that the total variation of f ∈ L1(Ω) is given by

TV( f ) := sup
{
−
∫

Ω

f (∇ ·g) : g ∈
(
C1

0(Ω)
)2
, |g(x)| ≤ 1 for all x ∈Ω

}
,
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where | · | denotes the Euclidean norm of a vector. If f ∈W 1,1(Ω), then TV( f ) =
∫

Ω
|∇ f |.

If f ∈ L1(Ω) satisfies TV( f ) < ∞, then f is said to have bounded variation, and the space
of functions of bounded variations BV(Ω) is defined by BV(Ω) =

{
f ∈ L1(Ω) : TV( f )< ∞

}
.

The norm on BV(Ω) is ‖ f‖BV(Ω) = ‖ f‖L1(Ω)+TV( f ). The functional TV(·) is a seminorm on
BV(Ω) and is termed the BV-seminorm.

In the context of the variational problem (1.3), we set V = H1
0 (Ω), B = L∞(Ω), L = L1(Ω),

B̂ = BV(Ω), and R(a) = TV (a), and define the set of feasible parameters by

A := {a ∈ L∞(Ω)| 0 < c1 ≤ a(x)≤ c2, almost everywhere}, (2.11)

where c1 and c2 are constants. It is known that L∞(Ω) is continuously embedded in L1(Ω),
BV(Ω) is compactly embedded in L1(Ω), and TV (·) is convex and lower-semicontinuous with
respect to the L1(Ω)-norm (see [1, 16]).

We now return to the abstract framework. In the following discussion, we set X := B∩ B̂, and
assume that it is a Banach space equipped with the norm ‖ · ‖X = ‖ · ‖B +‖ · ‖B̂. Then, B∗ ⊂ X∗

and B̂∗ ⊂ X∗. We denote by X̄ and X̂ , the space X equipped with the norms ‖ · ‖B and ‖ · ‖B̂,
respectively. Note that for any ` ∈ X̂∗, we have

〈`,h〉X̂ = 〈`,h〉X , for all h ∈ X . (2.12)

The above preparation leads us to considering the following regularized ELS-based optimiza-
tion problem:

min
a∈A

Jκ(a) =
1
2

T (a,u(a)− z,u(a)− z)+κR(a), (2.13)

where κ > 0 is a regularization parameter and R is the regularization map satisfying (C3).
In the same vein, we also consider the regularized OLS-based optimization problem:

min
a∈A

Ĵκ(a) =
1
2
‖u(a)− z‖2

Z +κR(a). (2.14)

We now summarize existence results and optimality conditions for (2.13) and (2.14).

Theorem 2.1. [29] The optimization problems (2.13) and (2.14) have nonempty solution sets,
where every minimizer of (2.13) is a global minimizer. Moreover, ā∈ A is a minimizer of (2.13)
if and only if it solves the following variational inequality that seeks ā ∈ A such that

T (b− ā,u(ā)+ z,z−u(ā))≥ 2κ[R(ā)−R(b)], for every b ∈ A. (2.15)

Furthermore, if ā∈ A is a minimizer of (2.14), then it solves the following variational inequality
of finding ā ∈ A such that

〈Du(ā),b− ā〉 ≥ κ [R(ā)−R(b)] , for every b ∈ A. (2.16)

3. NEW CONVERGENCE RATES FOR THE INVERSE PROBLEM

To derive new convergence rates, we assume that instead of z, the contaminated data zδ ∈V
is available and satisfies

‖z− zδ‖V ≤ δ . (3.1)
We will now consider the following regularized ELS functional with the perturbed data zδ :

Jκ

δ
(a) :=

1
2

T (a,u(a)− zδ ,u(a)− zδ )+
κ

2
R(a), (3.2)
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where κ > 0 is a regularization parameter, R is the regularization map satisfying (C3), and
u(a) ∈V solves the variational problem (2.3).

Given the data z ∈ V , we recall that a solution ā ∈ A is called R-minimizing if it solves the
following optimization problem:

minR(a), subject to a ∈ SA := {a ∈ A| u(a) = z}.

We have the following result concerning the convergence rates.

Theorem 3.1. Let ā be an R-minimizing solution. Assume that there exists w∗ ∈V ∗ such that

s∗ := Du(ā)∗w∗ ∈ ∂R(ā). (3.3)

where Du(ā)∗ is the adjoint of Du(ā). Let aκ,δ be a solution of (3.2). Then, for the choice
κ ∼ δ , the following estimates hold:

DR,s∗(aκ,δ , ā) = O(δ ),

‖u(aκ,δ )− zδ‖V = O(δ ).

Proof. First of all, note that with s∗ := Du(ā)∗w∗ ∈ ∂R(ā), we have

DR,s∗(a
δ ,q̄
κ , ā) = R(aδ

κ)−R(ā)+ 〈s∗,aδ
κ − ā〉X̂

= R(aδ
κ)−R(ā)+ 〈Du(ā)∗w∗,aδ

κ − ā〉X
= R(aδ

κ)−R(ā)+ 〈Du(ā)∗w∗,aδ
κ − ā〉B

= R(aδ
κ)−R(ā)+ 〈w∗,Du(ā)(aδ

κ − ā)〉V
= R(aδ

κ)−R(ā)+ 〈w,Du(ā)(aδ
κ − ā)〉V , (3.4)

where w ∈V is the Riesz element associated to w∗ ∈V ∗. Here we abused the notation by using
the same notation 〈·, ·〉V for the inner product in V and the pairing between V and V ∗.

Since aκ,δ ∈K is a regularized solution, the following inequality holds:

Jδ (aκ,δ )+κR(aκ,δ )≤ Jδ (a)+κR(a), for every a ∈ A, (3.5)

where

Jδ (a) =
1
2

T (a,u(a)− zδ ,u(a)− zδ ).

By using the ellipticity of T , we obtain

Jδ (aκ,δ ) =
1
2

T (aκ,δ ,u(aκ,δ )− zδ ,u(aκ,δ )− zδ )≥
α

2
‖u(aκ,δ )− zδ‖2

V . (3.6)

Setting a = ā in (3.5), we obtain

Jδ (aκ,δ )+κR(aκ,δ )≤ Jδ (ā)+κR(ā).

Next, by using the definition of the Bregman distance, we have

Jδ (aκ,δ )+κDR(aκ,δ , ā) = Jδ (aκ,δ )+κ
[
R(aκ,δ )−R(ā)+ 〈Du(ā)∗w, ā−aκ,δ 〉X̂

]
≤ Jδ (ā)+κ〈w,Du(ā)(ā−aκ,δ )〉V
≤ c1δ

2 +κ〈w,Du(ā)(ā−aκ,δ )〉V , (3.7)
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where we used (2.1), (2.12), (3.4), and the attainability u(ā) = z. Also, with c1 =
β

2 ‖ā‖B, we
have

Jδ (ā) =
1
2

T (ā,u(ā)− zδ ,u(ā)− zδ )≤
β

2
‖ā‖B‖u(ā)− zδ‖2

V ≤ c1δ
2.

Given w ∈V, we now consider the variational problem of finding w̃ ∈V such that

T (ā, w̃,v) = 〈w,v〉V , for every v ∈V. (3.8)

By the standard arguments, (3.8) is uniquely solvable and ‖w̃‖V is bounded by a constant in-
volving a bound on ‖w‖V . We take v = Du(ā)(ā−aκ,δ ) in (3.8), which leads to

T (ā, w̃,Du(ā)(ā−aκ,δ )) = 〈w,Du(ā)(ā−aκ,δ )〉V .

Using the symmetry of the trilinear form, we have

T (ā,Du(ā)(ā−aκ,δ ), w̃) = 〈w,Du(ā)(ā−aκ,δ )〉V ,

which, by leveraging the derivative characterization (2.7) can be written as follows:

T (aκ,δ − ā,u(ā), w̃) = 〈w,Du(ā)(ā−aκ,δ )〉V . (3.9)

Since the following two variational problems are uniquely solvable

T (ā,u(ā),v) = 〈m,v〉, for every v ∈V,

T (aκ,δ ,u(aκ,δ ),v) = 〈m,v〉, for every v ∈V,

we deduce that
T (ā,u(ā), w̃) = T (aκ,δ ,u(aκ,δ ), w̃).

Equipped with the above identity, we return to (3.9) and perform a simple calculation as follows:

T (aκ,δ − ā,u(ā), w̃) = T (aκ,δ ,u(ā), w̃)−T (ā,u(ā), w̃)

= T (aκ,δ ,u(ā), w̃)−T (aκ,δ ,u(aκ,δ ), w̃)

= T (aκ,δ ,u(ā)− zδ , w̃)+T (aκ,δ ,zδ −u(aκ,δ ), w̃)

≤ β‖aκ,δ‖B‖u(ā)− zδ‖V‖‖w̃‖V +β‖aκ,δ‖B‖u(aκ,δ )− zδ‖V‖‖w̃‖V
≤ β‖aκ,δ‖B‖u(ā)− zδ‖V‖w̃‖V
+β‖aκ,δ‖B‖u(aκ,δ )− zδ‖V‖w̃‖V

≤ βδ‖aκ,δ‖B‖w̃‖V +
κβ 2

α
‖aκ,δ‖2

B‖w̃‖2
V +

α

4κ
‖u(aκ,δ )− zδ‖2

V

≤ cδ + cκ +
α

4κ
‖u(aκ,δ )− zδ‖2

V , (3.10)

where c is a positive constant.
We now combine (3.6), (3.7), (3.9), and (3.10) to obtain

α

2
‖u(aκ,δ )− zδ‖2

L2(Ω;V )+κDR(aκ,δ , ā)≤ c1δ
2 + cκδ + cκ

2 +
α

4
‖u(aκ,δ )− zδ‖2

V ,

which yields

DR(aκ,δ , ā)≤C
(δ 2 +κδ +κ2)

κ
,

‖u(aκ,δ )− zδ‖2
L2(Ω;V ) ≤C(δ 2 +κδ +κ

2),
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where C > 0 is a constant. Thus, as a consequence of the above inequalities, for κ ∼ δ , we have

DR(aκ,δ , ā) = O(δ ),

‖u(aκ,δ )− zδ‖2
L2(Ω;V ) = O(δ 2),

which completes the proof. �

Remark 3.1. The OLS functional, defined in (2.4), assumes that the data z belong to the Hilbert
space Z. On the other hand, the ELS functional requires the data z to be in the space V . From a
practical standpoint, this means that the ELS formulation demands data with higher regularity
compared to the OLS formulation. However, it is worth noting that the above proof demon-
strates that the estimates indeed hold for the OLS functional when it is defined using the norm
of the Hilbert space V. We also observe that the abstract framework can be readily adapted to in-
corporate scenarios where regularization is accomplished through a combination of a quadratic
regularizer and a convex regularizer, as exemplified in the studies conducted by Chavent and
Kunisch [9] and Hào and Quyen [26].

4. CONCLUDING REMARKS

We investigated the nonlinear inverse problem of estimating variable parameters in general
variational problems. Our primary contribution lies in deriving novel convergence rates for this
inverse problem, eliminating the need for smallness conditions. To achieve this, we employ the
convex energy least squares functional as a fundamental technical tool, leveraging its effective-
ness in extending the OLS formulation. It would be of interest to verify the convergence rates
computationally. Furthermore, extending them to stochastic inverse problems (see [12, 28]) and
to more general identification problems in variational inequalities is also an important topic to
pursue.
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