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Abstract. Most optimization problems involve uncertain data due to measurement errors, unknown
future developments, and modeling approximations. In this paper, we consider scalar optimization prob-
lems under uncertainty with infinite scenario sets. We apply methods from vector optimization in general
spaces, set-valued optimization, and scalarization techniques to derive necessary optimality conditions
for solutions of robust optimization problems.
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1. INTRODUCTION AND PREVIOUS WORK

Most optimization problems involve uncertain data due to measurement errors, unknown
future developments and modeling approximations. For companies, these uncertainties could
be future demands that have to be predicted in order to adapt the production process. In risk
theory, assets are naturally affected by uncertainty due to market changes, changing prefer-
ences of customers and unforeseeable events. Consequently, it is highly important to introduce
uncertain parameters in optimization problems.

In the literature, one can find two main approaches regarding optimization problems under
uncertainty:

• Stochastic Optimization: This idea goes back to Dantzig (1955). Stochastic optimiza-
tion assumes that the uncertain parameter is probabilistic. Usually, one optimizes some
cost function using the expected value of the uncertain parameter (cf. Birge and Lou-
veaux [1]).
• Robust Optimization: Robustness, pursues a distinctively different approach to opti-

mization problems with uncertainties not relying on a probability distribution but only
using the uncertainty set. Typically, one wishes to optimize the worst-case scenario
(strict robustness: Ben-Tal, Ghaoui and Nemirovski [2]).
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Soyster introduced robust optimization problems in [3]. This approach to optimization under
uncertainty is intensively studied in the literature, see Ben-Tal, Ghaoui and Nemirovski [2],
Goerigk and Schöbel [4], Kouvelis and Yu [5] and the references therein.

In stochastic optimization, the expected performance of a solution is usually involved in the
objective functions or the preferences are described by stochastic dominance. For a general
introduction to stochastic programming, see Birge and Louveaux [1].

In Klamroth, Köbis, Schöbel and Tammer [6, 7], it is shown that different approaches to
optimization under uncertainty (for both stochastic and robust optimization) can be put in a uni-
fying context using vector optimization, set optimization and nonlinear scalarizing functionals,
assuming that the uncertainty set consists of finitely / infinitely many elements.

Our goal is to employ these unifying concepts for deriving necessary optimality conditions
for solutions of robust counterpart problems. For doing this, we express robust and stochastic
optimization problems by using vector optimization problems in general spaces, set-valued op-
timization and nonlinear scalarizing functionals. These results will be used to derive necessary
optimality conditions for different kind of robust solutions.

There exist several papers investigating optimality conditions for robust solutions of uncertain
optimization problems (see [8], and the recent publications [9, 10]). For example, in [11], the
authors explore a robust nonsmooth multiobjective optimization problem involving data uncer-
tainty, presenting two types of generalized convex functions and establishing robust optimality
conditions for weakly and properly robust efficient solutions, along with formulating dual prob-
lems and deriving robust duality results. However, to the best of our knowledge, none uses
the expression of robust problems using the nonlinear scarlarizing functional while deploying a
generic approach to subdifferentials.

Our paper is organized as follows: In Section 2, we introduce the scalar optimization prob-
lems under uncertainty that we consider in our paper. Three unifying approaches to optimization
under uncertainty (vector optimization, set optimization and a nonlinear scalarizing functional)
are recalled in Section 3. Section 4 is devoted to a unified characterization of the concepts
of strict robustness, regret robustness, ε-constraint robustness and proper robustness through
the unifying approaches (vector optimization, set optimization and nonlinear scalarization) in-
cluding a discussion of the corresponding assumptions. In Section 5, we introduce a generic
approach to subdifferentials in order to derive necessary optimality condition for solutions of
robust counterpart problems using the unifying approaches studied before. Finally, we give
some conclusions for further research in Section 6.

2. SCALAR OPTIMIZATION UNDER UNCERTAINTY

We consider a scalar optimization problem (Q(ξ )) which depends on uncertain parameters
ξ that belong to a given uncertainty set U :

f (x,ξ )→ inf

s.t. hi(x,ξ )≤ 0, i = 1, . . . ,m,

x ∈ Rn,

(Q(ξ ))

where f : Rn×U → R, hi : Rn×U → R, i = 1, . . . ,m.
The set of feasible solutions of Q(ξ ) is given by

X (ξ ) = {x ∈ Rn | hi(x,ξ )≤ 0, i = 1, . . . ,m}.
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We assume that U 6= /0 is a not necessarily finite set, X (ξ ) 6= /0 for all ξ ∈U .
An uncertain optimization problem P(U ) is defined as a family of parametrized optimization

problems
(Q(ξ ),ξ ∈U ). (2.1)

There are a lot of papers and books dealing with optimization under uncertainty; see, for
example, Birge and Louveaux [1], Ben-Tal and Nemirovski [12, 13], Ben-Tal, Ghaoui and
Nemirovski [2], Rockafellar and Royset [14, 15, 16, 17], Klamroth, Köbis, Schöbel and Tammer
[6, 7] and the references therein.

3. THREE UNIFYING APPROACHES TO OPTIMIZATION UNDER UNCERTAINTY

The unifying approaches to optimization under uncertainty presented in this section are de-
rived by Klamroth, Köbis, Schöbel and Tammer in [6, 7]. For a discussion of the assumptions
concerning the involved spaces and sets; see [18, Chapter 6].

3.1. Vector optimization as unifying approach. A unified approach for a finite uncertainty
set is derived in [6], where the set of uncertain parameters is given by U = {ξ1, . . . ,ξN}. Then,
each scenario can be interpreted as an objective function. For some point x, we then obtain a
vector Fx ∈ R|U | which contains f (x,ξi) in its ith coordinate. In [6], it is shown that robust
solutions can be characterized in terms of multiobjective optimization for many robustness
concepts.

Klamroth, Köbis, Schöbel and Tammer [7] considered the case where U is a not necessarily
finite set. Then, one obtains not vectors Fx but functions, i.e., Fx : U → R where Fx(ξ ) :=
f (x,ξ ) contains the objective value of x in scenario ξ .

In order to compare two points x and y, we are looking for certain order relations in the real
linear functional space Y := RU of all functions F : U → R.

Let (Q(ξ ),ξ ∈ U ) be the given optimization problem under uncertainty. For some fixed
x ∈ Rn, we define outcome functions by

Fx ∈ Y : Fx(ξ ) := f (x,ξ ).

To compare elements of Y , we consider different orderings on the space Y denoted by α . Let
C be a proper pointed closed convex cone. Such a cone C induces the partial ordering α :=≤C

y1 ∈ y2−C ⇐⇒ y1 ≤C y2.

Example 3.1. The natural order relation αN on Y is induced by the cone

CY := {F ∈ Y | ∀ξ ∈U : F(ξ )≥ 0} :

∀ F,G ∈ Y : F αN G :⇐⇒ G ∈ F +CY ⇐⇒ F(ξ )≤CY G(ξ ) for all ξ ∈U .

We use the following notion of minimality in Y well known in vector optimization.

Definition 3.1. Let F be a nonempty subset of Y . An element F ∈F is a minimal element of
F in Y w.r.t. α if

for G ∈F : G α F =⇒ F α G.
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If α is induced by a proper cone C in Y with intC 6= /0, an element F ∈F is a weakly minimal
element of F in Y w.r.t. α if

(F− intC)∩F = /0.

If α is induced by a cone, then an element F ∈F is a minimal element of F in Y w.r.t. α

if and only if (F−C)∩F ⊆ F +C.

Remark 3.1. Rockafellar and Royset [14, 15, 16] introduced an unifying framework for han-
dling uncertainty in a decision making process. They considered f (x, ·) as random variable
and by means of risk measures, different models would be possible that address the issue how
to treat that random variable. Since random variables are also functions, the connection to the
vector approach is evident.

3.2. Set-based optimization as unifying approach. We are interested in all possible objective
values which can appear if a feasible element x ∈ Rn is chosen. These outcome sets are given
by

Bx := f (x,U ) := { f (x,ξ ) | ξ ∈U }.
In order to compare two feasible elements x and y in this setting we have to define order

relations between their corresponding outcome sets Bx and By.
Consider Z := Pot(R). For a given x ∈ Rn we have

Bx ∈ Z : Bx = img(Fx)

(the image of the mapping Fx under U ). Bx⊆R is an interval in case that f (x, ·) is a continuous
function.

In order to compare elements of Z we consider certain set relations denoted by β .

Example 3.2. (Lower-type set-relation (Kuroiwa [19, 20]) Let A,B ∈ Z be arbitrarily chosen
nonempty closed sets. Then the l-type set-relation β :=� is defined by

A β B :⇐⇒ B⊆ A+R+⇐⇒∀b ∈ B ∃a ∈ A : a≤ b

which is equivalent to infA ≤ infB. Note that β is induced by the cone R+ in Z. In order to
show B⊆ A+R+⇐⇒∀b ∈ B ∃a ∈ A : a≤ b⇐⇒ infA≤ infB, we need the closedness of the
involved sets A and B (see [18, Chapter 6]).

Let B be a nonempty subset of Z. Now, we are using the minimality notion well known in set
optimization; see Jahn [21] and Khan, Tammer and Zălinescu [22] and the references therein.

Definition 3.2. A ∈B is a minimal element in B w.r.t. β if

for B ∈B : B β A =⇒ A β B.

Remark 3.2. Given an ordering β and a set B, set-valued optimization asks for minimal
elements of B in Z w.r.t. β . Some concepts for uncertain optimization can be interpreted as
solving such a set-valued problem. Furthermore, every set order relation β induces a concept
for handeling uncertainty.

Remark 3.3. For the special case that the uncertainty set is given by U = {ξ1, . . . ,ξq} (q ∈N),
we obtain the outcome sets

Bx = { f (x,ξ ) | ξ ∈U }= { f (x,ξ1), . . . , f (x,ξq)} ⊂ R.
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3.3. A nonlinear scalarizing functional as unifying approach. Let Y be a linear topological
space, k ∈ Y \{0} and let F ,B be proper subsets of Y , B closed. We assume that

B+[0,+∞) · k ⊆ B. (3.1)

We consider the functional zB,k : Y → R∪{+∞}∪{−∞}=: R̄ defined by

zB,k(y) := inf{t ∈ R | y ∈ tk−B}. (3.2)

This functional was introduced as nonlinear separating functional with the corresponding prop-
erties and applications in vector optimization by Gerstewitz [23], see Göpfert, Riahi, Tammer,
Zălinescu [24, Theorem 2.3.1], Khan, Tammer, Zălinescu [22, Chapter 5] for an overview on
important properties of the functional (3.2). Pascoletti and Serafini [25] introduced an opti-
mization problem, where the functional (3.2) is involved. Krasnosel’skiı̆ [26], Rubinov [27]
studied a functional of type (3.2) in the context of operator theory. In economics, the Shortage
Function associated to the production possibility set Y ⊂ Rm and g ∈ Rm

+ \{0}:
σ(g;y) := inf{ξ ∈ R | y−ξ g ∈ Y },

and the Benefit Function are discussed by Luenberger in [28]. Clearly, these functions are of
type (3.2). Furthermore, in Mathematical Finance, Coherent Risk Measures associated to the
set of random variables corresponding to acceptable investments are functions of type (3.2), see
Artzner et al. [29]. Topical Functionals studied by Rubinov and Singer in [30] are related to
the function (3.2).

In the approach based on nonlinear scalarization, we will use the following notion of mini-
mality.

Definition 3.3. An element F ∈F is a minimal element of F in Y w.r.t. (3.2) if F solves the
problem

zB,k(y)→ inf
y∈F

. (Pk,B,F )

4. UNIFIED CHARACTERIZATION OF UNCERTAIN OPTIMIZATION CONCEPTS

The unified characterizations of uncertain optimization concepts discussed in this section
were developed by Klamroth, Köbis, Schöbel and Tammer in [6, 7]; compare also [18, Chapter
6] for a discussion of the assumptions concerning the involved spaces and sets.

4.1. Strict robustness. The concept of strict robustness is introduced and studied by Soyster
[3], Ben-Tal, Nemirovski [13], Ben-Tal, El Ghaoui, Nemirovski [2].

The idea of the concept of strict robustness is that the worst possible objective function value
is minimized in order to get a solution that is ”good enough” even in the worst case scenario.
The strictly robust counterpart of (Q(ξ ),ξ ∈U ) is given by

ρRC(x) = sup
ξ∈U

f (x,ξ )→ inf

s.t.∀ξ ∈U : hi(x,ξ )≤ 0, i = 1, . . . ,m,

x ∈ Rn.

(RC)

We call a feasible solution of (RC) strictly robust. The set of strictly robust solutions is

A1 := {x ∈ Rn | ∀ξ ∈U : hi(x,ξ )≤ 0, i = 1, . . . ,m}. (4.1)
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Vector optimization
The strictly robust counterpart problem (RC) can be formulated as a vector optimization

problem in the infinite dimensional space Y =RU (see [7, Section 3.1] and [18, Section 6.3.1]).
The set of strictly robust outcome functions in Y is given by

F1 := {Fx ∈ Y | x ∈ A1}. (4.2)

Let two functions Fx, Fy ∈ Y be given. Consider the following sup-order order relation on
Y :

Fx α1 Fy :⇐⇒ sup
ξ∈U

Fx(ξ )≤ sup
ξ∈U

Fy(ξ ).

The following lemma (see [7, Lemma 2]) gives a relationship between the solution concept
based on the sup-order relation α1 and the concept based on the natural ordering αN (see Ex-
ample 3.1).

Lemma 4.1. Consider Y =C(U ,R). Suppose that every F ∈F1 attains its supremum on U .
If F ∈F1 is a minimal element of F1 w.r.t. α1, then F is a weakly minimal element of F1 w.r.t.
the natural order relation αN of Y induced by the ordering cone CY .

The assertion in the following theorem was shown in [7, Theorem 1].

Theorem 4.1. A strictly robust solution x ∈ A1 is an optimal solution of (RC) if and only if
the corresponding strictly robust outcome function Fx ∈F1 is a minimal element of F1 w.r.t.
the sup-order relation α1.

Remark. In the light of Lemma 4.1, for each optimal solution x of the strictly robust coun-
terpart problem (RC), Fx is a weakly minimal element of F1 w.r.t. the natural ordering αN in
Y .

Employing Lemma 4.1 together with Theorem 4.1, we get that Fx (with x is an optimal
solution to the strictly robust counterpart (RC)) is a weakly minimal element of F1 w.r.t. αN as
shown in ([7, Corollary 1]).

Corollary 4.1. Consider Y =C(U ,R) and suppose that every F ∈F1 attains its supremum on
U for every solution x∈A1. Then, for every optimal solution x to the strictly robust counterpart
(RC), Fx is a weakly minimal element of F1 w.r.t. the natural order relation αN in Y .

Set-valued Optimization
Analogously, we interpret the strictly robust counterpart problem (RC) as a set-valued opti-

mization problem. The set of strictly robust outcome sets in the power set Z is

B1 := {Bx ∈ Z | x ∈ A1}.

For outcome sets Bx, By ∈ Z, let the upper-type set-relation β1 be defined as

Bx β1 By :⇐⇒ Bx ⊆ By−R+.

We have
Bx β1 By⇐⇒ supBx ≤ supBy
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for closed outcome sets Bx, By ∈ Z. This equivalence is mentioned in [7, (3.13)], however,
one needs the closedness of the outcome sets Bx, By ∈ Z in order to show Bx ⊆ By−R+⇐⇒
supBx ≤ supBy (see [18, Chapter 6]).

For the proof of the characterization of optimal solutions to the strictly robust counterpart
problem (RC) in the next theorem (see [7, Theorem 2]), the closedness assumption concerning
the outcome sets Bx for all x ∈ A1 is again essential (see [18, Chapter 6]).

Theorem 4.2. Suppose that the outcome sets Bx are closed for all x ∈ A1. A strictly robust
solution x ∈ A1 is an optimal solution of (RC) if and only if the corresponding strictly robust
outcome set Bx ∈B1 is a minimal element of B1 with respect to the order relation β1.

Nonlinear Scalarization
Now, we give an interpretation of the strictly robust counterpart problem (RC) using the

nonlinear scalarizing functional (3.2)

zB,k(y) = inf{t ∈ R | y ∈ tk−B},
where k ∈ Y \{0}, B⊂ Y proper and closed, B+[0,+∞) · k ⊆ B.

The relationship between optimal solutions of the strictly robust counterpart problem (RC)
and solutions of a scalar optimization problem involving the functional (3.2) in the next theorem
is shown in [7, Theorem 2], however, one needs the assumptions that Y is a linear topological
space and CY is closed (see [18, Chapter 6]).

Theorem 4.3. Consider a linear topological space Y of functions F : U → R, B1 := CY ,
k1 :≡ 1 ∈ Y and F1 := {Fx ∈ Y | x ∈ A1}. Suppose that CY is closed. Then,

x ∈ Rn solves (RC) ⇐⇒ Fx is a solution of (Pk1,B1,F1).

4.2. Regret robustness. The regret robust counterpart of the optimization problem under un-
certainty (Q(ξ ),ξ ∈U ) is given by

ρrRC(x) = sup
ξ∈U

( f (x,ξ )− f ∗(ξ ))→ inf

s.t. ∀ξ ∈U : hi(x,ξ )≤ 0, i = 1, . . . ,m,

x ∈ Rn,

(rRC)

where f ∗(ξ ) is defined below. It is important to mention that we require x ∈ A1, i.e., we only
permit strictly robust solutions as admissible solutions for the regret robust counterpart. So,
F2 := {Fx ∈ Y | x ∈ A1}.

Now, we consider a function f ∗ ∈ Y , f ∗ : U → R defined by

f ∗(ξ ) := inf{Fx(ξ ) | x ∈ A1}. (4.3)
We supposed that for every fixed scenario ξ an optimal solution in (4.3) exists. Then, the inf in
(4.3) can be replaced by min.

The dominating set B⊂Y is now shifted by the ideal solution f ∗ ∈Y of problem (Q(ξ )). Let
B2 :=CY − f ∗, and k2 :≡ 1 ∈ Y .

Now, we consider the scalar optimization problem

zB2,k2(y)→ inf
y∈F2

. (Pk2,B2,F2)
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In the next theorem, we show that x ∈ Rn is an optimal solution to (rRC) if and only if Fx
solves problem (Pk2,B2,F2) (see [7, Theorem 10]). In order to prove this result, we have to
suppose that CY is closed, see [18, Chapter 6].

Theorem 4.4. Consider a linear topological space Y of functions F : U → R, B2 = CY − f ∗

and k2 :≡ 1 ∈ Y and F2 = {Fx ∈ Y | x ∈ A1}. Suppose that CY is closed.
Then,

x ∈ Rn solves (rRC) ⇐⇒ Fx is a solution of (Pk2,B2,F2).

4.3. ε-constraint robustness. The concept of ε-constraint robustness can be described based
on the nonlinear scalarization approach and it is introduced in [7, Section 4.3].

Let Y be a linear topological space of functions F : U → R. Consider ε : U → R.
We fix ξ ∈ U . The ε-constraint robust counterpart problem of the optimization problem

under uncertainty (Q(ξ ),ξ ∈U ) is given by

inf f (x,ξ )− ε(ξ )

s.t. ∀ ξ ∈U : hi(x,ξ )≤ 0, i = 1, . . . ,m,

x ∈ Rn,

∀ ξ ∈U \{ξ} : f (x,ξ )≤ ε(ξ ).

(εRC)

Let

F3 := {Fx ∈ Y | x ∈ A1},

with A1 ⊆ Rn, Fx(ξ ) = f (x,ξ ). Furthermore, let k3 : U → R,

k3 :=
{

1 for ξ = ξ ,
0 otherwise.

(4.4)

Again, we use

CY = {F ∈ Y | ∀ξ ∈U : F(ξ )≥ 0}.

Moreover, let

B3 := {y ∈ Y | y ∈CY − ε}. (4.5)

Now, we consider the scalar optimization problem

zB3,k3(y)→ inf
y∈F3

. (Pk3,B3,F3)

The next Theorem is shown in [7, Theorem 23]. In order to prove this result, we have to suppose
the closedness of CY (see [18, Chapter 6]).

Theorem 4.5. Consider a linear topological space Y of functions F : U →R. Let ε : U →R,
B3 given by (4.5), k3 given by (4.4) and F3 = {Fx ∈ Y | x ∈ A1}. Suppose that CY is closed.
Then,

x ∈ Rn solves (εRC) ⇐⇒ Fx is a solution of (Pk3,B3,F3).
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4.4. Proper robustness. The properly robust counterpart of the optimization problem under
uncertainty (Q(ξ ),ξ ∈U ) is defined by the problem of finding properly minimal elements of
F1 (given by (4.2)) w.r.t. a nontrivial (C 6= {0} and C 6= Y ) convex cone C ⊂ Y :

PMin(F1,C) := {Fx ∈F1 | ∃ dilating cone D such that (Fx− intD)∩F1 = /0}.

A convex cone D⊂ Y (D 6= Y ) is called dilating cone of C if C \{0} ⊂ intD.
The concept of properly robust counterparts is introduced in [7, Section 4.1] and related to the

vector approach, see Section 3.1. The advantage of this concept is that one obtains in general
a smaller set of robust solutions in comparison with the concept based on the natural order
relation αN (see Example 3.1).

We consider two given functions F,G ∈ Y and the following order relation α2, where a dilat-
ing cone D is employed:

F α2 G :⇐⇒ ∃ a dilating cone D⊂ Y and G ∈ F +D. (4.6)

Using the order relation α2 in (4.6), a properly robust solution x is defined as follows:
x ∈ A1 is properly robust :⇐⇒ Fx is a minimal element of F1 w.r.t α2.

The properly robust counterpart of the optimization problem under uncertainty (Q(ξ ),ξ ∈
U ) is given by the problem of searching properly minimal elements of F1 w.r.t. C:

Compute PMin(F1,C). (pRC)

An element Fx ∈ PMin(F1,C) is called properly minimal element of F1 w.r.t. C.

5. OPTIMALITY CONDITIONS FOR SOLUTIONS OF ROBUST COUNTERPART PROBLEMS

The aim of this section is to derive necessary optimality condition for optimal solutions of
robust counterpart problems using the unifying approaches to optimization problems under un-
certainty described in Sections 3 and 4. Especially, by employing the approach via nonlinear
scalarization (see Section 3.3), it is possible to show useful necessary optimality conditions.
The main tool for deriving the necessary optimality conditions is a generic approach to subdif-
ferentials such that our results hold for many classes of generalized subdifferentials.

5.1. Generic approach to subdifferentials. In this section, we derive necessary optimality
conditions for solutions of robust counterpart problems employing a generic approach to subd-
ifferentials (see e.g. Dolecki and Malivert [31], Durea and Tammer [32], Durea, Strugariu and
Tammer [33]).

Throughout this section, let Y be a Banach space.
We now introduce an abstract subdifferential ∂ : A map which associates to every lower

semicontinuous (lsc) function ϕ : Y → R∪{+∞} and to every y ∈ Y a (possible empty) subset
∂ϕ(y)⊂ Y ∗. We use the notation Domϕ := {y ∈ Y | ϕ(y) 6=+∞}.
(H1) If ϕ is convex and lower semicontinuous, then ∂ϕ(y) coincides with the Fenchel subdif-
ferential.
(H2) If ϕ : Y → R∪{+∞} is locally Lipschitz, Ω⊂ Y is a nonempty and closed set and y is a
minimum point for ϕ over Ω, then

0 ∈ ∂ϕ(y)+∂ IΩ(y).
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For a closed set Ω⊂ Y , the set ∂ IΩ(y) is denoted by N∂ (y;Ω) and is called the set of normal
directions to Ω at y ∈Ω with respect to ∂ .

Under suitable assumptions concerning the involved spaces and functions (see, e.g., [32, 33]
and the references therein), these axioms are fulfilled for well-known subdifferentials by Clarke,
Ioffe, Kruger, Mordukhovich and several other important subdifferentials.

In some applications, for deriving necessary optimality conditions for solutions of the ε-
constraint robust counterpart problem in Section 5.4, we replace axiom (H2) in the axiomatic
approach to a subdifferential by the following axiom:
(H3) If ϕ : Y →R∪{+∞} is convex and lower semicontinuous, Ω⊂Y is a closed set and y is
a minimum point for ϕ over Ω, then

0 ∈ ∂ϕ(y)+∂ IΩ(y).

We formulate the necessary optimality conditions for solutions of robust counterpart prob-
lems in terms of subgradients of the nonlinear scalarizing functional zB,k given by (3.2). For
these assertions, the structure of the subdifferential ∂ zB,k in the following theorem and corol-
lary (derived by Durea and Tammer in [32]) are very helpful.

Theorem 5.1. Let B ⊂ Y be a closed convex proper set and k ∈ Y \ {0} s.t. (3.1) holds.
Consider the functional zB,k in (3.2) and let y ∈ Domϕ . Then

∂ zB,k(y) = {y∗ ∈ Y ∗ | y∗(k) = 1,∀b ∈ B : y∗(b)+ y∗(y)− zB,k(y)≥ 0}.

We denote the dual cone (to a cone C in the Banach space space Y ) by

C+ := {y∗ ∈ Y ∗ | ∀y ∈C : y∗(y)≥ 0}.

Corollary 5.1. Let C ⊂ Y be a closed convex cone with nonempty interior. Then, for every
k ∈ intC the functional zB,k in (3.2) is continuous, sublinear, strictly-intC-monotone and for
every y ∈ Y , ∂ zB,k(y) is nonempty and

∂ zB,k(y) = {y∗ ∈C+ | y∗(k) = 1, y∗(y) = zB,k(y)}.
In particular,

∂ zB,k(0) = {y∗ ∈C+ | y∗(k) = 1}. (5.1)

5.2. Necessary conditions for solutions of the strictly robust counterpart problem. In this
section, we derive necessary conditions for solutions of the strictly robust counterpart problem
(RC) using the unifying approach based on nonlinear scalarization by functionals (3.2) (see
Theorem 4.3) as well as the approach based on vector optimization (see Theorem 4.1). We
consider an abstract subdifferential ∂ such that (H1) and (H2) (see Section 5.1) are fulfilled.

Theorem 5.2. Let Y be a Banach space of functions F : U → R, B1 = CY , k1 ≡ 1 ∈ intCY
and F1 = {Fx ∈ Y | x ∈ A1}. Suppose that F1 and CY are closed sets. Consider an optimal
solution x to the strictly robust counterpart problem (RC) and the abstract subdifferential ∂

such that (H1) and (H2) are fulfilled. Then, there exists an element y∗ ∈C+
Y with y∗(k1) = 1

and y∗(Fx) = zB1,k1(Fx) such that

−y∗ ∈ N∂ (Fx;F1).
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Proof. Let x be an optimal solution to the strictly robust counterpart problem (RC). Taking into
account Theorem 4.3, the corresponding strictly robust outcome function Fx solves problem
(Pk1,B1,F1) with B1 =CY , k1 ≡ 1 and F1 = {Fx ∈ Y | x ∈ A1}:

zB1,k1(y)→ inf
y∈F1

, (Pk1,B1,F1)

where the functional zB1,k1 : Y → R̄ with

zB1,k1(y) := inf{t ∈ R | y ∈ tk1−B1}

(compare that (3.2)) is involved. In this setting, condition (3.1) is satisfied. From [24, Corol-
lary 2.3.5], we obtain that zB1,k1(·) is finite-valued, sublinear and continuous, and so Lipschitz
continuous. Taking into account (H1) and (H2), we obtain

0 ∈ ∂ zB1,k1(·)(Fx)+N∂ (Fx;F1) (5.2)

since the constraint set F1 is assumed to be closed. Because of the structure of the subdifferen-
tial of zB1,k1 given by Corollary 5.1, we obtain

∂ zB1,k1(Fx) = {y∗ ∈C+
Y | y

∗(k1) = 1, y∗(Fx) = zB1,k1(Fx)}.

Together with the inclusion (5.2), we find a subgradient y∗ ∈ ∂ zB1,k1(Fx) with−y∗ ∈N∂ (Fx;F1),
which justifies the necessary conditions. The proof is complete. �

Remark 5.1. In order to get a simpler structure of the subdifferential, we suppose that Fx = 0 for
a minimal solution of problem (Pk1,B1,F1). Using (5.1) in Corollary 5.1, the necessary condition
for an optimal solution x to the strictly robust counterpart problem (RC) in Theorem 5.2 reads
in this case: There exists y∗ ∈C+

Y with y∗(k1) = 1 and

−y∗ ∈ N∂ (Fx;F1).

Remark In the case of a finite number of scenarios (q scenarios), we have y∗ ∈ Rq
+ in the

conditions of Theorem 5.2.
Furthermore, we can use the characterization of solutions of the strictly robust counterpart

problem (RC) by vector optimization (see Theorem 4.1) for deriving necessary conditions for
solutions of the strictly robust counterpart problem.

Theorem 5.3. Consider Y =C(U ,R) and suppose that every Fx ∈F1 attains its supremum on
U for every solution x ∈ A1. Let B1 = CY , k1 ≡ 1 and F1 = {Fx ∈ Y | x ∈ A1}. Suppose
that F1 is closed. Let x be an optimal solution to the strictly robust counterpart problem (RC)
and the abstract subdifferential ∂ be such that (H1) and (H2) are fulfilled. Then, there exists an
element y∗ ∈C+

Y with y∗(k1) = 1 such that

−y∗ ∈ N∂ (Fx;F1).

Proof. Let x be an optimal solution of the strictly robust counterpart problem (RC). By Theorem
4.1, Fx ∈F1 is a minimal element of F1 w.r.t. α1. From Corollary 4.1, we obtain that Fx is a
weakly minimal element of F1 in Y w.r.t. the natural ordering αN of Y induced by the ordering
cone CY . Then, we consider the functional zB1,k1 : Y → R̄ given by (3.2) with

zB1,k1(y−Fx) := inf{t ∈ R | y−Fx ∈ t1k−B1}.
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In this setting, condition (3.1) is satisfied and the functional zB1,k1(·−Fx) is finite-valued, con-
tinuous and convex (see [24, Proposition 2.3.4]) and so Lipschitz continuous. From [34, Lemma
5.2], we know that Fx solves

zB1,k1(y−Fx)→ inf
y∈F1

. (Pk1,B1,F1)

Now, we can follow the line of Theorem 5.2 taking into account (5.1) in Corollary 5.1. �

5.3. Necessary conditions for solutions of the regret robust counterpart problem. In this
section, we derive necessary conditions for solutions of the regret robust counterpart problem
(rRC) using the characterization of solutions to (rRC) by the unifying approach based on non-
linear scalarization in Theorem 4.4. We consider an abstract subdifferential ∂ such that (H1)
and (H2) (see Section 5.1) are fulfilled.

Theorem 5.4. Let Y be a Banach space of functions F : U → R, F2 = {Fx ∈ Y | x ∈
A1}, with A1 ⊆ Rn. Furthermore, let CY = {F ∈ Y | ∀ξ ∈ U : F(ξ ) ≥ 0}, k2 ≡ 1 ∈ intCY ,
and B2 = {y ∈ Y | y ∈ CY − f ∗}. Suppose that F2 = {Fx ∈ Y | x ∈ A1} and CY are closed.
Consider an optimal solution x to the regret robust counterpart problem (rRC) and the abstract
subdifferential ∂ such that (H1) and (H2) are fulfilled. Then, there exists an element y∗ ∈ Y ∗

with y∗(k2) = 1 and y∗(Fx)+ y∗(b)≥ zB2,k2(Fx) for every b ∈ B2 such that

−y∗ ∈ N(Fx;F2).

Proof. Consider an optimal solution x to the regret robust counterpart problem (rRC). From
Theorem 4.4, we obtain that the corresponding regret robust outcome function Fx solves prob-
lem

zB2,k2(y)→ inf
y∈F2

, (Pk2,B2,F2)

where the functional zB2,k2 : Y → R̄

zB2,k2(y) = inf{t ∈ R | y ∈ tk2−B2}

(with B2 = {y ∈ Y | y ∈ CY − f ∗}, k2 ≡ 1 ∈ intCY and F2 = {Fx ∈ Y | x ∈ A1}) is involved,
i.e., F ∈F2 is a minimal element over F2 in Y w.r.t. the functional zB2,k2 (compare (3.2)).
Under these specifications, condition (3.1) is satisfied and the functional zB2,k2 is finite-valued,
continuous and convex (see [24, Proposition 2.3.4]) and so Lipschitz continuous. From (H1)
and (H2), we obtain

0 ∈ ∂ zB2,k2(·)(Fx)+N∂ (Fx;F2) (5.3)

since the constraint set F2 is assumed to be closed.
In compliance with the structure of the subdifferential of zB2,k2 (see Theorem 5.1), we obtain

∂ zB2,k2(Fx) = {y∗ ∈ Y ∗ | y∗(k2) = 1,∀b ∈ B : y∗(b)+ y∗(Fx)− zB2,k2(Fx)≥ 0}.

This yields together with inclusion (5.3) that there is a subgradient y∗ ∈ ∂ zB2,k2(Fx) with −y∗ ∈
N∂ (Fx;F2) such that the necessary conditions are fulfilled. �
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5.4. Necessary conditions for solutions of the ε-constraint robust counterpart problem.
For deriving a necessary optimality condition for optimal solutions to the ε-constraint robust
counterpart problem (εRC), we consider an abstract subdifferential such that (H1) and (H3)
(see Section 5.1) are fulfilled. Furthermore, we are using the notations introduced in Section
4.3.

Theorem 5.5. Let Y be a Banach space of functions F : U → R. Consider ε : U → R,
F3 = {Fx ∈ Y | x ∈ A1}. Furthermore, let k3 : U → R,

k3 =

{
1 for ξ = ξ ,
0 otherwise,

(5.4)

CY = {F ∈ Y | ∀ξ ∈ U : F(ξ ) ≥ 0} and B3 = {y ∈ Y | y ∈CY − ε}. Suppose that F3 and
CY are closed. Consider an optimal solution x to the ε-constraint robust counterpart problem
(εRC) and the abstract subdifferential ∂ such that (H1) and (H3) are fulfilled. Then, there exists
an element y∗ ∈Y ∗ with y∗(k3) = 1 and y∗(Fx)+y∗(b)≥ zB3,k3(Fx) for every b ∈ B3 such that

−y∗ ∈ N(Fx;F3).

Proof. Let x be an optimal solution to the ε-constraint robust counterpart problem (εRC). Tak-
ing into account Theorem 4.5, the corresponding ε-constraint robust outcome function Fx solves
problem (Pk3,B3,F3) with B3 = {y ∈ Y | y ∈CY − ε}, k3 : U → R,

k3 =

{
1 for ξ = ξ ,
0 otherwise

(5.5)

and F3 = {Fx ∈ Y | x ∈ A1}, i.e., Fx ∈F3 is a minimal element on F3 w.r.t. the functional
zB3,k3 (compare (3.2)):

zB3,k3(y)→ inf
y∈F3

, (Pk3,B3,F3)

where the functional zB3,k3 : Y → R̄

zB3,k3(y) = inf{t ∈ R | y ∈ tk3−B3}.

In this setting, condition (3.1) is satisfied. Since zB3,k3 is a lower semicontinuous convex
functional (see [24, Theorem 2.3.1]), we get from (H1) and (H3)

0 ∈ ∂ zB3,k3(·)(Fx)+N∂ (Fx;F3) (5.6)

since the constraint set F3 is assumed to be closed.
Taking into account the structure of the subdifferential of zB3,k3 given by Theorem 5.1, we

obtain

∂ zB3,k3(Fx) = {y∗ ∈ Y ∗ | y∗(k3) = 1,∀b ∈ B : y∗(b)+ y∗(Fx)− zB3,k3(Fx)≥ 0}.

Together with the inclusion (5.6), there is a subgradient y∗ ∈ ∂ zB3,k3(Fx) with−y∗ ∈N∂ (Fx;F3)
such that the necessary conditions are satisfied. �



782 E. KÖBIS, C. TAMMER

5.5. Necessary conditions for solutions of the properly robust counterpart. The aim of
this section is to derive necessary optimality conditions for properly robust solutions in the
sense of Section 4.4. We are using the Henig dilating cone in the concept of a properly robust
counterpart problem for deriving necessary optimality conditions because this cone has a very
useful structure. Suppose that Y is a Banach space and C ⊂ Y a nontrivial convex cone. We
suppose that C has a closed convex base BC ⊂ Y such that

C =
⋃

λ≥0

{λy | y ∈ BC} and 0 /∈ BC.

Furthermore, we assume w.l.o.g. that the base BC is given by a functional y∗ ∈ C# := {y∗ ∈
Y ∗ | ∀y ∈ C \ {0} : y∗(y) > 0}, this is BC = {y ∈ C | y∗(y) = 1}. By normalization, we get
|| y∗ ||Y ∗= 1 (see Jadamba, Khan, Lopez and Sama [35]).

For ε ∈ (0,1), the Henig dilating cone is defined by

D(ε) := cl[cone(BC + εBo
Y )], (5.7)

where BC is the base of C and Bo
Y := {y ∈ Y | || y ||Y≤ 1} is the closed unit ball in Y . It

is well known that D(ε) in (5.7) is a pointed, closed, convex cone with nonempty interior,
C =

⋂
0<ε<1 D(ε) (see [36, Theorem 1.1] and [35]) and C \{0} ⊂ intD(ε) for every ε ∈ (0,1).

Interesting applications of dilating cones for regularization methods are derived by Khan and
Sama in [37].

The dual cone of the Henig dilating cone is given by (see Durea and Dutta [38, Lemma 3.7]
and Jadamba, Khan, Lopez and Sama [35])

D(ε)+ = {0}∪{y∗ ∈C+ \{0} | y∗(y)≥ ε || y∗ ||Y ∗ for all y ∈ BC}.
In the next theorem, we give a necessary condition for a properly robust solution w.r.t. the

order relation α2 introduced in (4.6) with the dilating cone (5.7).

Theorem 5.6. Let Y be a Banach space of functions F : U → R, C ⊂ Y a nontrivial convex
cone with k1 ≡ 1 ∈C and F1 = {Fx ∈ Y | x ∈ A1} given by (4.2). Suppose that F1 is closed.
Consider properly robust solution x, i.e., Fx is a properly minimal element of F1 w.r.t. α2
with the dilating cone (5.7) of the properly robust counterpart problem (pRC), and the abstract
subdifferential ∂ such that (H1) and (H2) are fulfilled.
Then, there exists an element

y∗ ∈ D(ε)+ = {0}∪{y∗ ∈C+ \{0} | y∗(y)≥ ε || y∗ ||Y ∗ for all y ∈ BC} with y∗(k1) = 1

such that
−y∗ ∈ N(Fx;F1).

Proof. The proof is analogously to the proof of Theorem 5.3 using the functional (3.2) with
B = D(ε), k = k1 ≡ 1 ∈C \{0} (such that k ∈ intD(ε)) and taking into account the structure of
the dual cone D(ε)+ to the dilating cone D(ε). �

6. CONCLUSIONS AND FURTHER RESEARCH

We derived necessary optimality conditions for solutions of strictly/regret/ε-constraint/pro-
perly robust counterpart problems using the unifying approaches to robustness and stochastic
programming shown in [7] as well as a generic approach to the subdifferential. Corresponding
results can also be shown for other types of robustness and stochastic programming (for instance
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reliability, adjustable robustness, minimizing the expectation, stochastic dominance) discussed
in the unifying framework in [7]. For deriving the necessary optimality conditions, the unifying
approach based on nonlinear scalarization is very unseful. However, it would be of interest to
derive necessary optimality conditions using the approach based on vector optimization. Es-
pecially, employing Lemma 4.1 and Theorem 4.1, necessary conditions for optimal solutions
x ∈ A1 of (RC) in terms of vector variational inequality could be derived where a mapping
W : X → L(X ,Y ), W (x) ∈ L(X ,Y ) is involved:

Find x ∈ A1 such that (W (x))(u− x) /∈ intCY for every u ∈ A1.

For an overview of the theory on vector variational equalities, which may be useful here, we
refer to Ansari, Köbis and Yao [39], and for a detailed analysis on existence results, one can
consult [40]. Another approach for deriving necessary optimality conditions for solutions of the
robust counterpart problems (RC) is based on set optimization, especially, a characterization of
solutions with respect to the upper set relation using the results by Bao and Tammer in [41,
Theorem 4.1].
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[39] Q. H. Ansari, E. Köbis, J.-C. Yao, Vector Variational Inequalities and Vector Optimization – Theory and

Applications, Springer, Cham, 2018.
[40] N. Hebestreit, Existence results for vector quasi-variational problems, PhD-thesis, Martin Luther University

Halle-Wittenberg, 2020.
[41] T.Q. Bao, Chr. Tammer, Scalarization functionals with uniform level sets in set optimization, J. Optim. Theory

Appl. 182 (2019), 310-335.


	1. Introduction and Previous Work
	2. Scalar Optimization under Uncertainty
	3. Three Unifying Approaches to Optimization under Uncertainty
	3.1. Vector optimization as unifying approach
	3.2. Set-based optimization as unifying approach
	3.3. A nonlinear scalarizing functional as unifying approach

	4.  Unified Characterization of Uncertain Optimization Concepts
	4.1. Strict robustness
	4.2. Regret robustness
	4.3. -constraint robustness
	4.4. Proper robustness

	5. Optimality Conditions for Solutions of Robust Counterpart Problems
	5.1. Generic approach to subdifferentials
	5.2. Necessary conditions for solutions of the strictly robust counterpart problem
	5.3. Necessary conditions for solutions of the regret robust counterpart problem
	5.4. Necessary conditions for solutions of the -constraint robust counterpart problem
	5.5. Necessary conditions for solutions of the properly robust counterpart

	6. Conclusions and Further Research
	References

