
J. Nonlinear Var. Anal. 7 (2023), No. 5, pp. 743-767
Available online at http://jnva.biemdas.com
https://doi.org/10.23952/jnva.7.2023.5.06

EXISTENCE RESULTS AND OPTIMIZATION OVER THE SET OF EFFICIENT
SOLUTIONS IN VECTOR-VALUED APPROXIMATION THEORY

M. ISYAKU1,∗, C. TAMMER1, A. FARAJZADEH2

1Institute for Mathematics, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
2Department of Mathematics, Razi University, Kermanshah, 67149, Iran

Abstract. Continuity of the objective functions and compactness of their domain are classical assump-
tions widely used to obtain existence results for solutions of optimization problems. Due to the lack of
compactness in general spaces, under some moderate assumptions concerning the objective function and
the feasible set, we derive existence results for vector-valued optimization problems and corresponding
results for associated scalarized problems in this paper. Furthermore, we apply our results to special
vector-valued approximation problems, especially to multi-objective location problems where the whole
set of efficient solutions can be generated by a geometric primal-dual algorithm. Moreover, by using the
nonlinear scalarizing functional introduced by Gerstewitz, we perform an optimization according to the
preferences of a decision maker on the generated set of efficient solutions from which we derive a single
solution of this set that corresponds to the preferences of the decision maker.
Keywords. Decision process; Multi-objective optimization; Optimization over the set of efficient solu-
tions; Regularization problems; Vector-valued approximation problems.

1. INTRODUCTION AND MOTIVATION

In industry and finance, a variety of applications occur, where several objective functions
are desired to be optimized concurrently. For instance, for an exquisite economical production
plan, the ultimate common goal would be to maximize quality while minimizing the cost of
the product at the same time. This example already demonstrates that the several objectives
typically contradict each other, and therefore do not have identical optima (since a high-quality
product does not have the lowest price). Thus, a set of optimal compromises between the
objectives has to be determined. This set is called the Pareto optimal set or simply the Pareto
set, named after the Italian engineer, sociologist, and economist Vilfredo Pareto (1848 - 1923).

Basically, multi–objective optimization can be understood as the process of determining the
set of optimal compromises between two or more conflicting objectives. From the preceding
scenario, it is clear that the solution to the multi–objective optimization problem is not given
by a single point but a whole set of optimal compromises (efficient solutions) which may be
infinite, unbounded, and can in general be a nonconvex even in the linear case. When this set is
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generated, a decision problem arises for the decision maker to select a single preferred solution
from it. An important and efficient approach to address this is to perform optimization over the
set of efficient solutions. This particular problem has been given attention in [1, 2, 3, 4, 5, 6]
and the references therein.

It is important to point out that in the theory of multi–objective optimization problems, as-
sumptions and conditions guaranteeing the existence of efficient solutions are of paramount
importance because they are not always assured in applications. The study of the existence
of solutions for multi–objective optimization problems has been attracting lots of attention in
the literature. However, a bulk of available literature has only been devoted to deriving results
under some restricted assumptions concerning the feasible set of solutions, objective functions,
and ordering cones, so also the spaces under consideration; see [4, 6, 7, 8, 9, 10, 11, 12].

The main contributions of this paper are as follows: Under some suitable moderate assump-
tions, we derive the existence result for vector–optimization problems in a case where the preim-
age space E is a reflexive Banach space and the image space is q–dimensional Euclidean space
Rq. Moreover, we also obtain the existence result for the associated scalarized problem under
additional mild assumptions. Additionally, we apply our new existence results in vector–valued
approximation problems where as a special case, the whole set of efficient solutions of the
multi–objective location problem is derived. Furthermore, for application of the location prob-
lem in town planning, by using the so-called nonlinear scalarization functional introduced by
Gerstewitz [13], a single preferred solution from the set of efficient solutions which corresponds
to the preferences of the decision maker is also generated.

We organize the subsequent presentation of this paper as follows: Some important concepts to
be used throughout the forthcoming sections are recalled in Section 2. In Section 3, we present
formulation and solution concepts for the vector–valued optimization problem. The existence
results for the vector–valued optimization problems and associated scalarized problems are pre-
sented in Section 4. In Section 5, we perform optimization over the set of efficient elements of
a multi–objective location problem. By applying the characterization of the nonlinear scalariz-
ing functional introduced by Gerstewitz [13] in [14], a single solution from the set of efficient
elements which corresponds to the preferences of the decision maker is generated. Finally, the
paper concludes in Section 6 with some remarks and future research goals.

2. NOTATIONS AND PRELIMINARIES

In this section, we recall some notations, definitions, and useful results that are relevant
throughout the subsequent sections.

For any non–negative integer q, let the q–dimensional Euclidean space Rq and a subset D
of Rq be given. We denote the interior, closure, and complement of D by intD, clD, and Dc,
respectively. Also, for a given set of real numbers R, we denote by R=R∪{+∞} the extended
set of real numbers. Let a function F : D→ R, where a set D⊂ Rq is nonempty, be given. The
function F is said to be proper if the domain of F , denoted by domF = F−1(R) := {x ∈ D |
F(x) ∈ R}, is not empty. We begin to recall some notations concerning cones in Definition 2.1
whose general form for arbitrary topological spaces can be seen in [15].

Definition 2.1. (See, e.g., [15]) Let Rq be a q–dimensional Euclidean space. A nonempty subset
K of Rq is said to be

(i) A cone if for all y ∈ K and λ ≥ 0, λy ∈ K.
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(ii) A convex cone if K +K ⊆ K.
(iii) Pointed if K∩ (−K) = {0Rq}.
(iv) Proper if K 6= Rq,
(v) A nontrivial cone if it is proper and K 6= {0}.

The next example illustrates a cone with some of the properties in Definition 2.1.

Example 2.1. Consider the Euclidean space Rq, the non–negative orthant

Rq
+ := {(y1, . . . ,yq) ∈ Rq | ∀i ∈ {1, . . . ,q} : yi ≥ 0}

consisting of all vectors of Rq with non–negative coordinates is closed, convex and pointed.

Throughout this paper, unless otherwise specified, the space E is supposed to be a reflexive
Banach space and the cone K ⊂ Rq is supposed to be nontrivial, closed, and convex.

Given a convex cone K ⊂ Rq, for y1,y2 ∈ Rq, we define the order ”≥K ” by y1 ≥K y2 if and
only if y1−y2 ∈ K, and ”>K ” by y1 >K y2 whenever y1 ≥K y2 and y1 6= y2. The relation ”≥K ” is
reflexive, and since K is convex is also transitive, but not necessarily antisymmetric. However,
if K is pointed then ”≥K ” is antisymmetric.

The following concepts of convexity of functions, whose details can be found in [16], will be
used in the sequel.

Definition 2.2. Let D be a convex subset of Rq. A function F : D→ R is said to be convex if
for all x,y ∈ D

F(αx+(1−α)y)≤ αF(x)+(1−α)F(y) for all α ∈ [0,1].

Definition 2.3. Let D be a nonempty subset of Rq and a given function F : D→ R. The set
denoted by

epiF :=
{
(x, t) ∈ D×R | F(x)≤ t

}
,

is called epigraph of F .

A convex function can be characterized by its epigraph. Indeed, the following lemma, whose
general details can be found in [17], is evident.

Lemma 2.1. ([17, Theorem 2.6]) Suppose that D is a nonempty subset of Rq. The function
F : D→ R is convex if and only if epiF is a convex set.

One very important example of an extended real–valued function is the indicator function de-
fined in the next definition. The indicator function is often used as a tool (penalization function)
for transforming constrained optimization problems into unconstrained problems.

Definition 2.4. Let D be a nonempty set and Ω ⊆ D. The indicator function δ
Ω

of Ω is a
mapping δ

Ω
: D→ R defined by

δ
Ω
(x) =

{
0 for x ∈Ω,
+∞ otherwise.

(2.1)

Remark 2.1. It is clear that the indicator function is proper and convex if the set Ω is nonempty
and convex.

The notion of sublevel sets of extended real–valued functions given in Definition 2.5 will
play an important role throughout the subsequent sections.
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Definition 2.5. Let F : D→ R be a function defined over a set D subset of Rq. The lower
sublevel set of F with level t ∈ R is given by

L(F ; t) :=
{

y ∈ D | F(y)≤ t
}
. (2.2)

In the next definition, whose general form can be seen in [18, 19, 20], the lower semiconti-
nuity of extended real–valued functions is characterized in terms of lower sublevel sets.

Definition 2.6. ([18, 19], and [20, Definition 38.5]) Let D be a closed subset of Rq. The
function F : D ⊂ Rq → R is lower semicontinuous if for any t ∈ R the lower sublevel set in
(2.2) is closed.

Remark 2.2. The indicator function in (2.1) is lower semicontinuous if the set Ω is closed.

In Definition 2.7 we recall the notion of K–semicontinuous vector–valued functions which
shall be used in the sequel.

Definition 2.7. (See, e.g., [18, 19]) Let E be a reflexive Banach space and Rq ordered by a
nontrivial pointed, closed, and convex cone K. The function G : E → Rq is said to be K–
semicontinuous if for every y ∈ Rq the set

G−1 (clK + y) :=
{

x ∈ E | G(x)− y ∈ clK
}
,

is closed in E.

Lemma 2.2, whose more details can be seen in [21, Lemma 2.17]), establishes K–semicontinuity
as a proper generalization of lower semicontinuity of real–valued functions.

Lemma 2.2. ([21, Lemma 2.17]) Suppose that E is a reflexive Banach space. A vector–valued
function G : E → Rq is K–semicontinuous if and only if for all i = 1,2, . . . ,q, the component
functions Gi : E→ R are lower semicontinuous.

Remark 2.3. (i) If in Definition 2.7 the space Rq is considered for q = 1, and E the set
of real numbers R, then K–semicontinuity of G reduces to classical lower and upper
semicontinuity for K = (−∞,0] and K = [0,+∞), respectively. Indeed, the function G
is lower semicontinuous if for every y ∈ R the set

G−1([−∞,0]+ y
)

= G−1([−∞,y]
)

=
{

x ∈ R | G(x) ∈ [−∞,y]
}

=
{

x ∈ R | G(x)≤ y
}

is closed. Similarly, G is upper semicontinuous if for every y ∈ R the set

G−1([0,+∞]+ y
)
=
{

x ∈ R | y≤ G(x)
}

is closed.
(ii) Evidently, continuous functions are K–semicontinuous, but the converse does not hold

in general, since the function G : R→ R defined by G(x) = [x], where [·] denotes the
greatest integer function, is [0,+∞)–semicontinuous but not continuous.

In the next proposition which is a special case of [18, Theorem 4.1], [21, Proposition 2.18],
we present a characterization of K–semicontinuous vector–valued functions in terms of K–
semicompactness of subsets of Rq. The concept of K–semicompactness which is considered a
weaker form of compactness is given Definition 2.12.
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Proposition 2.1. ([18, Theorem 4.1], [21, Proposition 2.18]) Suppose that E is a reflexive Ba-
nach space and S is a compact subset of E. If a vector–valued function G : S→ Rq is K–
semicontinuous then G(S) is K–semicompact.

Remark 2.4. We are going to apply the hypothesis of Proposition 2.1 in a case where the set S
is endowed with a weak topology.

The following concept of lower semicompactness of extended real–valued functions will play
an important role in the subsequent sections.

Definition 2.8. (See, e.g., [20, Definition 38.5]) Let D be a nonempty subset of Rq. The function
F : D ⊂ Rq → R is said to be lower semicompact (sometimes called inf–compact) if it has
compact lower sublevel sets.

In the following definitions, we state relationships between lower semicompactness and co-
erciveness of a function.

Definition 2.9. A function F : Rq→ R is called coercive if

lim
‖x‖→+∞

F(x) = +∞.

It can be seen in Proposition 2.2 that real–valued lower semicontinuous and coercive func-
tions are lower semicompact.

Proposition 2.2. (See, e.g., [22, Theorem 1.2]) Let F : Rq→ R be lower semicontinuous. The
function F is coercive if and only if it has compact lower sublevel sets.

Suppose that E is a reflexive Banach space. The following proposition, whose details can be
found in [23, Corollary 3.22], characterizes the notion of weakly compact subsets of E.

Proposition 2.3. ([23, Corollary 3.22]) Let E be a reflexive Banach space, S ⊂ E nonempty,
closed, convex, and bounded set. Then S is weakly compact.

Proposition 2.4 below popularly known as Heine-Borel Theorem will be used in the sequel.

Proposition 2.4. (See, e.g., [18]) A set D subset of Rq is compact if and only if it is bounded
and closed.

Now, we recall the notions of monotonicity concerning sequences in Rq and some cone prop-
erties of subsets of Rq.

Definition 2.10. (See, e.g., [24]) Suppose that D is a nonempty subset of Rq and K is a
nonempty, convex cone in Rq. Consider LK := K ∩−K, the set of nonnegative integers N,
and {yn}n∈N ⊂ Rq the sequence in Rq. Then

(i) {yn}n∈N is said to be K–increasing if for all n,m ∈ N, n≤ m, ym− yn ∈ K.
(ii) {yn}n∈N is said to be strictly K–increasing if for all n,m ∈ N, n ≤ m, n 6= m, ym− yn ∈

(K \LK).
(iii) {yn}n∈N is

(
strictly

)
K–decreasing if {−yn}n∈N is

(
strictly

)
K–increasing.

(iv) The set D ⊂ Rq is
(
K–lower

)
upper bounded if

(
D ⊂ y0 +K

)
D ⊂ y0−K for some

y0 ∈ Rq.

Definition 2.11 below, whose general form is stated in [24], will be used in Proposition 2.13.
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Definition 2.11. (See, e.g., [24]) A nonempty convex cone K in Rq is said to be Daniell if any
K–decreasing sequence in Rq having a lower bound converges to its infimum.

In Remark 2.5 below which is motivated from [25, Example 3.3 (c)] we state some conditions
that ensure Daniell property.

Remark 2.5. Every closed and pointed ordering cone K in the finite–dimensional space Rq is
Daniell.

Example 2.2. For q = 2, the ordering cone K ⊂ R2 defined by

K := {(y1,y2) ∈ R2 | y2 ≥ 0, y1 ≥ 0},
is closed and pointed, therefore, Daniell by Remark 2.5.

In Definition 2.12, the notion of K–semicompactness which is a weaker form of compactness
is defined for general topological spaces in [18, 19, 21] using similar finite subcover property
of compact sets. K–semicompactness condition, which considers open covers with special sets
will be used as a sufficient condition for K–completeness in Proposition 2.5. K–completeness
of subsets of Rq which turns out to be a weaker form of K–semicompactness will be presented
in Definition 2.13.

Definition 2.12. (See, e.g., [18, 19, 21]) Let K be a given cone in Rq. A subset D of Rq is said
to be K–semicompact if every open cover of D of the form{

(yi− clK)c | yi ∈ D, i ∈I , where I is the index set
}

,
has a finite subcover. This means that whenever D ⊂ ∪i∈I (yi− clK)c there exist m ∈ N and
{i1, . . . , im} ⊂I such that D⊂ ∪m

k=1(yik− clK)c.

Remark 2.6. Compact sets are K–semicompact for any ordering cone K. However, the converse
does not hold in general, since for q = 2, the set

D :=
{
(x,y) ∈ R2 | 0≤ x < 1, 0≤ y < 1

}
,

with respect to K = R2
+ is K–semicompact but not compact.

The next definition, whose general form can be seen in [11], will be used in Proposition 2.6
to guarantee the nonemptiness of a set D subset of Rq with respect to a closed and convex cone
K.

Definition 2.13. (See, e.g., [11]) Let K be a given cone in Rq. A subset D of Rq is said to be
K–complete if every Cauchy K–increasing sequence is convergent to an element of K.

Remark 2.7. In the sense of [26, Lemma 2.2], K–semicompact sets are K–complete. However,
the converse fails in general, since for q = 2, the set D defined by

D :=
{
(x,y) ∈ R2 | x =

1
y
, 0 > y

}
∪
{
(x,y) ∈ R2 | x =−y, 0≥ y

}
,

where cone K = R2
+, is K–complete but not K–semicompact.

Sufficient conditions for K–completeness of a subset D of Rq are stated in Proposition 2.5
whose general form for arbitrary topological spaces is to find in [26].

Proposition 2.5. ([26, Lemma 2.2]) Suppose that K is a closed and convex cone in Rq. A set D
subset of Rq is K–complete if one of the following assertions holds:



EXISTENCE RESULTS AND OPTIMIZATION OVER THE SET OF EFFICIENT SOLUTIONS 749

(i) D is K–semicompact.
(ii) D is compact.

(iii) D is closed and bounded, K is Daniell, and Rq has a monotone sequence property i.e.,
every bounded decreasing sequence in Rq has an infimum.

(iv) D is K–lower bounded and K is Daniell.

Proposition 2.6, whose general form is in [26], generalizes many existence results for vector
optimization problems, especially results where norm compactness and continuity assumptions
are used, see, e.g., [19, 27, 28]. Proposition 2.6 which is a general form of existence results in
[4, 6, 8] will be used in Section 4 to derive the existence result for multi–objective optimization
problem (MOP).

Proposition 2.6. ([26, Theorem 2.6]) Suppose that Rq is ordered by a closed and convex cone
K. For a given nonempty subset D of Rq, the set of efficient elements of D with respect to K is
nonempty if D is K–complete.

3. VECTOR-VALUED OPTIMIZATION PROBLEMS AND SOLUTION CONCEPTS

Most of the optimization problems concerned with a real–life require the need to optimize
several conflicting objective functions simultaneously under constraints, which are popularly
known as vector optimization problems. In vector optimization, one considers optimization
problems with a vector–valued objective map and thus, one has to compare elements in a lin-
ear space. If the linear space is finite–dimensional space Rq, the comparison can be done
component–wise. In case the linear space is arbitrary infinite–dimensional, a partial ordering
which defines how elements are compared is introduced.

In this section, we study vector optimization problem (MOP) in a case where the preimage
space E is a reflexive Banach space and the image space is Rq.

Suppose that G : E→Rq is a vector–valued function and K be a pointed, closed, convex cone
in Rq. Multi–objective optimization problem which is a problem of optimizing a vector–valued
function G over the set of feasible solutions S⊆ E is formulated as follows:

Optx∈S G(x), (MOP)

where G :=
(
G1, . . . ,Gq

)T is the vector of the objectives and the component functions Gi : E→
R, i = 1,2, . . . ,q are the conflicting objective functions to be optimized simultaneously.

It is important to explain that the notation ’Opt’ appearing in the formulation of (MOP)
signifies that, the vector–valued function G is to be minimized or maximized in the sense of
Definition 3.1, see Remark 3.1. Of course, a minimization problem can be transformed into
maximization problem when G and the ordering cone K are considered as −G and −K, respec-
tively.

Due to the loss of a total order of Rq for q ≥ 2, the solution to the (MOP) is not a specific
point, but the set of non–dominated points, also referred to as the Pareto set, or set of optimal
compromises. Consider Problem (MOP), a point x̂ ∈ S⊆ E is said to be non–dominated if there
exists no x ∈ S with Gi(x) ≤ Gi(x̂) for all i = 1,2, . . . ,q and G j(x) < G j(x̂) for at least one
j ∈ {1,2, . . . ,q}.

If x̂ satisfies this property only in an open neighborhood U(x̂)⊂ S⊆ E, then x̂ is called locally
non–dominated point (or a local Pareto optimal solution).

Definition 3.1 and Remark 3.1 formalize these solution concepts.
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Definition 3.1. Let D be a nonempty subset of Rq and K a nontrivial pointed, convex cone in
Rq. An element of the set

Eff(D;K) :=
{

y ∈ D | ({y}−K)∩D = {y}
}

=
{

y ∈ D | ({y}−K)∩ (D\{y}) = /0
}
,

is called efficient element of D with respect to K. Moreover, suppose that intK 6= /0. An element
y ∈ D is called a weakly efficient element of D, if y belongs to the set

Effw(D;K) :=
{

y ∈ D | ({y}− intK)∩D = /0
}
.

Remark 3.1. For a given nonempty subset S of a linear space E, we apply the solution con-
cepts in Definition 3.1 to Problem (MOP) for D := G(S), where G(S) := {y ∈ Y | G(x) =
y, for some x ∈ S} is called the image of S under G. In this paper, we call elements x ∈ S
with G(x) ∈ Eff(G(S);K) efficient solutions.

For properly efficient elements and more details about the solution concepts for vector opti-
mization problems, see, [15, 17, 24, 29] and references therein.

Remark 3.2. By Definition 3.1, it is straightforward to see that it holds that

Eff(D;K)⊆ Effw(D;K).

The condition for a set to have a domination property is recalled in Definition 3.2.

Definition 3.2. (See, e.g., [15, 24]) Let D⊂Rq be a given set. The domination property is said
to be fulfilled for D, if for every point y ∈D there is some y∗ ∈ Eff(D;K) such that y∗ ≤K y (i.e.,
every element of D is dominated by a minimal element of D).

4. EXISTENCE RESULTS FOR (MOP) IN REFLEXIVE BANACH PREIMAGE SPACES AND

ASSOCIATED SCALARIZED PROBLEM

Existence results for (MOP) have been studied in the literature, see, [4, 6, 8, 29] under the
assumptions that the preimage space E is Rn with a special structure of the set of feasible
elements S :=

{
x ∈ Rq

∣∣ gi(x)≤ 0, i = 1,2, . . . ,d
}
, where for each i = 1,2, . . . ,d, gi : Rq→ R

are convex.
Supposing compactness of the set of feasible elements, finite–valued, positive, and convex

objective functions, the authors in [4] considered the existence of solutions of a special case
namely, bicriteria problem of (MOP) i.e., for q = 2. Moreover, authors in [8] also considered
the existence result for the bicriteria problem using continuity assumption of the objective func-
tions, convexity of the constraint functions, and compactness of the feasible set. Furthermore, in
[30] the existence result for unconstrained (MOP) is considered for strictly convex and coercive
objective functions.

Several versions of existence results for vector optimization problems with respect to more
general feasible sets, special types of convex cones, and compactness notions with respect to
cones have been considered in detail in Chapter 9 of [24].

Under relaxed continuity assumption concerning the objective functions, our aim is to derive
existence result for (MOP) using a more general feasible set that does not involve constraint
functions and without compactness assumption. Precisely, considering the more general image
space Rq for the objective functions, assuming K–semicontinuity of the objective functions, we
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obtain the existence result in high dimensional preimage space. More specifically, the following
assumptions concerning the preimage space E, set of feasible elements S, and vector–valued
objective function G will be used to derive the existence of efficient elements of (MOP).

Assumption 4.1. (C1) E is real reflexive Banach space.
(C2) S is nonempty, closed, convex and bounded subset of E.
(C3) K is a nontrivial pointed, and closed, convex cone in Rq.
(C4) ∀ i = 1,2, . . . ,q : the component function Gi is lower semicontinuous.

Theorem 4.1 ensures the nonemptiness of the set of efficient elements of (MOP).

Theorem 4.1. Suppose that all the conditions of Assumptions 4.1 are satisfied, then the set of
efficient elements of (MOP) is nonempty.

Proof. Taking into account conditions (C1), (C2), and Proposition 2.3, the set S is weakly com-
pact in E. Moreover, from Lemma 2.2, condition (C4) implies that G is K–semicontinuous.
Therefore, in light of Proposition 2.1 and Remark 2.4 with the set S endowed with weak topol-
ogy, we have that G(S) is K–semicompact in Rq. Finally, by Proposition 2.5(i) and Proposition
2.6 we have that the set of efficient elements Eff(G(S);K) of (MOP) is nonempty. �

Remark 4.1. The existence result in Theorem 4.1 is shown under the Assumptions 4.1 where
the compactness of the feasible set is not supposed. So, the existence result in Theorem 4.1
is shown under weaker assumptions as in corresponding existence results in the literature (see,
e.g., [4, 6, 8, 12, 29]) and the references therein.

For generating an approximation of the set of efficient elements to the vector optimization
problem (MOP), a large class of methods is based on scalarizations which generally, means the
replacement of a vector optimization problem by a suitable scalar optimization problem involv-
ing possibly some parameters or additional constraints. Some examples of such scalarizations
are the weighted sum [31] and the ε-constraint problem [32]. It is important to explain that these
two examples of scalarization approach are special cases of the nonlinear scalarizing functional
presented in (NLSF); see, e.g., [14, 29].

In the following and subsequent sections, we consider the following scalarized formulation
for (MOP).

A scalarized problem associated with the (MOP) takes the form:

Optx∈S F
(
(G(x)

)
, (MOPS)

where the composition of a scalarization function F : Rq→ R and the vector–valued objective
function G : E→ Rq is a mapping F ◦G : E→ R.

Remark 4.2. A general nonlinear scalarization functional is presented in Example 4.3 while a
particular example of scalarization functional is also given in Example 4.1.

In general, it is practically challenging to optimize over the whole feasible set of (MOP),
this is due to the fact that it may be nonconvex and in general, an infinite set. Therefore, by
nonemptiness of the set Eff(G(S);K) of efficient elements of (MOP), we consider the following
corresponding scalar formulation over the set of efficient elements of (MOP):

Opt
(
F(y0) | y0 ∈ Eff(G(S);K)

)
, (MOPSI)

where F : Rq→ R is the scalarization functional which is nonlinear in general.
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Remark 4.3. (i) The explicit nonlinear scalarization function that befits our formulation is
given in Example 4.2.

(ii) The optimal set of (MOPSI) is defined by

argminF :=
{

y0 | F(y0)≤ F(y) for all y ∈ Eff(G(S);K)
}
. (OS)

(iii) For maximization problems the argmin notation in (OS) is replaced by argmax.

It is very important to point out that in the formulation of (MOPSI), the decision maker
already knows the set of efficient elements of (MOP) and he is interested in one element of this
set that corresponds to his preferences. In general, nonlinear scalarization functionals usually
appearing in applications involve additional constraints and parameters that are to be assorted
in the solution strategy to suit the preferences of the decision maker.

Problem (MOPSI) has been considered by many authors when the feasible set has some spe-
cial structures and preimage and image spaces are finite–dimensional. For instance, authors in
[8] studied (MOPSI) for q = 2 over a compact set of efficient elements of a bi–criteria problem.
For details about optimization over the set of efficient elements, see, e.g., [1, 2, 3, 4, 6, 8, 9, 10,
33] and references therein.

We will apply the following result popularly known as the generalized Weierstrass theorem,
whose general form for arbitrary topological linear spaces can be seen in [20], to derive the
existence result for (MOPSI).

Theorem 4.2. ([20, Theorem 38B]) Suppose that D is a nonempty subset of Rq. A minimal
element of a functional h : Rq→R over D exists if either of the following conditions is fulfilled:

(i) h is lower semicompact.
(ii) h is lower semicontinuous on the compact set D.

For q = 2 in Example 4.1, we formulate an objective function and the feasible set that satisfy
the hypothesis of Theorem 4.2.

Example 4.1. Suppose D is a rectangle in R2 defined by the points (0,0) and (1,1) as the set

D =
{
(x,y) | 0≤ x≤ 1,0≤ y≤ 1

}
.

A function h : D→ R defined by

h(x,y) =

{
1 for y 6= 0,
1
2 for y = 0,

is lower semicontinuous on the compact set D. Therefore, condition (ii) of Theorem 4.2 is
satisfied. Moreover, lower semicontinuity of h implies that h has closed lower sublevel sets that
are compacts being subsets of the compact set D, hence, by Definition 2.8, condition (i) is also
fulfilled.

4.1. Existence results for solutions of (MOPSI)
In this section, we establish the existence result for (MOPSI) by applying the generalized

Weierstrass result (Theorem 4.2) and the Assumptions 4.2 concerning the extended real–valued
scalarizing functional F .

In Example 4.2, the nonlinear Gerstewitz scalarization functional [13] is considered as scalar-
izing functional that fulfills condition (D1) of Assumption 4.2 under some additional assump-
tions concerning the ordering cone K and the scalarization direction r ∈ K \{0}.
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Example 4.2. Let D be a nonempty closed subset of Rq, r ∈ Rq \{0}. Suppose that

D− [0,+∞)r ⊆ D. (4.1)

Consider the function F : Rq→ R∪{+∞}∪{−∞} defined by

F(y) := inf{t ∈ R | y ∈ tr+D} for all y ∈ Rq. (NLSF)

We are using the convention inf /0 :=+∞.

Remark 4.4. (i) In situations where inf /0 = +∞ in (NLSF), this either serves as a symbol
for a function value at points that are not feasible for the problem or the related argument
of the function is considered not belong to the domain of interest.

(ii) It is important to mention that the class of functions defined in (NLSF) coincides with
the class of translation invariant functions.

Extended real–valued functions of type (NLSF) have been applied by many researchers of
different fields of mathematics and economics theory, for instance, in optimization theory, these
functions have been used for the representation of orders, preference relations, and other binary
relations, especially of partial orders. In economics theory, similar functions of type (NLSF)
have been used as the so-called shortage functions and in mathematical finance as coherent risk
measure functions. Functions of the form (NLSF) are also appropriate for separating sets that
are not necessarily convex. This has a deep impact on functional analysis and operator theory,
where many proofs require separation theorems. For detailed bibliographical notes related to
the historical facts about functions of type (NLSF); see [11, 24, 34] and the references contained
therein.

Some essential properties for the usage of function in (NLSF) as scalarizing functional for
vector optimization problems are outlined in the following result whose general form can be
found in [11, 24, 34].

Proposition 4.1. (See, e.g., [11, Theorem 2.3.1]) Suppose that D is a proper and closed subset
of Rq and r ∈ Rq \{0} such that condition in (4.1) holds. Then,

the function F defined in (NLSF) is lower semicontinuous, (4.2)

dom(F) = Rr+D,

∀ λ ∈ R, L(F ;λ ) = {y ∈ Rq | F(y)≤ λ}= λ r+D (4.3)
and

∀ y ∈ Rq, ∀ λ ∈ R, F(y+λ r) = F(y)+λ .

Moreover,
(i) F is convex if and only if D is convex.

(ii) F is positively homogeneous, i.e., F(λy) = λF(y) for all λ > 0, y ∈ Rq if and only if D
is a cone.

(iii) F is proper if and only if D does not contain lines parallel to r, i.e.,

∀ y ∈ Rq, ∃ t ∈ R : y+ tr /∈ D.

(iv) F is finite-valued if and only if D does not contain lines parallel to r and

Rr+D = Rq.
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(v) Let B ⊂ Rq; F is B–monotone if and only if D−B ⊂ D, where F is B–monotone if y1,
y2 ∈ domF, y1− y2 ∈ B implies F(y2)≤ F(y1).

(vi) F is subadditive if and only if D+D⊆ D.

As recalled in the foregoing, since binary relations such as partial orders can be represented
by scalarizing functionals of type F in (NLSF), the monotonicity property of such functionals
turns out to be of great importance due to the fact that, if D is taken as closed ordering cone K
in Rq, the corresponding order ≤K can be represented by F with an arbitrary r ∈ K \{0} since
from (4.3) of Proposition 4.1, for all y1,y2 ∈ Rq,

y1 ≤K y2 ⇐⇒ F(y2− y1)≤ {0}.

In this case, it was shown in [11, Theorem 2.3.1] that the functional F is K–monotone i.e., for
all y1,y2 ∈ domF

y1 ≤K y2 =⇒ F(y1)≤ F(y2).

In what follows, we apply the conditions of Assumptions 4.2 in proving the existence result
in Theorem 4.3.

Assumption 4.2. Suppose that conditions (C2), (C3), and (C4) of Assumptions 4.1 are satis-
fied. Further, let

(D1) F : Rq→ R is lower semicontinuous.
(D2) G(S)⊂ Rq is bounded.

Remark 4.5. (1) If, for instance, all lower sublevel sets of F are closed and the set G(S)
satisfies Definition 2.10(iv), then conditions (D1) and (D2) are satisfied, respectively.

(2) Condition (D2) implies that lower sublevel sets of F on Eff(G(S);K) are bounded.

In the next example, a particular scalarization function is defined so that the conditions in
Assumptions 4.2 are fulfilled.

Example 4.3. If q = 2, a closed unit disk is a set given by

D :=
{
(x,y) ∈ R2 | x2 + y2 ≤ 1

}
,

then the function F̂ : R2→ R defined by

F̂(x,y) =

{
0 for x,y ∈ D,

x2 + y2−1 for x,y ∈ R2 \D,

is lower semicontinuous with a bounded image. Therefore, conditions (D1) and (D2) satisfied
since F̂ is a restriction of F .

In the last result of this section, we provide a generalization of the existence results in [8, 4]
with weaker compactness and continuity assumptions.

Theorem 4.3. Suppose that the conditions in Assumptions 4.2 are satisfied. Then, Problem
(MOPSI) admits at least one solution.

Proof. By setting the set D := Eff(G(S);K) in Definition 2.6, condition (D1) of Assumptions
4.2 guarantees that the function F has closed lower sublevel sets on Eff(G(S);K)⊆ Rq. There-
fore, since the lower sublevel sets of F are subsets of finite–dimensional image space Rq, their
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closedness together with condition (D2) and Remark 4.5(2) imply that F has compact lower
sublevel sets on Eff(G(S);K) by Proposition 2.4. Hence, by Definition 2.8 we obtain that F is
lower semicompact. Thus, applying Theorem 4.2(i) by considering D = Eff(G(S);K), h := F ,
and E := Rq, a minimal element of F on Eff(G(S);K) exists. �

Remark 4.6 characterizes the optimal set of the scalarized problem (MOPSI).

Remark 4.6. We deduce from (OS) that the set of optimal solutions to (MOPSI) is the set
argminF := {y0 | F(y0) ≤ α}, where α := F(y) for all y ∈ Eff(G(S);K). Condition (D1) of
Assumptions 4.2 and Remark 4.5(2) imply that the scalarizing functional F in (OS) has compact
lower sublevel sets. Therefore, ensuring the compactness of the optimal set argminF := {y0 |
F(y0)≤ α}.

In the preceding sections, under some suitable moderate assumptions, results guaranteeing
the existence of solutions of vector optimization problem (MOP) and the corresponding scalar-
ized problem (MOPSI) are derived. The difficulty of handling problem (MOP) arises from the
presence of several conflicting objectives. Therefore, a unique optimal solution can not be
obtained without incorporating preference information from the decision maker (DM). Conse-
quently, in order to address the fundamental question concerning how to choose one element
from the solution set of (MOP) that corresponds to the preferences of the (DM), we studied the
associated scalarized problem (MOPSI) over the set of efficient elements of (MOP). Real-life
scenario to demonstrate the applicability for the existence results of (MOP) and (MOPSI) will
be presented in the next section.

5. APPLICATIONS

If the scalar objective function of (MOPSI) involves some complex features such as non–
convexity and discontinuity, even a small change of the involved parameters could lead to a
significant change to the objective function value. The regularization framework contributes
to the stabilization of such a function. In the Tikhonov regularization method [35], which is
arguably the most popular regularization technique, a scalar objective function h is formulated
as

h := f +αg, (TR)

where f : Rq → R is the objective function which is mostly assumed to be the square of a
norm, g : Rq→ R is the regularization function, and α > 0 is the corresponding regularization
parameter.

The main difficulty associated with optimization of the function in (TR) is that the solution
depends upon the choice of the regularization parameter α , and most of the research reports
only demonstrate results based on a limited number of a priori selected values, see, for instance,
[36, 37] and references therein.

In order to find solutions independent of the regularization parameter α when dealing with
the objective function of the form (TR) and to generate the whole set of solutions, we consider
the associated formulation as a multi–objective optimization problem i.e., (MOP) for q = 2.
More precisely, the general constrained bi–objective optimization problem associated with op-
timization of the function in (TR) takes the form:

Optx∈S G(x), (BOP)
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where G := ( f , g)T and f , g are real–valued conflicting objective functions to be optimized
simultaneously over the feasible set S subset of some topological linear spaces and the notation
’Opt’ is to understand in the sense of Definition 3.1 with respect to K = R2

+.
Motivated by [38, Example 3.6], the following example illustrates how conflicting objective

functions are optimized.

Example 5.1. Consider the following simple constrained bi–objective optimization problem,
which for a given vector–valued function G : R→ R2 takes the form:

Optx∈S G(x), (MOPq=2)

where the feasible set S :=
[
−8

3 , 2
]

and G(x) :=
(

f (x), g(x)
)T

=
(
(x+2)2, (x−2)2)T .

It is straightforward to see that the efficient solutions of Problem (MOPq=2) with respect to
K = R2

+ in the sense of Definition 3.1 are given by all points x̂ ∈ [−2, 2].

To apply the existence results from Section 4, we consider a corresponding scalarized formu-
lation of Problem (MOPq=2) which takes the form:

Opt
(
F(ŷ) | ŷ ∈ Eff(G(S);K)

)
, (SMOPq=2)

where F : R2 → R is the scalarizing functional of the form (NLSF) which is to be optimized
over the set of efficient elements of Problem (MOPq=2).

Remark 5.1. Problem (SMOPq=2) is well–defined since the vector–valued function G is con-
tinuous and the feasible set S is a compact subset of R.

Taking into account (4.2) of Proposition 4.1, the scalarizing functional in (SMOPq=2) is
assumed to be lower semicontinuous. Moreover, the set of efficient solutions of (MOPq=2)
is a closed and bounded subset of R, hence, its image under G is a compact subset of R2

since G is continuous. Therefore, the set Eff(G(S);K)
)

which is the set of efficient elements
in the image space is compact (due to the fact that the continuous image of a compact set is
compact). Consequently, by lower semicontinuity of the scalarizing functional in (SMOPq=2)
and the compactness of the set Eff(G(S);K)

)
, Theorem 4.2(ii) guarantees the nonemptiness of

the optimal set of Problem (SMOPq=2).

5.1. Regularization problems. In the study of inverse problems of identifying variable pa-
rameters in variational equations, the famous optimization framework is through the output
least-squares objective. These types of problems have been attracting lots of attention in the
literature, especially, in the recent works [39, 40, 41, 42, 43, 44, 45, 46] and references therein.

Considering (TR) with f := ‖Ax−b‖2
2 and g := ‖Lx‖2

2, where ‖ ·‖2
2 denotes the square of the

Euclidean norm, the regularized least square problem

min
x∈Rn

Jα(x) = ‖Ax−b‖2
2 +α‖Lx‖2

2, (5.1)

for an arbitrary regularization parameter α > 0, A ∈Rq×n, n≤ q, b ∈Rq, and matrix L ∈Rk×n,
k ≤ n, was considered in [47] as the unconstrained multi–objective optimization problem with
two objectives

min
x∈Rn

(
‖Ax−b‖2

2,‖Lx‖2
2

)T
. (5.2)
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Remark 5.2. For arbitrary regularization parameter α > 0, a solution xα of Problem (5.1) is
efficient with respect to K = R2

+ (in the sense of Definition 3.1) of Problem (5.2) as shown in
[47, Theorem 1].

The elastic net regularized problem of the form

min
x∈Rn

1
2

∥∥∥Ax−b
∥∥∥2

2
+

α

2

∥∥x
∥∥2

2 +β
∥∥x
∥∥

1, (5.3)

where A ∈Rq×n, b ∈Rq, ‖·‖2
2 denotes the square of the Euclidean norm, ‖·‖1 denotes the l1-(or

Manhattan-)norm in Rn and the regularization parameters are α , β ∈ R+ := [0,+∞), was also
studied in [30, 48, 49] as the unconstrained three–objective optimization problem

min
x∈Rn

(∥∥∥Ax−b
∥∥∥2

2
,
∥∥x
∥∥2

2,
∥∥x
∥∥

1

)T
. (5.4)

Remark 5.3. Observe that the objective function of the elastic net regularized Problem (5.3)
is strictly convex, continuous, and coercive (see [30] for details). Hence, by Proposition 2.2
and Definition 2.8, the objective function is lower semicompact. Therefore, by Theorem 4.2(i)
there exists a minimal solution to the Problem (5.3) over Rn. Thus, by [30, Proposition 2.1], the
corresponding three–objective optimization Problem (5.4) has an efficient element with respect
to K = R3

+ (in the sense of Definition 3.1).

5.2. Vector-valued approximation problems The problems studied by the authors in [30, 47,
49] and those presented in (5.1) and (5.3) lead us to the formulation of following vector–valued
approximation problem as a special case of (MOP):

Optx∈S

(
G1(x),G2(x), . . . ,Gq(x)

)T
, (VAP)

where the set of feasible elements S is a nonempty, closed, convex, and bounded subset of Rn,(
G1(x), G2(x), . . . , Gq(x)

)T
=
(∥∥A1x−a1∥∥β1

1 ,
∥∥A2x−a2∥∥β2

2 , . . . ,
∥∥Aqx−aq∥∥βq

q

)T
,

and for each i ∈ {1,2, . . . ,q}: Ai ∈ Rk×n, ai ∈ Rk, βi ≥ 1 and ‖·‖i denotes a norm in Rk.
In (VAP), the optimization is to understand in the sense of Definition 3.1 with respect to

K = Rq
+.

Remark 5.4. (i) Clearly, Problem (5.3) is a special case of Problem (VAP) for a1 := b,
a2 = a3 := 0, β1 = β2 := 2, β3 := 1, A1 := A, A2 and A3 identity matrices.

(ii) Observe that for Problem (VAP) Assumptions 4.1 are fulfilled such that we can apply
Theorem 4.1. So, we get from Theorem 4.1 that there exist efficient elements of (VAP).

5.3. Application to multi-objective location problems. In what follows, we study a special
case of a vector-valued approximation problem (VAP), namely a multi–objective location prob-
lem.

5.3.1. An algorithm for solving multi-objective location problems. In order to apply the exis-
tence results from Section 4 to a special case of the approximation problem (VAP), we study
the following multi–objective location problem.

Consider a finite family P := {a1, . . . ,aq} of q existing facilities in the plane R2, given by

a1 := (a1
1,a

1
2)

T , . . . ,aq := (aq
1,a

q
2)

T ∈ R2.
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In many problems of location analysis, the decision maker is looking for new facilities such that
distances between the new facilities and existing facilities are minimal in the sense of multi-
objective optimization.

In view of the formulation studied by the authors in [50], the distances will be induced by the
l1-norm (also known as Manhattan-norm) in our illustrating example. The Manhattan-norm is
defined for any (x1,x2) ∈ R2 by

‖(x1,x2)‖1 := |x1|+ |x2|.

For a given vector–valued function G : R2→ Rq, the multi–objective location problem asso-
ciated to the points P⊂ R2 takes the form

min
x∈R2

G(x) =
(∥∥x−a1∥∥

1, . . . , ‖x−aq‖1

)T
. (MOLP)

Clearly, Problem (MOLP) is a special case of Problem (VAP) with S := R2 and for all i ∈
{1,2, . . . ,q}: ‖·‖i := ‖·‖1, βi := 1, Ai := I, where I is the identity matrix.

Remark 5.5. Consider the weighted-sum scalarization

min
x∈R2

q

∑
i=1

αi
∥∥x−ai∥∥

1, (5.5)

of Problem (MOLP). For similar reasons to that in Remark 5.3, continuity and coercivity of the
objective functions in (5.5) guarantee the existence of solution of the weighted-sum problem
in (5.5). Therefore, for arbitrary αi > 0, i ∈ {1,2, . . . ,q}, the corresponding multi–objective
location problem (MOLP) has efficient solutions with respect to Rq

+ (in the sense of Definition
3.1); see [17, 51].

For applications in town planning, it is important that we can choose different norms in the
formulation of (MOLP). The decision on the type of the norm that is used depends on the course
of the roads in the city or in the district.

The following preparation allows us to characterize the set χEff(G(R2);Rq
+) of efficient so-

lutions of the multi–objective location problem (MOLP). In the literature, several characteriza-
tions of the set efficient solutions of location problems have been obtained; see, e.g., [50, 52, 53].
We will adapt here the approach proposed by the authors in [53] which is based on the dual norm
to the Manhattan-norm, namely the maximum-norm defined for any (x1,x2) ∈ R2 by

‖(x1,x2)‖∞
:= max{|x1|, |x2|}.

The authors in [53] characterized the set of efficient solutions of multi–objective location
problems, where the distances are given by the Manhattan-norm, using the smallest sublevel
set of the dual norm to the Manhattan-norm (i.e., the maximum-norm) containing the points
ai ∈ R2, i = 1,2, . . . ,q, denoted by N .

In order to introduce a geometric primal-dual algorithm for solving Problem (MOLP), we
consider the following sets with respect to the existing facilities ai ∈ R2 (i = 1,2, . . . ,q), which
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are related to the structure of the subdifferential of the Manhattan-norm:

S1(a
i) := {(x1,x2) ∈ R2 | x1 < ai

1, x2 < ai
2},

S2(a
i) := {(x1,x2) ∈ R2 | x1 > ai

1, x2 > ai
2},

S3(a
i) := {(x1,x2) ∈ R2 | x1 > ai

1, x2 < ai
2},

S4(a
i) := {(x1,x2) ∈ R2 | x1 < ai

1, x2 > ai
2}.

Moreover, for p ∈ {1,2,3,4}, we consider the set

Sp := {x ∈N | ∃ i ∈ {1,2, . . . ,q} : x ∈ Sp(a
i)}= N ∩

(
∪q

i=1 Sp(a
i)
)
.

The following result from [50] is a counterpart of the characterization of solutions x ∈ R2

with G(x) ∈ Eff(G(R2);Rq
+) (see Remark 3.1) proposed by the authors in [53], where multi–

objective location problems defined by the maximum-norm are considered.

Proposition 5.1. (See, e.g., [50, 53]) The set of solutions x ∈ R2 with G(x) ∈ Eff(G(R2);Rq
+)

of the multi–objective location Problem (MOLP) admits the following representation:

χEff(G(R2);Rq
+) :=

[(
clS1 ∩ clS2

)
∪
(
(N \S1)∩ (N \S2)

)]
(5.6)

∩
[(

clS3 ∩ clS4

)
∪
(
(N \S3)∩ (N \S4)

)]
.

Remark 5.6. It is important to mention that the set χEff(G(R2);Rq
+) in (5.6) is in general not

convex and always contained in the smallest sublevel set of the dual norm to the Manhattan-
norm containing the existing facilities, i.e., χEff(G(R2);Rq

+)⊂N .

The representation in (5.6) allows us to generate the whole set of efficient solutions of the
multi–objective location Problem (MOLP).

5.3.2. Optimization over the set of efficient solutions. Given the set of solutions to the multi–
objective location problem (MOLP) in (5.6), in order to find a solution of Problem (MOLP) that
corresponds to the preferences of the decision maker, we consider a scalar surrogate problem of
the form

min
x∈∪n

j=1R j
F(G(x)), (SSP)

where G(x) :=
(∥∥x−a1

∥∥
1, . . . ,‖x−aq‖1

)T
, F : Rq → R ∪ {+∞} ∪ {−∞} is the nonlinear

scalarization functional of the form (NLSF), ∪n
j=1R j = χEff(G(R2);Rq

+), and for each j =
1,2, . . . ,n, R j is the convex subset of the solution set χEff(G(R2);Rq

+).
Under certain assumptions concerning the parameters in the scalarizing functional (NLSF)

that are to be chosen by the decision maker corresponding to his preferences, we adapt here the
preamble presented in [14] as follows:

In order to get a simple and useful description of the functional (NLSF), we consider a set B
given by a system of linear inequalities.

B :=
{

y ∈ Rq | 〈bi, y〉 ≤ αi, bi ∈ Rq, αi ∈ R, i ∈ {1, . . . ,m}
}
. (5.7)

With the vectors bi in the definition of the set B in (5.7), a set A is defined by

A :=
{

y ∈ Rq | 〈bi,y〉 ≤ αi, i ∈ I
}
, (5.8)
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where I is the index set:

I :=
{

i ∈ {1, . . . ,m} | {y ∈ Rq | 〈bi, y〉= αi}∩B∩ intRq
+ 6= /0

}
.

This means that the set I is exactly the set of indices i ∈ {1, . . . ,m} for that the hyperplanes
〈bi,y〉= αi are active in the non–negative orthant.

Consider B and the corresponding set A given in (5.8), vectors w ∈ Rq and r ∈ −0+A\{0},
where 0+A denotes the recession cone of A defined by:

0+A :=
{

r ∈ Rq | ∀y ∈ A, λ > 0 : y+λ r ∈ A
}
.

In the following, we study a special case of the nonlinear scalarization functional F (see
(NLSF)) with D := w+A, i.e., we consider the functional Fr,w of type (NLSF) given by:

Fr,w(y) := inf{t ∈ R | y ∈ tr+w+A} , y ∈ Rq. (5.9)

Clearly, the functional in (5.9) depends on the set A and the parameters r and w.
In what follows, we make use of the following proposition, whose general form can be seen

in [14], to solve Problem (SSP) with q = 8.

Proposition 5.2. Let the set B be given by (5.7) where {b1, . . . ,b8} is the canonical base in
R8 (the set of vectors whose components are all zero, except the i-th component that equals 1)
and w ∈ R8 arbitrarily chosen. Consider the function Fr,w in (5.9) with the set A in (5.8) taken
as A := R8

− =
{

y ∈ R8 | 〈bi,y〉 ≤ 0, i ∈ {1, . . . ,8}
}

, r ∈ R8
+ \ {0}. Assume that 〈bi,r〉 6= 0

for all i ∈ {1, . . . ,8}. Then, the nonlinear functional in (5.9) is convex and R8
+–monotone.

Furthermore, Fr,w has the structure:

Fr,w(G(x)) = max
i∈{1,...,8}

〈bi,G(x)〉−〈bi,w〉
〈bi,r〉

. (5.10)

By considering Problem (SSP) for q = 8, we generate a solution in χEff(G(R2);R8
+) that

corresponds to the preferences of the decision maker by choosing suitable parameters r and w
in (5.10) in the next subsection.

5.3.3. Application to a multi–objective location problem. In the following example, we com-
pute the whole set of solutions of Problem (MOLP) for q = 8 and generate a candidate solution
that corresponds to the preferences of the decision maker.

Example 5.2. Consider a vector–valued function G : R2→ R8 defined by

G(x) =
(∥∥x−a1∥∥

1, . . . ,
∥∥x−a8∥∥

1

)T
,

where the existing facilities are located at the points
a1 = (0.5,4.5); a2 = (4,3.5); a3 = (3.5,1.5); a4 = (1.5,3); a5 = (2.5,2); a6 = (6,1.5); a7 =
(3.5,5); and a8 = (5.5,2.5). We want to find new facilities (efficient solutions) x ∈ R2 with
G(x) ∈ Eff(G(R2);R8

+) (see Remark 3.1) such that the distances between the new facilities and
the existing facilities are minimal in the sense of the multi–objective location problem (MOLP):

min
x∈R2

(∥∥x−a1∥∥
1, . . . ,

∥∥x−a8∥∥
1

)T
. (MOLPq=8)
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We obtain the set of solutions x ∈ R2 with G(x) ∈ Eff(G(R2);R8
+) of the location Problem

(MOLPq=8) via the characterization in (5.6) using the MATLAB–based software Facility loca-
tion optimizer (FLO) [54] as follows:

χEff(G(R2);R8
+) = conv{(0.5,4.5), (1.5,4.5)}

∪conv{(1.5,3), (1.5,4.5), (2.5,3), (2.5,4.5)}
∪conv{(2.5,2), (2.5,4.5), (3.5,2), (3.5,4.5)}
∪conv{(3.5,1.5), (3.5,3.5), (4,1.5), (4,3.5)}
∪conv{(3.5,4.5), (3.5,5)}
∪conv{(4,1.5), (4,2.5), (5.5,1.5), (5.5,2.5)}
∪conv{(5.5,1.5), (6,1.5)}.

Figure 1 displays the graphical representation of the solution set χEff(G(R2);R8
+). Due to the

FIGURE 1. The graphical representation of the solution set χEff(G(R2);R8
+) of

Problem (MOLPq=8) using the software Facility Location Optimizer [54].

large size and nonconvexity of the set of efficient solutions in Example 5.2 (see Fig. 1) and the
fact that its elements cannot be easily compared, we apply our results concerning the existence
of solutions and optimization over the set of efficient solutions using Proposition 5.2 to generate
a single solution from χEff(G(R2);R8

+) corresponding to the preferences of the decision maker.
In order to easily analyze the set χEff(G(R2);R8

+), we employ an approach of segmenting it into
convex regions. The method of segmentation allows us to use the scalarization functional in
(NLSF) with a special parameter constellation to generate an element of χEff(G(R2);R8

+) that
closely corresponds to the preferences of the decision maker.

The following Figures 2, 3, and 4 display the segmentation of the solution set χEff(G(R2);R8
+)

as convex regions.
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FIGURE 2. Yellow marked region R1 := [1.5,3]× [3.5,4.5] generated by the
software image segmenter in MATLAB.

FIGURE 3. Yellow marked region R2 := [2.5,2]× [4,3.5] generated by the soft-
ware image segmenter in MATLAB.

Now, by solving Problem (SSP) for q = 8 and n = 3 with the existing facilities considered in
Example 5.2, we generate a solution in χEff(G(R2);Rq

+) that corresponds to the preferences of
the decision maker. We suppose that the decision maker is not interested in solutions belonging
to line segments of χEff(G(R2);R8

+) such that we do not consider these elements in the further
procedure.

We consider the scalarizing functional in (5.10), Problem (SSP) for q = 8 and n = 3, the re-
gions R1, R2, R3 (see Fig. 2, 3, and 4), the canonical base {b1, . . . ,b8} in R8 (the set of vectors
whose components are all zero, except the i-th component that equals 1), r =(1,1,1,1,1,1,1,1)T
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FIGURE 4. Yellow marked region R3 := [3.5,1.5]× [5.5,2.5] generated by the
software image segmenter in MATLAB.

∈ R8
+, and w = 0R8 . For these parameters, we minimize the functional Fr,w in (5.10) over R1:

min
x∈R1

Fr,w(G(x)) = min
x∈[1.5,3]×[3.5,4.5]

{
max

i∈{1,...,8}
〈bi,G(x)〉

}
= Fr,w(G(1.5967,4.5))

= 1.0967.

Similarly, suppose that the vectors bi, r, and w are taken as in the case above, we minimize
the functional Fr,w in (5.10) over R2:

min
x∈R2

Fr,w(G(x)) = min
x∈[2.5,2]×[4,3.5]

{
max

i∈{1,...,8}
〈bi,G(x)〉

}
= Fr,w(G(2.0950,4))

= 1.5950.

Finally, using the vectors bi, r, and w as above, we minimize the functional Fr,w in (5.10) over
R3:

min
x∈R3

Fr,w(G(x)) = min
x∈[3.5,1.5]×[5.5,2.5]

{
max

i∈{1,...,8}
〈bi,G(x)〉

}
= Fr,w(G(1.5975,4.5))

= 1.0975.

For bi, r, and w as above, comparing these objective function values, we obtain that (x1
1,x

1
2) =

(1.5967,4.5) is a minimal solution of

min
x∈∪3

j=1R j

Fr,w(G(x)), (SSPn=3)

with the objective function value

min
x∈∪3

j=1R j

Fr,w(G(x)) = Fr,w(G(1.5967,4.5))

= 1.0967.
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As the result, the decision maker is choosing the location (x1,x2) = (1.5967,4.5) in the set
χEff(G(R2);R8

+) of solutions to (MOLPq=8) because it corresponds to his preferences. More
precisely, in Figure 5 the red marked location (x0

1,x
0
2) = (1.5967,4.5) ∈ χEff(G(R2;R8

+)) corre-
sponds to the preferences of the decision maker.

FIGURE 5. The red marked location (x0
1,x

0
2) = (1.5967,4.5) ∈ χEff(G(R2;R8

+))
corresponds to the preferences of the decision maker described by the choice of
the parameters r, b, and w in the definition of the scalarizing functional (5.10).
The whole set χEff(G(R2;R8

+)) is generated using the software Facility Location
Optimizer (FLO) [54].

6. CONCLUSIONS

It is evident that in the theory of vector optimization problem certain assumptions, such as
continuity of the objective functions and compactness of the feasible set easily guarantee the
existence of solutions for such problems. However, due to the fact that compact sets are very
limited in general, in this regard, under some moderate weaker assumptions, we presented ex-
istence results for vector optimization problems in reflexive preimage spaces as well as for the
associated scalarized problems in this paper. Furthermore, we applied our results to vector–
valued approximation problems. Especially, we employed our method to multi–objective lo-
cation problems. For these problems, we generated the whole set of efficient elements and
computed a single solution belonging to the set of efficient elements corresponding to the pref-
erences of the decision maker using the nonlinear Gerstewitz functional (see Fig. 5).
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It is our goal in further research to derive optimality conditions for the vector–valued approx-
imation problems and apply our existence results and these optimality conditions in regulariza-
tion techniques for deterministic and stochastic inverse problems.
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