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ON SET-VALUED DISCRETE DYNAMICAL SYSTEMS

E. HERNÁNDEZ∗, J. PERÁN
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Abstract. In this paper, we attempt to study set-valued discrete dynamical systems with the objective
of developing a general framework and unifying some results and definitions in the literature. For these
purposes, we follow similar ideas to those existing for classical dynamical systems. We focus on discrete
dynamical systems in terms of set-valued maps. The solutions associated to our systems are given by
sequences of sets. We obtain preliminary results by formulating appropriate notions of set dynamical
systems as attractor, stability and invariant sets. For this purpose, we study the ω-limit sets which play
an important role for gaining an overall understanding of how the system is behaving, particularly in the
long term. We study its properties by using well-known notions from set-valued analysis. We are able to
generalize dynamical results in terms of single valued maps by the weaker assumptions on continuity.
Keywords. Discrete-time; limit sets; Lyapunov Stability; Set-valued dynamical systems; Set-valued
maps.

1. INTRODUCTION

The study of dynamical systems has received more attention in the last twenty years. Many
phenomena from social, natural, and economical sciences can be formulated as systems evolv-
ing with time in a discrete way. On the other hand, different to a physical model determined
by initial conditions, the mathematical models which involve human decisions or biological
species require analysis with the help of tools from the theory of set-valued dynamical systems
(SVDSs in short).

In the study of dynamical systems, the discrete dynamic has an important role to apply the
theoretical results to practical problems. In addition, in terms of real data or numerical results,
it is also interesting to know an asymptotic description of its dynamic behaviour. SVDSs al-
low a multi-valued future and seem more natural in the context of random or control systems.
See some applications in [1, 2, 3] in the context of differential inclusions as well as economic
flow, and see also recent survey articles [4] and [5] (about other applications in engineering or
discretization methods respectively) by Brogliato et al.

A dynamical system is a phase (or state) space X endowed with an evolution map f (dy-
namical rule) from X to itself. Generally, X is a metric space and f is a continuous function
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f : X → X . In particular, a discrete-time dynamical system is defined by

xn+1 = f (xn), n = 0, 1, 2, . . . (1.1)

It is well-known that several real problems are modelled by (1.1). Such systems describe a rela-
tionship between a point in time and a previous point and each state of the system corresponds
to a unique point in the state space. The set of properties of all orbits { f n(x)}n∈N for each x ∈ X
is called the dynamics of the function f . For many practical reasons, it is important to know
the behavior of the points (or individuals) of X under f , that is, the behaviour of the system
starting with various initial conditions. Thus, we study stability, periodicity or chaos for system
(1.1). We emphasize that even very simple functions can have complicated dynamics (see, for
instance, [6, 7]).

On the other hand, in many cases such as migration phenomenon in a certain ecosystem,
when studying the chaotic dynamics of individual members a natural question that arises is the
so-called collective dynamics, that is, how the subsets (not the points) of X move. This leads to
consider the set-valued discrete system induced by f and formulated as

f̄ (An) = An+1, (1.2)

where f̄ : K (X)→K (X), K (X) is the family of the nonempty compact subsets of X and f̄
is the function induced by f and defined by f̄ (A) = { f (a) : a ∈ A} in a natural way.

The above approach about of SVDSs is based on the induced set-valued problem associated
to a single dynamical system. Its main interest consists in the connection between dynamical
properties of the base map f and its induced map f̄ . In recent years, such topics have attracted
many researchers; see, e.g., [8, 9, 10].

There is another approach to study SVDSs which is a natural generalization of (1.1). It is
defined as follows:

xn+1 ∈ F(xn), n = 0, 1, 2, . . . , (1.3)

where F : X →K (X) is a set-valued map. In the existing literature the results devoted to (1.3)
have been widely explored in the past decades to describe multi-valued differential equations
and control systems see [2, 3, 11] and references therein.

In problems (1.2) and (1.3) to represent its collective dynamic, a trajectory can be either a
sequence of subsets of X or a sequence of points of X respectively. As far as we know the
basic definitions in the existing literature of SVDSs may not be unique since there are different
ways to gain an overall understanding of how the system is behaving, particularly in the long
term. To study the behaviour of all future orbits or notions of stability, periodicity or chaos in
the context of SVDSs it makes sense to present a general framework which extends concepts
and results from the classical case. Moreover, due to the complexity in mathematical analysis
for set-valued maps, even some basic problems still need to be further clarified. Hence, the
dynamics for set valued maps or equivalently the set-valued case in dynamical systems theory
are a little problematic and must therefore be studied by specific tools from Set-valued Analysis.
See [12] and recently [13], for instance, where conditions via shift maps on inverse limit spaces
have been developed from topological or dynamical point of view.

The aim of our paper lies in such a direction. Inspired by some ideas in [14] (devoted to
stochastic approximations and differential inclusions) we study discrete dynamical systems and
focus on basic results on topological and dynamical properties. Exactly, we present a general
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framework for discrete dynamical systems in terms of system (1.3) and consider some asymp-
totic properties which are motivated by the classical theory in the one-dimensional case.

The paper is organized as follows. Firstly, we introduce notations and preliminary results
about limit sets and generalized continuity conditions. Section 2 is devoted to establish, in
a general context, a set-valued dynamical system which includes or unifies several classical
notions in the literature of SVDSs. Then in Section 3, we study invariant sets, ω-limit sets
and their relationships. The main results are given in Section 4 where stability notions in the
Lyapunov sense are obtained. We prove several new results and improve other ones. Finally,
possible future research about set-valued dynamical system is discussed.

2. NOTATION AND TERMINOLOGY

Throughout this paper, we consider Rn and d the Euclidean distance. Note that many of the
definitions are consistent with general topological spaces.

We define N0 = N∪{0} and denote by Bε(x0) = {x ∈ Rn : d(x,x0) < ε} the ball of radious
ε at x0 ∈ Rn, by ℘0(Rn) the family of nonempty subsets of Rn. A singleton set {y} is denoted
simply by y. Given a set A⊂Rn, the closure of A is denoted by A. For arbitrary A∈℘0(Rn) and
x∈ X , the distance of x to A is d(x,A) = inf{d(x,y) : y∈ A} and Bε(A) = {x∈Rn : d(x,A)< ε}.

We recall that for a sequence of points {xn} the ω-limit set of {xn} is given as the set of
accumulation points of the sequence. It is formally defined as:

ω({xn}) =
∞⋂

n=0

{xk : k ≥ n}. (2.1)

To approximate sets, we recall the following convergence notions for a sequence of nonempty
sets {An} of Rn: Limsupn An = {x : ∃xnk ∈ Ank : xnk → x} is its outer limit where {nk} is a
subsequence of {n}, Liminfn An = {x : ∃xn ∈ An : xn → x} is its inner limit. By using the
notion of convergence of a sequence of sets by [15], the sequence {An} converges (in Painlevé-
Kuratowski sense) to A, denoted by An→ A if Limsupn An ⊂ A⊂ Liminfn An.
Concerning sequences of singleta, the set limit is not converging or is a singleton made of the
limit of the sequence.

The inner and outer limits of a sequence always exist (possibly empty) and are closed. More-
over, taking into account [15, Theorem 4.42], Painlevé-Kuratowski set convergence can be
characterized by the integrated set distance defined on the family of nonempty closed subsets
of Rn.

We will consider the following results about set convergence.

Theorem 2.1. [16] Let {Kn} be a sequence of subsets of a metric space X and a subset K ⊂ X
satisfying the following property: for any neighborhood U of K, there exists N such that for
all n ≥ N, Kn ⊂U. Then Limsupn Kn ⊂ K. Conversely, if X is compact, then the upper limit
LimsupKn enjoys the above property (is the smallest closed subset satisfying it).

In a natural way we can define the ω-limit set of {An} as follows:

ω({An}) =
∞⋂

n=0

⋃
k≥n

Ak. (2.2)

Furthermore, we can rewrite the ω-limit as the following equivalent formulation via upper
limit (see [16, Proposition 1.1.2]).
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Lemma 2.1. ω({An}) = Limsupn An.

In the sequel, a set-valued map is a map from a nonempty subset C of Rn to the family ℘(X)
of subsets of Rn. We assume, unless clearly specified otherwise, that the domain of F is C, that
is, {x ∈ C : F(x) 6= /0} = C. Equivalently, F : C→℘0(X). We say that F satisfies the union
property if F(A) =

⋃
a∈A F(a) for A ⊂C (note that this property holds for every single-valued

map by definition). Its image, denoted by F = {F(x) : x ∈C}, is a the family of image sets and
Gph(F) = {(x,y) ∈C×X : y ∈ F(x)} is its graph.
It is said to be closed-valued (resp. compact-valued, nonempty-valued) if F(x) is closed (resp.
compact, nonempty) for every x ∈C; locally bounded at x̄ if for some neighborhood U ⊂Rn of
x̄ and some t > 0 one has F(C∩U)⊂ tB (where B is the unit ball) and locally bounded if it is
so at every x̄.

We recall some notions and results from the literature about semicontinuity (see [17]).

Definition 2.1. F is said to be
• inner semicontinuous (isc) or lower semicontinuous (lsc) if, for any x ∈C, y ∈ F(x) and

any {xn} with xn ∈C for all n, and xn→ x, there exists {yn} such that yn ∈ F(xn) for all
n and yn→ y;
• upper semicontinuous (usc) if, for any x ∈C and any open set V ⊂ Rn containing F(x),

there is an open set U ⊂ Rn containing x such that F(C∩U)⊂V ;
• outer semicontinuous (osc) if, for any x ∈C and any {(xn,yn)} with (xn,yn) ∈ Gph(F)

for all n and (xn,yn)→ (x,y), one has (x,y) ∈ Gph(F);
• continuous if it is osc and isc.

From this, we see that if F is osc at x ∈ X , then F(x) is closed. Thus, if F is osc then is
closed-valued. Furthermore, F is osc iff Gph(F) is closed.

Outer and inner semicontinuity of F at x ∈ C can be expressed in terms of convergent se-
quences of sets as follows: F is osc (resp. isc) at x ∈C iff for any (xn) with xn ∈C for all n and
xn → x it holds that Limsupn F(xn) ⊂ F(x) (resp. F(x) ⊂ Liminfn F(xn)). Thus, a set-valued
map F : C →℘0(Rn) is continuous at x̄ if and only if F(xn)→ F(x̄) for every xn → x̄. Or
equivalently, F is osc and isc at x̄.

Remark 2.1. We shall employ the outer limit of a set-valued map F at x̄ ∈U defined as follows
(see [15]):

Limsupx→x̄ F(x) =
{

y : ∃xn ∈U → x̄ ∃yn ∈ F(xn) : yn→ y
}
,

where x→ x̄ denotes in fact U 3 x→ x̄. Clearly, F is osc at x̄ ∈ X iff Limsupx→x̄ F(x) ⊂ F(x̄)
or equivalently Limsupx→x̄ F(x) = F(x̄).

Proposition 2.1. [17, Proposition 2] The following conditions hold:
(i) If F is usc and compact-valued, then it is locally bounded and osc.
(ii) F is locally bounded iff F(B∩C) is bounded for every bounded set B iff whenever yn ∈

F(xn) for all k and {xn} ⊂C is bounded, then {yn} is bounded.
(iii) If F is usc at x̄ ∈ X and F(x̄) is closed, then it is osc at x̄. The reverse implication holds if,

in addition, F is locally bounded at x̄.

We will consider the following results about the composition of set-valued maps.
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Proposition 2.2. Consider S : Rn→℘0(Rn) and T : Rn→℘0(Rn).
(i) S(C) is closed when S is osc and C is closed and bounded.
(ii) T ◦S : Rn→℘0(Rn) is osc if S and T are osc.

Proof. (i) and (ii) are particular cases of Exercise 5.26 and Proposition 5.52 in [15] respectively.
�

Theorem 2.2. [15, Corollary 5.20] For any single-valued map F : Rn → Rn, the following
properties are equivalent:

(i) F is continuous at x;
(ii) F is osc at x and locally bounded at x;

(iii) F is isc at x.

We define the following continuity notions to be used later on.

Definition 2.2. F is said to be
• slightly continuous (slc) at x̄∈C if, for every xk→ x̄, there exists a subsequence {xk j} ⊂
{xk} such that F(xk j)→ F(x̄). It is said to be slc if it is so at every x̄;
• extremely continuous (exc) if F(An)→ F(A) for every An→ A.

Clearly, a exc map is closed-valued and slc. Note that if F is continuous then F is slc and if,
in addition, F−1 is locally bounded then F is also exc (see [15]).

Proposition 2.3. Suppose that An→ A and F is slc. Then the following holds:
(i) F(A)⊂ LimsupF(An);
(ii) if, in addition, C is compact and {An} is a sequence of nonempty sets of C,

LimsupF(An)⊂ F(A).

Proof. (i) Let a ∈ A. Since An → A, there exists a sequence {an} with an ∈ An for all n con-
verging to a. By the slightly continuity, there exists a subsequence {ank} ⊂ {an} such that
F(ank)→ F(a). Thus,

F(a)⊂ LimsupF(An).

(ii) Suppose that y ∈ LimsupF(An), that is, znk → y with znk ∈ F(Ank) for some subsequence
znk ∈ F(Ank). Let ank ∈ Ank such that znk ∈ F(ank). Since {ank} ⊂C and C is compact, we can
assume that there exists a subsequence of {ank} converging to some a ∈C. We assume ank → a.
By An → A, we deduce that a ∈ A and by the slightly continuity we have F(an′k

)→ F(a) for
some subsequence {an′k

} of {ank}. Therefore,

y ∈ F(a)⊂ F(A)

and we conclude the proof. �

3. SET-VALUED DISCRETE DYNAMICAL SYSTEMS

In this section and the following one we denote by X a nonempty compact subset of Rn,
by ℘(X) the family of all subsets of X , by ℘0(X) see above and by K (X) the family of all
nonempty compact subsets of X (note that by the compactness of X if A is closed then A is
compact).
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In the sequel sections, neighborhoods or limits of sequences are required to lie in X . All
definitions considered in the section are valid for any compact metric space.

In this paper a set-valued discrete dynamical system (SVDS) is defined as follows:

Φ : N0×X →℘(X)

such that
H1 Φ(0,x) = {x} (the intial value condition),
H2 Φ(t + s,x) = Φ(t,Φ(s,x)) (semi-group property),
H3 Φ is nonempty-valued (maximal domain),

and satisfies the union property, that is, for M ⊂ X and T ⊂ N0 we have

Φ(n,M) =
⋃

x∈M

Φ(n,x), Φ(T,x) =
⋃

n∈T

Φ(n,x) and Φ(T,M) =
⋃

n∈T

⋃
x∈M

Φ(n,x).

The set-valued map Φ is called system evolution map. Generally, in the literature Φ is as-
sumed continuous or closed-valued. Note that we can omit the assumption H3 by redefining
Φ : N0×X →℘0(X). It is clear that the single-valued dynamical system is a particular case of
Φ since x is the singleton set {x}.

Proposition 3.1. Given a SVDS, there exists a set-valued map F : X →℘0(X) such that

Φ(n,x) = Fn(x) for all x ∈ X ,

where Fn denotes the n-th composition with the convention F0 = Id (identity) and satisfying
the union property, F(A) =

⋃
x∈A F(x). Conversely, given a map F : X →℘0(X) satisfying the

union property that we can define a SVDS.

Proof. Given Φ in SVDS, we define F as follows F(x) = Φ(1,x). Note from H3 that F is a
map from X to ℘0(X) since Φ(1,x) 6= /0 by B3. Moreover, F satisfies the union property by the
definition of Φ. We consider the composition F ◦F . It follows that

F2(x) = F(F(x)) = F(Φ(1,x)) = Φ(1,Φ(1,x)) = Φ(2,x)

and we can could conclude by induction. In the same manner we can prove that given F we
obtain Φ defined in SVDS. �

Using the above result, under some conditions on X , a set-valued discrete dynamical system
(SVDS) is equivalent to a pair (X ,F) where F is a map (nonempty-valued) from X to ℘0(X)
satisfying the union property.

Remark 3.1. In [14], the set-valued dynamical system is induced by a differential inclusion and
Φ is closed (its graph is closed) and compact-valued while in [18] authors consider that Φ as
upper semicontinuity and compact valued. By Proposition 2.1, both assumptions are equivalent
and, in addition, since closed map is equivalent to osc map, the assumption compact valued in
[14] is redundant.

To understand the dynamical properties of a system it is necessary to have information on
the behavior of the orbits or trajectories of any point x ∈ X under the iteration of the space
map. Given an initial value x0 ∈ X , the sequence {Fn(x0)} is uniquely determined and is called
trajectory (or solution) of F while, on the other side, an orbit of x0 (under F) is the following
family of sets in F

O(x0) = {x0,F(x0),F2(x0), . . .}.
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An orbit is periodic if there exists m ∈ N such that F i(x) = F i+m(x) for any i≥ 0.
We also consider O(A) an orbit (similarly trajectory) with initial condition given by A ∈

℘0(X), in order to study the dynamics of a set of points.

Remark 3.2. In the existing literature, the notation of orbit or trajectory are used indistinctly.
Different from the classical case, if we consider a sequence (x0,x1,x2, . . .) where xn+1 ∈ F(xn)
then the trajectories (or orbits) are not uniquely determined by their initial conditions and it may
not be desirable.

We begin with a few simple extensions of definitions from the single-valued case.

Definition 3.1. A point x̄ ∈ X is a fixed point of (X ,F) if x̄ ∈ F(x̄).

Definition 3.2. A set A ∈℘0(X) is called:
• positive invariant of F if F(A)⊂ A;
• negative invariant of F if A⊂ F(A);
• invariant if F(A) = A.

Remark 3.3. Definition 3.1 of fixed point is standard in set-valued analysis theory. However
the trajectories at a fixed point x∞ are not stationary (in general). In addition, if a fixed point x̄
satisfies F(x̄) = {x̄} then it is called endpoint. In [19], the authors study its existence in terms
of set-valued discrete dynamical systems. Note that (only) whenever F is a single-valued map,
the definition of fixed point coincides with the classical notion of equilibrium of a dynamical
system.

We give the notions presented in Definition 3.2 by analogy. However, they could consider
not common in the literature, for instance, in [20] the invariant set is called fixed set.

Since x is identified with a singleton {x}, we emphasize that in our setting there are different
types of sets which need be considered. In this respect, a fixed point could be a negative invariant
set.

In dynamical systems theory, a main goal is to understand the existence and structure of
invariant sets.

Remark 3.4. Clearly, x is a fixed point if and only if x is a fixed point for Fn for all n ∈ N.
Moreover, A is invariant (resp. positive or negative invariant) for F if and only if A is invariant
(resp. positive or negative invariant) for Fn for all n > 0. In addition, if F is single-valued or
A is singleton, then A is invariant if and only if A a fixed point. Exactly, the fixed points or
periodic orbits are examples of invariant sets. Note that the Kakutani fixed point theorem is a
generalization of the Brouwer fixed point theorem for set-valued maps and provides sufficient
conditions for the existence of invariant sets.

Fixed point theorems provide sufficient conditions for the existence of invariant sets see, for
instance, [20] and references therein. Note that if we consider the Hausdorff metric on K (X),
denoted by dH , we can minimize dH(C,F(C)) subject to C ⊂K (X) to find invariant sets of
the set-valued dynamical system (X ,F). We emphasize that the invariant sets play a key role in
determining the nature of inverse limits (see [21]).

Proposition 3.2. Let A be a closed positive invariant set of F such that A is minimal (no proper
subset of A is positive invariant). Suppose that F is osc. Then A is an invariant limit set.
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Proof. Since A is positive invariant, we have Fn(A)⊂Fn−1(A)⊂A for all n. Thus, the sequence
{Fn(A)} has limit C = limFn(A) =

⋂
n∈N0

Fn(A) (see [16]). Since, Fn(A) is closed (compact) for

all n by Proposition 2.2(i) we obtain that C =
⋂

n∈N0

Fn(A) is a nonempty closed subset of A. It is

sufficient to show that C is positive invariant. Indeed,

F(C) = F(
⋂
n≥0

Fn(A)) =
⋂
n≥0

F(Fn(A)) =
⋂
n≥0

Fn+1(A) =C.

Thus, C = A since A is minimal.
To finish the proof we only need to prove that A ⊂ F(A). If y ∈ A then y ∈ LimsupFn(A)

which follows from the definition of C. Thus, there exists znk ∈ Fnk(A) with znk → y. In par-
ticular, we can rewrite znk as follows znk ∈ F(Fnk−1(A)). Therefore, there exists a sequence
{ank} with ank ∈ Fnk−1(A)⊂ A. Since A is compact, there exists a ∈ A such that ank → a, up to
subsequences. Then (ank ,znk) ∈ Gph(F) and

(ank ,znk)→ (a,y).

By the outer continuity assumption y ∈ F(a) and we conclude. �

We point out that taking into account Proposition 2.1(i) the condition osc can be replaced by
usc if we assume that F is compact-valued.

The existence of minimal invariant sets is always guaranteed under the existence of positive
invariant sets but not the uniqueness.

Proposition 3.3. Let A be a compact positive invariant set of F. Then there exists at least a
subset of A which is minimal positive invariant for F.

Proof. Consider A the family of all nonempty compact and positive invariant subsets of A, that
is, A = {C ∈K (X) : C ⊂ A and F(C) ⊂C}. It is clear that A is partially ordered by the set
inclusion. In addition, given a totally ordered subset of A , A ′, the set

⋂
A∈A ′ A is nonempty,

compact and belongs to A . Thus, by Zorn’s Lemma the proof is finished. �

Note that {x ∈ A : F(x) ⊂ A} is the maximal invariant set in A and it contains all invariant
sets which are contained in A.

Remark 3.5. Compare the above propositions with [1, Proposition 3.1 and 3.2] where the
continuity of the set-valued map Φ(·, ·) is assumed.

Similarly to the classical case, it is possible to connect positive invariant sets and set lim-
its under mild continuity assumptions. Exactly, we obtain sufficient conditions for (positive)
invariant sets.

Theorem 3.1. Suppose that for a subset M ⊂ X the sequence {Fn(M)} (or trajectory of M
under F) converges to A and A⊂ X. The following conditions hold:

(i) If F is isc, then A is positive invariant.
(ii) If F is slc, then A is invariant.
(iii) If F is exc, then A is invariant.
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Proof. (i) We have to prove that F(A)⊂ A. Let a∈ A. Since Fn(M)→ A there exists a sequence
{yn} with yn ∈ Fn(M) such that yn→ a. By the inner semicontinuity of F , we obtain

F(a)⊂ LiminfF(yn).

Since F(yn)⊂ F(Fn(M)) = Fn+1(M), from above we deduce

F(a)⊂ Liminfn Fn+1(M) = A.

(ii) By proposition 2.3(i), F(A)⊂ LimsupF(Fn(M)) = LimsupFn+1(M) = A, and A is posi-
tive invariant.

On the other hand, by Proposition 2.3(ii), we obtain LimsupF(Fn(M)) ⊂ F(A). Since
Fn(M)→ A and LimsupFn+1(M) = LimsupFn(M), we deduce A⊂ F(A).

(iii) Since Fn(M)→ A, then F(Fn(M))→ F(A) or equivalently Fn+1(M)→ F(A). Thus,
F(A) = limn Fn+1(M) = limn Fn(M) = A. Note that (iii) is a particular case of (ii). �

Remark 3.6. Note that if F is single-valued and M and A are singleton, we obtain the sufficient
condition of fixed points under generalized continuity assumption. In particular, taking into
account Theorem 2.2, Theorem 3.1 states that the well-known sufficient condition (via limits)
of fixed points of real functions can be extended to set-valued maps in terms of limit sets.

Corollary 3.1. Suppose that F is a single-valued map and F is continuous. If for some x ∈ X
there exists l = limFn(x), then l is a fixed point of F.

From above, one way to localizate invariants sets is to consider limits of trajectories, in
particular, to study the ω-limit of such sequences of sets. On the other hand, since A is a limit
set A then is also closed (or equivalent compact for being A⊂ X). Therefore, in this context of
limit sets, it seems natural to replace ℘0(X) by K (X) or equivalently to assume, in addition,
that Φ is nonempty compact-valued in property H3.

Motivated by [14] and taking into account (2.1) and (2.2), we define the ω-limit of F as
follows:

Definition 3.3. Let A ∈℘0(X). A map ωF : ℘0(X)→ K (X) defined by the ω-limit of the
trajectories of F , that is,

ωF(A) =
⋂
n≥0

⋃
m≥n

Fm(A)

is called the ω-limit map of F .

In the sequel, we omit F in ωF . Note that ω is well-defined. Indeed, ω(A) is a closed of a
compact X and by compactness it is nonempty since the sets

⋃
m≥n

Fm(A) are nested.

Note that a singleton {x} is identified with x. Consequently, for a point x ∈ X , we have

ω(x) =
⋂
n≥0

⋃
m≥n

Fm(x). (3.1)

We emphasize that, in general,
ω(A)%

⋃
a∈A

ω(a).

Consequently, the union property is not satisfied by the set-valued map x→ ω(x). Moreover,
any periodic orbit of F is an ω-limit set of any of the points in the orbit since ω(x) is the set
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of the cluster points of the trajectory with initial value x (see Proposition 3.4 below). Thus, the
structure of ω-limit sets gives us a way of understanding how the dynamical system (X ,F) is
behaving. Therefore, the ω-limit map provides an asymptotic description of the dynamics of
the system.

Remark 3.7. In [22] the author deals the classical dynamical systems on continua to study
equicontinuity and continuity of the induced map ω defined in (3.1) being F continuous single-
valued map. The ω-limit map is rarely continuous as we can deduce from [23] where the map
ω is studied (being F a real function and X = [0,1]). Exactly, its continuity structure is related
to forms of chaos.

Lemma 3.1. Let A, B ∈℘0(X). The following conditions hold:

(i) ω(A) = Limsupn Fn(A).
(ii) If A⊂ B then ω(A)⊂ ω(B).
(iii) ω(A∪B) = ω(A)∪ω(B).
(iv) ω(A∩B)⊂ ω(A)∩ω(B).
(v) ω ◦F = ω

Proof. Its follows from Definition 3.3, Lemma 2.1 or properties of the upper limit (see [16,
Proposition 1.2.1]). �

The invariance property via F implies the invariance property via w as the following result
states.

Proposition 3.4. Let A ∈K (X).

(i) If A is positive invariant, then ω(A)⊂ A.
(ii) If A is negative invariant, then A⊂ ω(A).
(iii) If A is invariant, then ω(A) = A.

Proof. It directly follows from Lemma 3.1(i) and (ii). �

Theorem 3.2. Let A ∈℘0(X).

(i) If F is osc, then ω(A) is negative invariant. In particular, ω ◦F(A)⊂ F ◦ω(A).
(ii) If F is isc, then ω(A) is positive invariant. In particular, F ◦ω(A)⊂ ω ◦F(A).

Proof. (i) Suppose that y ∈ ω(A). Then, by Lemma 3.1(i), there exists ynk ∈ Fnk(A) such that
y = limynk . Since Fnk(A) = F(Fnk−1(A)), we can assume that there exists znk ∈ Fnk−1(A)
such that ynk ∈ F(znk). Thus, choosing a subsequence (if necessary), we may assume that znk

converges to some z ∈ X (by the compactness of the space). Applying the outer semicontinuity
of F , we deduce that (znk ,ynk) ∈ Gph(F) converges to (z,y) being y ∈ F(z). Since

z ∈ LimsupFnk−1(A) = ω(A),

we deduce y ∈ F(ω(A)).
Consequently, ω(A)⊂ F(ω(A)). By replacing A by F(A) we have ω(F(A))⊂ F(ω(F(A)))

and by Lemma 3.1(v) we obtain

ω(F(A))⊂ F(ω(A)).
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(ii) We have to prove that F(ω(A))⊂ ω(A). Let z ∈ F(y) with y ∈ ω(A). Thus, there exists
a subsequence ynk ∈ Fnk(A) such that ynk → y. By the inner semicontinuity of F we have
F(y)⊂ LiminfF(ynk). Since

LiminfF(ynk)⊂ LimsupF(ynk)⊂ LimsupFn(A) = ω(A),

we finish the proof.
A similar reasoning as the first can be done to prove F ◦ω(A)⊂ ω ◦F(A). �

Corollary 3.2. Let A ∈℘0(X) and let F be continuous. Then the following conditions hold:
(i) ω(A) is invariant;
(ii) F ◦ω = ω;
(iii) provided A is compact, ω(A) = A if and only if A is invariant;
(iv) ω = Fn ◦ω = ω ◦Fn for all n ∈ N0.

Proof. (i) and (ii) can be deduced from Theorem 3.2.
(iii) If A is invariant, by Proposition 3.4, ω(A) = A. Conversely, if ω(A) = A, taking image

by F , we have F(ω(A)) = F(A). By (ii), ω(A) = F(A), and we obtain F(A) = A.
(iv) From (ii) and Lemma 3.1(v).
(v) It follows from (iv) and (ii). �

According to Corollary 3.2, the invariant sets and the ω-limit map play an important role
in dynamical systems. Thus, the properties of the ω-limit map allows to study the sets of
dynamical systems with possible intricate structures.

The above properties of ω-limit sets complete those presented in [18] for continuous-time.

4. ATTRACTORS AND STABILITY

The central subject of ω-limit sets is the concept of an attractor set. In this section, we
introduce new generalizations from the classical case. We note that the following notions may
not be equivalent to those existing in the literature.

Similarly to the previous section, we consider (X ,F) a SVDS where X ⊂ Rn is nonempty
compact and F is a set-valued map X →℘0(X) satisfying the union property.

Given A ∈℘0(X), the domain of attraction of A is defined by

A (A) = {x ∈ X : Fn(x)→ A},
and defines all trajectories of (X ,F) such that they are attracted by A. Note that A (A) 6= /0
implies that A is closed (then compact). On the other hand, according to Theorem 3.1, under
continuity assumptions, it seems natural to assume that A is (positive) invariant. Moreover, if
X = A (A) then A is a global attractor of SVDS.

Now, we introduce the following notions of local attractor.

Definition 4.1. A ∈℘0(X) is said to be:
• an upper local attractor if there exists a neighborhood U of A such that each x ∈ U

satisfies
Limsupn Fn(x)⊂ A;

• a lower local attractor if there exists a neighborhood U of A such that each x∈U satisfies

A⊂ Liminfn Fn(x);



738 E. HERNÁNDEZ, J. PERÁN,

• a local attractor if there exists a neighborhood U of A such that each x ∈U satisfies

Fn(x)→ A;

• a strong upper local attractor if there exists a neighborhood U of A such that

Limsupn Fn(U)⊂ A.

Remark 4.1. Note that A is local attractor if and only if A is upper and lower local attractor.
A local attractor attracts all trajectories nearby while that an upper local attractor contains the
ω-limit sets of each trajectory nearby. The property of lower local attractor is typically harder
to verify than that of upper local attractor and it means that A is contained in the limits of
trajectories around A. Whenever A is a local attractor, A is compact (A is a limit set in a compact
set). Moreover, by Theorem 3.1, under certain continuity assumptions, a local attractor is always
invariant or positive invariant. Note that if A is a singleton {a}, then the notion of strong upper
local attractor coincides with upper local attractor since we have ω(U) = ω(x) = {a} for all
x ∈U .

Remark 4.2. The above notion of local attractor is consistent with that given for equilibrium
points in the classical case. The concepts of attractor defined in [14] and [18] (both devoted to
continuous-time) are different from the above ones. Exactly, in [14] the notion of attractor is
defined for invariant sets and is stronger than upper local attractor. The notion of attractive set
defined in [18], by Proposition 4.1(i) (see below), coincides with upper local attractor. Compare
also with that given in [1] where the notion of attractor is defined for invariant sets via the
Hausdorff semi-distance.

Lemma 4.1. Let A ∈℘0(X). If A is a strong upper local attractor for a neighborhood U of A,
then, for any neighborhood V of A, there exists N ∈ N such that, for all n > N, Fn(U)⊂V.

Proof. It follows from Theorem 2.1 by taking Kn = Fn(U) (since Limsupn Fn(U)⊂ A). �

Now, we rewrite the above notions via the ω-limit map by using Lemma 2.1.

Proposition 4.1. Let A ∈℘0(X). The following properties hold.
(i) A is upper local attractor if and only if there exists U a neighborhood of A such that⋃

x∈U

ω(x)⊂ A

(ii) If A is lower local attractor then there exists U a neighborhood of A such that

A⊂
⋃

x∈U

ω(x)

(iii) A is local attractor if and only if there exists a neighborhood U of A such that U ⊂A (A).
(iv) If A is strong upper local attractor if and only if there exists a neighborhood U of A such

that
ω(U)⊂ A.

Definition 4.2. A set A ∈℘0(X) is stable (resp. weak stable) in the Lyapunov sense if for any
neighborhood V of A, there exists a neighborhood U of A such that

Fn(U)⊂V for all n ∈ N0 (resp. for all n > N and some N ∈ N ).
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Roughly speaking, a set A is stable when taking x near to A as initial value, the trajectory will
be near to A for all future time.

Lemma 4.2. Let A ∈K (X). If A is stable, then A is positive invariant.

Proof. By stability, we have Fn(A)⊂V for all n ∈N0 and for any neighborhood V of A. Taking
V = Bε(A) with ε > 0 we conclude

Fn(A)⊂
⋂
ε>0

Bε(A) = A = A for all n ∈ N0.

�

Theorem 4.1. The following conditions hold:
(i) If A ∈℘0(X) is strong upper local attractor, then A is weak stable.
(ii) Suppose that F is osc and locally bounded.

If A ∈K (X) is strong upper local attractor and positive invariant, then A is stable.

Proof. (i) Let V a neighborhood of A. By Proposition 4.1, there exists U ′ a neighborhood of A
such that LimsupFn(U ′)⊂ A. Taking into account Lemma 4.1, we have that

Fn(U ′)⊂V for all n > N and some N > 0. (4.1)

Therefore, A is weak stable.
(ii) It suffices to show that the above inclusion holds for all n≤ N. Indeed, since A is positive

invariant we obtain Fn(A)⊂A for all n∈N0. Thus, V is a neighborhood of Fn(A) for all n∈N0.
On the other hand, according to Proposition 2.2(ii), Fn is osc for all n ∈ N0. Moreover, since

F is locally bounded it is easy to check that F2 is also locally bounded (by Proposition 2.2(i)
and Proposition 2.1(ii)). Thus, by induction, we have that Fn is locally bounded for all n ∈ N0.

Fix any k ≤ N. Then, by Proposition 2.1(iii), Fk is usc. Thus, since Fk(x) ⊂ Fk(A) ⊂ V for
each x ∈ A, there exists Ux a neighborhood of x such that

Fk(Ux)⊂V.

Therefore, the open sets Ux cover the compact set A, so a finite family of them cover it as
well, say for x1, . . . ,xr with corresponding Ux1, . . . ,Uxr . Likewise, A⊂Uk =Ux1 ∪·· ·∪Uxr and
Fk(Uk)⊂V .

By applying an identical reasoning we can find UN , . . . ,U1 such that

F i(Ui)⊂V

for each i ∈ {N,N− 1, . . . ,1}. Let U = U ′ ∩ (UN ∩ ·· · ∩U1). Then A ⊂U and from (4.1) we
obtain

Fn(U)⊂V for all n ∈ N0

which completes the proof. �

From theorem established above and Lemma 4.2 we obtain the following characterization.

Corollary 4.1. Suppose that F is osc and locally bounded and A ∈K (X) is a strong upper
local attractor. The following conditions are equivalent

• A is stable;
• A is positive invariant.
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In particular, if F is a continuous single-valued and a singleton {a} is upper local attractor
(see Remark 4.1) then a is a stable point if and only if is a fixed point.

Definition 4.3. We say that A ∈K (X) is
(i) upper locally asymptotically stable (ULAS) if A is stable and upper local attractor;
(ii) lower locally asymptotically stable (LLAS) if A is stable and lower local attractor;
(iii) locally asymptotically stable (LAS) if A is stable and local attractor;
(iv) strong upper locally asymptotically stable (s-ULAS) if A is stable and strong upper local

attractor.

Now we characterize the notion of LAS under certain conditions of generalized continuity of
F and invariance for A.

Theorem 4.2. Suppose that A ∈K (X) is negative invariant and F is isc. A is LAS if and only
if there exists a compact neighborhood U of A small enough and positive invariant such that

Fn(x)→ A

for any x ∈U.

Proof. Since A is local attractor there exists a neighborhood U ′ in X with A⊂U ′ such that

Fn(x)→ A

for each x ∈U ′. We must show that also there exists a compact subset U ′′ of U ′ that is small
enough, U ′′ contains A and is positive invariant.
Let V a neighborhood of A small enough such that

A⊂V ⊂U ′. (4.2)

Thus, by the stability of A, there exists W a neighborhood of A such that

Fn(W )⊂V for all n ∈ N0. (4.3)

Denoting C =
⋃

n Fn(W ), from (4.3) we have C ⊂ V . In addition, since A is negative invariant
we also have A⊂C.

On the other hand, taking into account that F satisfies the union property we deduce

F(C) = F(
⋃
n

Fn(W )) =
⋃
n

F(Fn(W ))⊂C.

Hence, C is positive invariant. Consider

U =C. (4.4)

We obtain that U is compact and small enough satisfying

A⊂U ⊂V ⊂U ′ (4.5)

due to (4.2).
The proof is completed by showing that U is also positive invariant. Indeed, if y ∈ F(x) and

x ∈U , from (4.4) there exists a sequence xn ∈C such that xn→ x. By the inner semicontinuity
of F , there exists a sequence yn ∈ F(xn) such that yn→ y. Since F(C)⊂C we have y ∈C =U .
Hence, F(U)⊂U and we conclude.

We emphasize that the proof above is constructive since given U ′ (any neighborhood of A)
we obtain U which is small enough according to (4.5).
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For the converse, it is clear that A is a local attractor. To finish the proof it is sufficient to
show that A is stable. Suppose that V is a neighborhood of A. If necessary, we can take U as
long as it is small enough to satisfy A⊂U ⊂V . Therefore, since U is positive invariant we have

Fn(U)⊂U ⊂V

for all n ∈ N0 as required. �

Corollary 4.2. Suppose that F is a continuous single valued map and x̄ is a fixed point. Then
x̄ is LAS if and only if there exists a compact neighborhood U of x̄ small enough and positive
invariant such that

limFn(x) = x̄
for any x ∈U.

Proof. It follows from Theorem 4.2 and Remark 4.2. �

The above result can be considered an extension of the familiar characterization of fixed
points in the framework of real functions defined on an interval. Compare with stability condi-
tions established in [14] and [18].

5. CONCLUSIONS

The purpose of this paper is to show a general approach to study set-valued dynamical sys-
tems by using certain tools from the set-valued analysis theory. The desirable situation that state
map is continuous puts considerable restrictions on the problem. We prove results which are
not dependent on the continuity assumptions. In special, we obtain as applications or partic-
ular cases improvements or generalizations of real functions. Our contributions include basic
notions motivated from the classical results and those given in [14]. Our framework is more
general since we relax the continuity assumptions. However, we note that their consideration of
basic notions (for a continuous dynamical system) is quite similar to ours here. We show that
ω-limit sets play a fundamental role to give an asymptotic description of the dynamics.

Future research directions could be to study Lyapunov maps or the family of all ω-limit sets
of a set-valued dynamical system similar to [24] where a geometric characterization of ω-limit
sets are given for a real function. Research on nonexpansive or contractive maps would be
wellcome to give new stability conditions. An alternative way would be to analyze the structure
of ω-limits, see [23].

On the other hand, an important subject is to consider practical problems, for instance, models
about population dynamics in which, according to [25], it would be appropriate to induce set-
valued dynamical systems. Likewise, we emphasize that set-valued maps from an interval into
the closed subsets of an interval do arise in various areas of science and mathematical modeling,
most notably economics and game theory.

Another future research is to consider a dynamical systems approach for studying certain op-
timization problems or conversely to approach a vector optimization problem from a dynamical
point of view, taking advantage of methods of global analysis; see [19, 26].
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